## INTERPOLATION METHODS TO ESTIMATE EIGENVALUE DISTRIBUTION OF SOME INTEGRAL OPERATORS

## E. M. EL-SHOBAKY, N. ABDEL-MOTTALEB, A. FATHI, and M. FARAGALLAH

Received 20 August 2002

We study the asymptotic distribution of eigenvalues of integral operators  $T_k$  defined by kernels k which belong to Triebel-Lizorkin function space  $F^{\sigma}_{pu}(F^{\tau}_{qv})$  by using the factorization theorem and the Weyl numbers  $x_n$ . We use the relation between Triebel-Lizorkin space  $F^{\sigma}_{pu}(\Omega)$  and Besov space  $B^{\tau}_{pq}(\Omega)$  and the interpolation methods to get an estimation for the distribution of eigenvalues in Lizorkin spaces  $F^{\sigma}_{pu}(F^{\tau}_{qv})$ .

2000 Mathematics Subject Classification: 46B20, 47B10.

**1. Lizorkin kernels.** We will use the following notation:  $l_{p,q}$ ,  $S_{pq}^{(x)}$ ,  $B_{pq}^{s}$ , and  $F_{pq}^{s}$  to denote Lorentz sequence space, Schatten class, Besov function space, and Triebel-Lizorkin function space, respectively. By  $\pi_p$ ,  $s_n$ , and  $s_n$  we denote  $s_n$ -summing norms,  $s_n$ -number function, and Weyl numbers, respectively, see [2, 4, 5].

**THEOREM 1.1** (see [1]). Let  $s \in \mathbb{R}$ ,  $p \in (0, \infty)$  and let  $q, u, v \in (0, \infty]$ . Then  $B_{pu}^s \subset F_{pq}^s \subset B_{nv}^s$  if and only if

$$0 < u \le \min(p, q), \qquad \max(p, q) \le v \le \infty. \tag{1.1}$$

That is, if and only if  $0 < u \le q \le v$ .

**PROPOSITION 1.2** (see [4]). Let  $\Phi \in [B_{pu}^{\sigma}(0,1),X]$  and  $r = \max(p,u)$ . Then

$$\Phi_{\rm op}: a \longrightarrow (\Phi(\cdot), a) \tag{1.2}$$

(where  $\Phi_{op}$  is an approximable operator from X' into  $B_{pu}^{\sigma}(0,1)$ ) defines an absolutely r-summing operator from X' into  $B_{pu}^{\sigma}(0,1)$ . Moreover,

$$\left| \left| \Phi_{\text{op}} \mid \pi_r \right| \right| \le \left| \left| \Phi \mid \left[ B_{nu}^{\sigma}, X \right] \right| \right|. \tag{1.3}$$

We restate the previous proposition in the following form in the case of Triebel-Lizorkin space  $F_{pu}^{\sigma}(\Omega)$ .

**PROPOSITION 1.3.** Let X be a Banach space,  $\Omega \subset \mathbb{R}^N$  a bounded domain,  $\sigma > 0$ , and  $1 \le p < \infty$ . Let  $\Phi \in F^{\sigma}_{pu}(\Omega;X)$  and  $r = \max(p,u)$ . Then

$$\Phi_{\rm op}: \mathcal{X} \longrightarrow (\Phi(\cdot), \mathcal{X}) \tag{1.4}$$

defines an absolutely r-summing operator from X' into  $F_{pu}^{\sigma}(X)$ . Moreover,

$$\pi_r(\Phi_{\text{op}}) \le \|\Phi\|_{p,u,\sigma;\Omega,X}. \tag{1.5}$$

**PROOF.** Given  $x_1, ..., x_n \in X'$ , Jessen's inequality [4] yields

$$\left(\int_{\Omega} \left[\sum_{i=1}^{n} \left| \left(\Phi(\xi), x_{i}\right) \right|^{r} \right]^{p/r} d\xi\right)^{1/p} \leq \left(\sum_{i=1}^{n} \left[\int_{\Omega} \left| \left(\Phi(\xi), x_{i}\right) \right|^{p} d\xi \right]^{r/p}\right)^{1/r}.$$
(1.6)

Therefore,

$$\left\| \left( \sum_{i=1}^{n} \left| \left( \Phi(\cdot), x_{i} \right) \right|^{r} \right)^{1/r} \right\|_{L_{p}} \leq \left( \sum_{i=1}^{n} \left\| \left( \Phi(\cdot), x_{i} \right) \right\|_{L_{p}}^{r} \right)^{1/r} \leq \left\| \Phi \right\|_{L_{p}} \left\| \left( x_{i} \right) \right\|_{\pi_{r}}. \tag{1.7}$$

Applying this result to  $\Delta_{\tau}^{m}\Phi$ , we obtain

$$\left\| \left( \sum_{i=1}^{n} \left| \left( \Delta_{\tau}^{m} \Phi(\cdot), x_{i} \right) \right|^{r} \right)^{1/r} \right\|_{L_{p}} \leq \left\| \Delta_{\tau}^{m} \Phi \right\|_{L_{p}} \left\| \left( x_{i} \right) \right\|_{\pi_{r}}.$$
 (1.8)

Hence,

$$\left[ \int_{\Omega} \left( \sum_{i=1}^{n} \left[ \tau^{-\sigma} || (\Delta_{\tau}^{m} \Phi(\cdot), x_{i}) ||_{L_{p}} \right]^{r} \right)^{u/r} \frac{d\tau}{\tau} \right]^{1/u} \\
\leq \left[ \sum_{i=1}^{n} \left( \int_{\Omega} \left[ \tau^{-\sigma} || \Delta_{\tau}^{m} \Phi(\cdot), x_{i} ||_{L_{p}} \right]^{u} \right)^{r/u} \right]^{1/r} \\
\leq \left\| \left( \left[ \int_{\Omega} \tau^{-\sigma} |\Delta_{\tau}^{m} \Phi| \right]^{u} \frac{d\tau}{\tau} \right)^{1/u} \right\|_{L_{\tau}} ||(x_{i})||_{\pi_{r}}. \tag{1.9}$$

Finally, we conclude from the preceding inequalities that

$$\left\| \left( \sum_{i=1}^{n} \left| \left( \Phi(\cdot), x_{i} \right) \right|^{r} \right)^{1/r} \right\|_{F_{pu}^{\sigma}}$$

$$\leq \left\| \left( \sum_{i=1}^{n} \left| \left( \Phi(\cdot), x_{i} \right) \right|^{r} \right)^{1/r} \right\|_{L_{p}} + \left[ \int_{\Omega} \left( \sum_{i=1}^{n} \left[ \tau^{-\sigma} \left\| \left( \Delta_{\tau}^{m} \Phi(\cdot), x_{i} \right) \right\|_{L_{p}} \right]^{r} \right)^{u/r} \frac{d\tau}{\tau} \right]^{1/u}$$

$$\leq \left( \left\| \Phi \right\|_{L_{p}} + \left\| \left( \left[ \int_{\Omega} \tau^{-\sigma} \left| \Delta_{\tau}^{m} \Phi \right| \right]^{u} \frac{d\tau}{\tau} \right)^{1/u} \right\|_{L_{p}} \right) = \left\| \Phi \right\|_{F_{pu}^{\sigma}} \left\| \left( x_{i} \right) \right\|_{\pi_{r}}.$$

$$(1.10)$$

This shows that  $\Phi_{op}$  is absolutely r-summing.

**COROLLARY 1.4** (see [2]). Let X and Y be Banach spaces,  $2 \le p < \infty$ , and  $T \in \pi_{p,2}(X,Y)$ . Then  $T \in S_{p,\infty}^x(X,Y)$ , and for any  $n \in \mathbb{N}$ ,

$$x_n(T) \le n^{-1/p} \pi_{p,2}(T).$$
 (1.11)

We are interested in the following theorem.

**THEOREM 1.5** (see [3]). Let  $1 \le p \le \max(2, q) \le \infty$ . Then

$$x_{n}(I_{p,q}^{m}: l_{p}^{m} \longrightarrow l_{q}^{m}) \times \begin{cases} n^{1/q-1/p} & \text{for } 1 \leq p \leq q \leq 2, \\ n^{1/2-1/p} & \text{for } 1 \leq p \leq 2 \leq q < \infty, \\ 1 & \text{for } 2 \leq p \leq q < \infty. \end{cases}$$

$$(1.12)$$

**THEOREM 1.6** ((multiplication theorem) [4]). *If* 1/p+1/q=1/r *and* 1/u+1/v=1/w, *then* 

$$S_{pu}^{(x)} \circ S_{qv}^{(x)} \subseteq S_{rw}^{(x)}. \tag{1.13}$$

**THEOREM 1.7** ((eigenvalue theorem) [2]). Let  $0 , <math>0 < q \le \infty$ , and let X be a Banach space. Then any operator  $T \in L(X)$  which has Weyl numbers  $(x_n(T)) \in l_{p,q}$ ,  $T \in S_{p,q}^{(x)}(X)$  is a Riesz operator, the eigenvalue sequence of which is in  $l_{p,q}$ , and the following inequality holds

$$||(\lambda_n(T))||_{p,q} \le c||(x_n(T))||_{p,q}.$$
 (1.14)

**2. Eigenvalue theorem for Lizorkin kernels.** The following theorem contains the main result of this note.

**THEOREM 2.1.** Let  $\Omega \subset \mathbb{R}^N$  be a bounded domain,  $1 \leq p,q,u,v < \infty$ , and  $\sigma + \tau > N(1/p+1/q-1)$ . Define r by  $1/r = (\sigma + \tau)/N + 1/q^+$ , where  $q^+ = \max(q',2)$ . Then the eigenvalues of any kernel  $k \in F^{\sigma}_{pu}(\Omega; F^{\tau}_{qv}(\Omega))$  belong to the Lorentz sequence space  $l_{r,p}$  with

$$\left\| \left( \lambda_n(k) \right)_{n \in \mathbb{N}} \right\|_{l_{r,p}} \le c \left\| k \right\|_{F_{pu}^{\sigma}(F_{qv}^{\mathsf{T}})}. \tag{2.1}$$

*The constant c depends only on the indices and*  $\Omega$ *.* 

**PROOF.** First, we assume that  $p \le q'$ .

We will show that there exists an imbedding map id:  $F_{pu}^{\sigma}(\Omega) \hookrightarrow F_{qv}^{\tau}(\Omega)'$  and then estimate its Weyl numbers  $x_n(\text{id})$ . We factories an imbedding map id:  $F_{pu}^{\sigma}(\Omega) \hookrightarrow F_{qv}^{\tau}(\Omega)'$  with the help of maps A and B such that

$$\begin{split} \operatorname{id} &= B \circ \operatorname{id}^l \circ A, \\ F_{pu}^{\sigma}(\Omega) & \stackrel{\operatorname{id}}{\longrightarrow} F_{qv}^{\tau}(\Omega)' \\ & \bigwedge_{B} \\ l_p^m(\Omega) & \stackrel{\operatorname{id}}{\longrightarrow} l_{q'}^m(\Omega). \end{split}$$

This means that

$$\chi_n(\mathrm{id}) \le ||A||\chi_n(\mathrm{id}^l)||B|| \tag{2.3}$$

if we are able to estimate ||A|| and ||B|| suitably; from [6], operators A and B are defined exactly as they are in [4], and assume that  $\Omega$  contains the unit cube in  $\mathbb{R}^N$  and divide the unit cube in the usual way into  $2^{jN}$  congruent cubes with side length  $2^{-j}$ .

From [1], we have

$$||A|| \le c_1 2^{-j(\sigma - N/p)}, \qquad ||B|| \le c_2 2^{j(-\tau - N/q')}.$$
 (2.4)

Substituting (2.4) in (2.3), we get

$$x_n(id) \le c2^{-j(\sigma+\tau)+jN(1/p-1/q')}x_n(id^l).$$
 (2.5)

By Theorem 1.5, we have

$$\chi_n(\mathrm{id}: F_{pu}^{\sigma}(\Omega) \hookrightarrow F_{qv}^{\tau}(\Omega)') < n^{-\rho},$$
 (2.6)

where

$$\rho = \frac{\sigma + \tau}{N} + \begin{cases} 0, & \text{if } 1 \le p \le q' \le 2, \\ \frac{1}{2} - \frac{1}{q}, & \text{if } 1 \le p \le 2 \le q' < \infty, \\ 1 - \frac{1}{p} - \frac{1}{q}, & \text{if } 2 \le p \le q' < \infty, \end{cases}$$
(2.7)

and  $n = 2^{Nj}$ .

Hence,

$$id \in S_{1/\rho,\infty}^{(x)} \left( F_{pu}^{\sigma}(\Omega) \hookrightarrow F_{qv}^{\tau}(\Omega)' \right). \tag{2.8}$$

To estimate the Weyl number of  $T_k$  in  $F_{av}^{\tau}(\Omega)'$ , we use the factorization

$$F_{qv}^{\mathsf{T}}(\Omega)' \xrightarrow{T_k} F_{pu}^{\sigma}(\Omega) \stackrel{\mathrm{id}}{\hookrightarrow} F_{qv}^{\mathsf{T}}(\Omega)'. \tag{2.9}$$

By Proposition 1.3,  $k \in F^{\sigma}_{pu}(\Omega;X)$  implies that  $T_k: X' \hookrightarrow F^{\sigma}_{pu}(\Omega)$  is p-summing. By Corollary 1.4, we have

$$x_n(T_k: F_{qv}^{\tau}(\Omega)' \longrightarrow F_{pu}^{\sigma}(\Omega)) \le \pi_p(T_k) n^{-1/\max(p,2)} \le c_1 ||k||_{F_{pu}^{\sigma}(X)} n^{-1/\max(p,2)},$$
 (2.10)

that is.

$$T_k \in S_{s,\infty}^{(x)} \left( F_{pu}^{\sigma}(\Omega), F_{qv}^{\tau}(\Omega)' \right), \quad s = \max(p, 2). \tag{2.11}$$

We conclude from the multiplication theorem that id  $\circ T_k \in S_{r,\infty}^{(\chi)}(F_{qv}^{\tau}(\Omega)')$ , where  $1/r = \rho + 1/s$ .

In the case when p > q', then we have

$$k \in F_{pu}^{\sigma}(\Omega; F_{qv}^{\tau}(\Omega)) \Longrightarrow k \in F_{q'u}^{\sigma}(\Omega; F_{qv}^{\tau}(\Omega)). \tag{2.12}$$

In this way the second case is reduced to the first one.

So, we have shown that the map  $k \to id \circ T_k$ , which assigns to every kernel the corresponding operator, acts as follows:

op: 
$$F_{pu}^{\sigma}(F_{qv}^{\tau}) \longrightarrow S_{r,\infty}^{(x)}(F_{qv}^{\tau}(\Omega)')$$
. (2.13)

This result can be improved by interpolation. To this end, choose  $p_0$ ,  $p_1$ , and  $\theta$  such that  $1/p = 1 - \theta/p_0 + \theta/p_1$ . We now apply the formula

$$(F_{p_0u}^{\sigma}(E), F_{p_1u}^{\sigma}(E))_{\theta, p} = F_{pu}^{\sigma}(E), \quad E = F_{qv}^{\tau}.$$
 (2.14)

Then, using interpolation as in [2], where  $1/r = 1 - \theta/r_0 + \theta/r_1$ , hence

$$(S_{r_0\infty}^{(x)}, S_{r_1\infty}^{(x)})_{\theta,p} \subseteq S_{rp}^{(x)}.$$
 (2.15)

Hence the interpolation property yields

op: 
$$F_{pu}^{\sigma}(F_{qv}^{\tau}) \longrightarrow S_{r,p}^{(x)}(F_{qv}^{\tau}(\Omega)')$$
. (2.16)

By the eigenvalue theorem (Theorem 1.7), we therefore obtain  $(\lambda_n(k)) \in l_{r,v}$ .

**THEOREM 2.2** (eigenvalue theorem for Sobolev kernels). Let  $1 \le p < \infty$ ,  $1 < q < \infty$ ,  $1/r = m + n + 1/q^+$ , and  $w = \min(q, 2)$ .

Then

$$k \in [W_p^m(0,1), W_q^n(0,1)] \Longrightarrow (\lambda_n(k)) \in l_{r,w}.$$
 (2.17)

**PROOF.** See 
$$[4]$$
.

The following example proves that our result improves the previous theorem of [4].

**THEOREM 2.3.** Let  $\Omega \subset \mathbb{R}^N$  be a bounded domain,  $1 \leq p,q,v < \infty$ , and  $\tau > 0$  with  $\tau > N(1/p + 1/q - 1)$ ,  $p \leq v$ , and  $1/r := \tau/N + 1/\max(2,q')$ . Then the eigenvalues of any kernel  $k \in L_p(F_{av}^{\tau})$  belong to the Lorentz sequence space  $l_{r,v}$  with

$$\left\| \left( \lambda_n(k) \right)_{n \in N} \right\|_{l_{r,\nu}} \le c \left\| k \right\|_{L_p\left(F_{qv}^{\mathsf{T}}\right)}. \tag{2.18}$$

**PROOF.** We may assume that  $p \le q'$ . Then, reasoning similarly as in the proof of Theorem 2.1, it follows that the map  $k \to T_k$ , which assigns to every kernel the corresponding operator, acts as follows:

op: 
$$L_p(F_{qv}^{\tau}) \longrightarrow S_{r,\infty}^{(x)}(L_p(\Omega)).$$
 (2.19)

This result can be improved by interpolation. To this end, we apply the imbedding

$$(L_p, (E_0, E_1)_{\theta, m}) \subseteq ((L_p, E_0), (L_p, E_1))_{\theta, m}, \quad p < m,$$
 (2.20)

to the interpolation couple  $(F_{q,\nu_0}^{\tau_0},F_{q,\nu_1}^{\tau_1})$ . The interpolation property now implies that

op: 
$$L_p(F_{av}^{\tau}) \longrightarrow S_{r,v}^{(x)}(L_p(\Omega)).$$
 (2.21)

By the eigenvalue theorem (Theorem 1.7), we therefore obtain  $(\lambda_n(k)) \in l_{r,v}$ .

**EXAMPLE 2.4.** (1) In this example, we will indicate a special case of the Lizorkin space  $F_{pu}^{\sigma}(\mathbb{R}^N)$ . When  $1 and <math>s \in \mathbb{N}_0$ , then

$$F_{p,2}^{s}(\mathbb{R}^{N}) = W_{p}^{s}(\mathbb{R}^{N}) \tag{2.22}$$

are the classical Sobolev spaces.

We compare this case with Theorem 2.2. We find that

$$k \in W_p^{\sigma}(W_q^{\tau}) \Longrightarrow (\lambda_n(k)) \in l_{r,w},$$
 (2.23)

where  $w = \min(q, 2)$ , and

$$k \in F_{pu}^{\sigma}(F_{qv}^{\tau}) \Longrightarrow (\lambda_n(k)) \in l_{r,p}.$$
 (2.24)

We conclude that if  $p < w = \min(q, 2), 2 \le q < \infty, 1 < p < 2$ , then

$$l_{r,w} \subset l_{r,p}, \tag{2.25}$$

that is,

$$\left\| \left( \lambda_n(k) \right)_{n \in \mathbb{N}} \right\|_{r,p} \le \left\| \left( \lambda_n(k) \right)_{n \in \mathbb{N}} \right\|_{r,w}. \tag{2.26}$$

(2) We compare

$$k \in W_p^{\sigma}(W_q^{\tau}) \Longrightarrow (\lambda_n(k)) \in l_{r,w},$$
 (2.27)

where  $w = \min(q, 2)$ , with

$$k \in L_p(F_{qv}^{\tau}) \Longrightarrow (\lambda_n(k)) \in l_{r,v},$$
 (2.28)

where  $p \le v$ . We conclude that if  $v < w = \min(q, 2), 2 \le q < \infty, 1 < p < 2$ , then

$$l_{r,w} \subset l_{r,v}, \tag{2.29}$$

that is,

$$\|(\lambda_n(k))_{n\in\mathbb{N}}\|_{r,v} \le \|(\lambda_n(k))_{n\in\mathbb{N}}\|_{r,w}.$$
 (2.30)

## REFERENCES

- D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996.
- [2] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser Verlag, Basel, 1968.
- [3] R. Linde, *s-numbers of diagonal operators and Besov embeddings*, Rend. Circ. Mat. Palermo (2) Suppl. (1985), no. 10, 83–110, Proc. 13th Winter school.
- [4] A. Pietsch, *Eigenvalues and s-Numbers*, Mathematik und ihre Anwendungen in Physik und Technik, vol. 43, Akademische Verlagsgesellschaft Geest and Portig K.-G., Leipzig, 1987.
- [5] H. Triebel, *Interpolation Theory, Function Spaces, Differential Operators*, North-Holland Mathematical Library, vol. 18, North-Holland Publishing, Amsterdam, 1978.
- [6] \_\_\_\_\_, Theory of Function Spaces. II, Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel, 1992.

E. M. El-Shobaky: Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

E-mail address: solar@photoenergy.org

N. Abdel-Mottaleb: Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

A. Fathi: Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

E-mail address: a\_fath72@yahoo.com

M. Faragallah: Department of Mathematics, Faculty of Education, Ain Shams University, Cairo 11566, Egypt