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We study the asymptotic distribution of eigenvalues of integral operators T} defined by
kernels k which belong to Triebel-Lizorkin function space Fgu (F,{v) by using the factoriza-
tion theorem and the Weyl numbers x;,. We use the relation between Triebel-Lizorkin space
F;,’M () and Besov space B, (Q) and the interpolation methods to get an estimation for the
distribution of eigenvalues in Lizorkin spaces Fg, (Ff,)-

2000 Mathematics Subject Classification: 46820, 47B10.

1. Lizorkin kernels. We will use the following notation: I, 4, S,E,’;), By and Fj,to de-

note Lorentz sequence space, Schatten class, Besov function space, and Triebel-Lizorkin
function space, respectively. By 1, s, and x,, we denote p-summing norms, s-number
function, and Weyl numbers, respectively, see [2, 4, 5].

THEOREM 1.1 (see [1]). Lets e R, p € (0,0) and letq,u,v € (0,]. ThenB;u CFyC
By, if and only if

0 <u <min(p,q), max(p,q) < v < oo. (1.1)

That is, if and only if 0 <u <q < v.

PROPOSITION 1.2 (see [4]). Let® e [B;,’u(O, 1),X] and r = max(p,u). Then
Dop:a— (9(+),a) (1.2)

(where @, is an approximable operator from X' into By, (0,1)) defines an absolutely
v -summing operator from X' into Bgu (0,1). Moreover,

[[®op | 7rr[[ < || | [Byy, X]]]. (1.3)

We restate the previous proposition in the following form in the case of Triebel-
Lizorkin space F;,’u(Q).

PROPOSITION 1.3. Let X be a Banach space, Q ¢ RN a bounded domain, o > 0, and
1<p<o.Letd e Fy,(Q;X) and v = max(p,u). Then

Dop i x — (P(+),x) (1.4)
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defines an absolutely v -summing operator from X' into Fy, (X). Moreover,
Ty (q)op) = ”(I)Hp,u,o';Q,X- (1.5)

PROOF. Given x1,...,x, € X', Jessen’s inequality [4] yields

(J [il | (@(®),xi) | ]de) s(é“ﬁ|(c1>(§>,xi)|vdg]””>w_ (1.6)

Therefore,

n 1/r
(Z |<<I><->,xi><y)

Applying this result to A, we obtain

1/p

n 1/r
< (ZII(CP(-),xi)HL,) < Il 1 (xi) ||, - (1.7)

i=1

Ly

=< [lar el [1(x)llx, - (1.8)

n 1/rv
(Z [(AT®(-),x7) I’)

Lp

Hence,

n . u/r - 1/u
vmesmnt] %

1/r

(LZ [TU||A?r"¢(.),xi|’Ln]u)V/u:| W
(frisro )"

Finally, we conclude from the preceding inequalities that

n 1/rv
(Z | (@(-),x1) l’)

1/v u/r 1/u
S v ol Ama v 1) 4T
(i_zl|(<b(-),xl‘)| ) L + [JQ (Z[T [[(AM o ( ),xl)||Lp] ) - ]

i=1
1/u
_ “dr
< (||<1>||L,7+ (UQT greyy 7) )= 1 1160 -
Ly

This shows that @, is absolutely -summing. |

IA

11 (xi) 1,

Lp

(1.10)
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COROLLARY 1.4 (see [2]). LetX andY be Banach spaces,2<p <oo,andT € 1, >(X,Y).
ThenT € Sy . (X,Y), and for any n € N,

Xn(T) < VP11,,(T). (1.11)

We are interested in the following theorem.

THEOREM 1.5 (see [3]). Let1 < p <max(2,q) < «. Then

nta-lr forl<p<q<?2,
Xn (It L — 1Y) = Anl/271P for1<p <2 <q <o, (1.12)

1 for2<p=<q<o.

THEOREM 1.6 ((multiplication theorem) [4]). If1/p+1/q=1/vandl/u+1/v =1/w,
then

SEoSL) c s (1.13)

THEOREM 1.7 ((eigenvalue theorem) [2]). Let0 < p < o, 0 < g < o, and let X be a
Banach space. Then any operator T € L(X) which has Weyl numbers (x,(T)) € l, 4,
T e Sé,’jl) (X) is a Riesz operator, the eigenvalue sequence of which is in l, 4, and the
following inequality holds

||(AH(T))H;7,(1SCH(xn(T))Hp,q (114)

2. Eigenvalue theorem for Lizorkin kernels. The following theorem contains the
main result of this note.

THEOREM 2.1. Let Q C RN be a bounded domain, 1 < p,q,u,v < «, and o +T >
N(/p+1/q-1).Definer by1/r =(0c+T)/N+1/q*, where g* = max(q’,2). Then the
eigenvalues of any kernel k € FJ (Q;Ff, (Q)) belong to the Lorentz sequence space Ly,
with

An (k) penlly,,, = cliklleg, ¢g,)- (2.1)

The constant ¢ depends only on the indices and Q).

PROOF. First, we assume that p < q’.

We will show that there exists an imbedding map id : FJ,(Q) = FJ, (Q)" and then es-
timate its Weyl numbers x,, (id). We factories an imbedding map id : FJ,(Q) = Fg, Q)
with the help of maps A and B such that

id = Boid' oA,
Fo,(Q) 45 FT,(Q)

l T (2.2)
A B

) ),
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This means that
xn(id) < [ Allx, (id") B 2.3)

if we are able to estimate ||A|| and ||B|| suitably; from [6], operators A and B are defined
exactly as they are in [4], and assume that Q contains the unit cube in RN and divide
the unit cube in the usual way into 2/N congruent cubes with side length 2/,

From [1], we have

Al < CIZ*J'(O'—N/W)’ IBIl < ngj(—T—N/q’)_ (2.4)
Substituting (2.4) in (2.3), we get
X (id) < c27 7O+ DHINA/p-1a) o (§gl). (2.5)

By Theorem 1.5, we have

Xn (id: Fpyy (Q) = Fr,(Q)) <n7?, (2.6)
where
0, ifl<p=<q <2,
1 1
_o+T -, ifl<sp=<2=<q <o,
p= T2t +13 a p (2.7)
1-———, if2<p<q <o,
p q pP=q
and n = 2NJ,
Hence,
id € S{) . (F3,(Q) = FT,(Q)). (2.8)

To estimate the Weyl number of Ty in Fg, (Q)’, we use the factorization
FI,(Q) & F2,(Q) © FT, Q) (2.9)
qv pu qv : :

By Proposition 1.3, k € F7, (©;X) implies that Ty : X' < FJ,(Q) is p-summing. By
Corollary 1.4, we have

xn (T Fiy (Q) — FP,(Q)) < 11, (Te)n™ /™02 < ¢y ||kl pg,, pyn ™™ P2 (2.10)
that is,
Ti € S (FF,(Q),FL,(Q)"), s=max(p,2). (2.11)

We conclude from the multiplication theorem that idoTj € Sﬁxoi (F7,(©)"), where 1/r =

p+1/s.
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In the case when p > q’, then we have
k € Fy, (Q;F;,(Q)) :keFé’,u(Q;F;v(Q)). (2.12)

In this way the second case is reduced to the first one.
So, we have shown that the map k — id o Ty, which assigns to every kernel the corre-
sponding operator, acts as follows:

op:Fg, (FF,) — SYL(Fr,(Q)). (2.13)

This result can be improved by interpolation. To this end, choose pg, p1, and 0 such
that 1/p =1-0/po+ 0/p,. We now apply the formula

(Fpou(E), FJ o (E))g, = Fy(E), E=Fg,. (2.14)

i
Then, using interpolation as in [2], where 1/ =1-0/%y+ 0 /7, hence
(S2%,85%) 0 €S53 (2.15)
Hence the interpolation property yields
op:Fg, (FF,) — &%) (FI, (Q)"). (2.16)

By the eigenvalue theorem (Theorem 1.7), we therefore obtain (A, (k)) € Ly . O

THEOREM 2.2 (eigenvalue theorem for Sobolev kernels). Let1 <p < o, 1 < g < o,
1/r=m+n+1/q*, and w = min(q,?2).
Then

ke [Wr0,1),WrH0,1)] = (An(k)) € Ly (2.17)

PROOEF. See [4]. O
The following example proves that our result improves the previous theorem of [4].

THEOREM 2.3. Let Q C RN be a bounded domain, 1 < p,q,v < «, and T > 0 with
T>N{1/p+1/g-1),p <v,and 1/v := T/N+1/max(2,q"). Then the eigenvalues of
any kernel k € Ly, (F7,) belong to the Lorentz sequence space Ly, with

||(A"(k))n€N||ly,v SC”k”Lp(F({U)' (2.18)
PROOF. We may assume that p < q’. Then, reasoning similarly as in the proof of
Theorem 2.1, it follows that the map k — Tk, which assigns to every kernel the corre-

sponding operator, acts as follows:

op:Ly(FL,) — SX(Ly(Q)). (2.19)
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This result can be improved by interpolation. To this end, we apply the imbedding
(Lp, (Eo,E1) g.m) € ((Lp,Eo),(Lp,E1)) g s P <M, (2.20)
to the interpolation couple (FqTf%,O,FqT, %,). The interpolation property now implies that

op:Ly(F],) — S (Ly(Q)). (2.21)

By the eigenvalue theorem (Theorem 1.7), we therefore obtain (A, (k)) € Ly 4. |

EXAMPLE 2.4. (1)In this example, we will indicate a special case of the Lizorkin space
FZ,(RN).When 1 < p < « and s € No, then

Fp,(RN) =W, (RN) (2.22)

are the classical Sobolev spaces.
We compare this case with Theorem 2.2. We find that

keWg(W7) = (An(k)) € Ly, (2.23)
where w = min(q,2), and
ke Fg, (Fi,) = (An(k)) €Ly p. (2.24)

We conclude that if p < w =min(q,2),2<qg <o, 1 <p <2, then

brw Clp, (2.25)
that is,
1 (An (D) nenllrp = 1A (K)) el - (2.26)
(2) We compare
kew) (Wi) = (An(k)) € Ly w, (2.27)
where w = min(q,2), with
k€ Ly(FL,) = (An(k)) € Ly, (2.28)

where p < v. We conclude that if v < w =min(q,2),2<gq < o, 1 <p <2, then
lr,w C lr,v; (2-29)
that is,

H(An(k))neNHr,v = ||(An(k))neN||r,w' (2.30)
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