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We deal with Riemann boundary value problem for hyperanalytic functions. Further-
more, necessary and sufficient conditions for solvability of the problem are derived. At
the end the explicit form of general solution for singular integral equations with a hyper-
complex Cauchy kernel in the Douglis sense is established.

1. Introduction

The theory of Riemann boundary value problem for analytic functions of one complex
variable and singular integral equations that are equivalent to it has been extensively stud-
ied in the literature. For classical books on this topic see [7, 12, 13] and for an actual
overview of them the reader is directed to the monograph by Estrada and Kanwal [6],
and the references therein.

In the more recent times several generalizations and extensions of the theory are
treated and have led to numerous important results not only for nonsmoothly bounded
domain, which differs with the former, but for general assumptions on the data of the
problem, such as generalized Hölder coefficients or special subspaces of this space and
the desired boundary behavior condition for the solution. During the last decades, the
Riemann boundary value problem was studied for generalized analytic functions, as well
as for many other linear and nonlinear elliptic systems in the plane [1, 2, 8, 15, 16, 17].

Let γ be a rectifiable positively oriented Jordan closed curve with diameter d which is
the boundary of a bounded simply connected domain Ω+ in the complex plane C and let
Ω− := C \ (Ω+∪ γ).

In the Douglis commuting function algebra sense, a continuously differentiable null
solution to the Douglis differential operator provides us with the class of hyperanalytic
functions. Let �(Ω±) be the spaces of all continuous functions on Ω± := Ω± ∪ γ and
hyperanalytic in Ω±.

The classical Riemann boundary value problem for analytic functions consists in find-
ing a function Φ(z) analytic in C \ γ, such that Φ has a finite order at infinity, and satis-
fies a prescribed jump condition across the curve γ. The basic boundary condition takes
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the form

Φ+(t)−G(t)Φ−(t)= g(t), t ∈ γ, (1.1)

where G, g are given continuous functions on γ, and Φ+(t) and Φ−(t) represent the limit
values, in a suitable sense, of the desired function Φ at a point t as this point is approached
from Ω+ and from Ω−, respectively.

The Riemann boundary value problem for analytic functions as well as for hyper-
analytic functions in the case where the unknown functions are continuous up to the
boundary or their continuity is violated only at a finite number of points are well stud-
ied and described in the fundamental monographs [7, 8, 12, 13]. The Riemann problems
mentioned above are usually called a continuous or piecewise continuous boundary value
problem, respectively.

The present paper is concerned with hyperanalytic Riemann boundary value problem
(where instead of analyticity one requires the hyperanalyticity of Φ) in the continuous
case (the solutions including their boundary values on γ are continuous). The purpose of
the paper is to present an explicit form of the general solution of the problem.

The motivation comes on the one hand from the study of the hyperanalytic Riemann
boundary value problem with continuous coefficients [10] and on the other from the
necessary and sufficient solvability condition, which will be imposed on the layer function
of the Cauchy type integral so that this integral provides the solution of the basic jump
problem.

The main result is moreover applied to describe the general solution of a singular
integral equation with a hypercomplex Cauchy kernel.

2. Preliminaries

For the sake of completeness we recall some basic notions and results in Douglis analysis,
that is, a Douglis-algebra-valued function theory which is a generalization of classical
complex analysis in the plane. For more details concerning this function theory and its
application, we refer the reader to [1, 8, 16, 17].

Let D be the Douglis algebra generated by the elements i and e. The multiplication in
D is governed by the rules

i2 =−1, ie = ei, er = 0, e0 = 1, (2.1)

where r is a positive integer.
An arbitrary element a∈Dmay be written as a hypercomplex number of the form

a=
r−1∑
k=0

ake
k, (2.2)

where each ak is a complex number, a0 is called the complex part of a, and A :=∑r−1
k=1 ake

k

is the nilpotent part.
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The conjugation a→ a in D is defined as

a :=
r−1∑
k=0

āke
k. (2.3)

In D the algebraic norm of a is defined by

|a| :=
r−1∑
k=0

∣∣ak∣∣. (2.4)

It is easily seen that

|ab| ≤ |a||b|, |a+ b| ≤ |a|+ |b|, (2.5)

for any hypercomplex numbers a and b. The multiplicative inverse a−1 of a with complex
part a0 �= 0 is given by

a−1 or
1
a
= 1
a0

r−1∑
k=0

(−1)k
(
A

a0

)k
. (2.6)

Conversely, if a0 = 0, then a does not have a multiplicative inverse and a is called nilpo-
tent.

In what follows, we will consider functionsD-valued, which are defined in some subset
Ω⊂ C.

We say that f =∑r−1
k=0 fke

k, where fk are complex-valued functions, belongs to some
classical class of functions on Ω if each of its components fk belongs to that class.

The Douglis operator ∂
q
z is given by

∂
q
z := ∂z + q(z)∂z, z = x+ iy (2.7)

here q(z) is a known nilpotent hypercomplex function and

∂z := 1
2

(
∂x + i∂y

)
, ∂z := 1

2

(
∂x − i∂y

)
. (2.8)

Definition 2.1. A continuously differentiable hypercomplex function f is hyperanalytic
in Ω if ∂

q
z f = 0 in Ω.

The basic example of a hyperanalytic function is the generating solution of the Douglis
operator given by

W(z)= z+
r−1∑
k=1

Wk(z)ek, (2.9)

namely, ∂
q
zW(z) = 0 and its nilpotent part

∑r−1
k=1Wkek possess bounded and continuous

derivatives up to order two in C.
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Since in the paper we have employed the letter t to denote a generic point in the curve
γ, we have decided to denote the generating solution of the Douglis operator with W(z)
instead of the standard notation t(z).

The hypercomplex Cauchy kernel, that is, the fundamental solution of the Douglis
operator, is given by

2ez(ζ) := 1
π

∂ζW(ζ)
W(ζ)−W(z)

, ζ �= z. (2.10)

For f ,g ∈�1(Ω+)∩�(Ω+) Green’s identity can be formulated within the framework of
hypercomplex function theory in the following way:

∫
γ
∂ζW(ζ) f (ζ)nq(ζ)g(ζ)ds= 2

∫
Ω+

∂ζW(ζ)
(
f ∂

q

ζ
g + g∂

q

ζ
f
)
dΩ+, (2.11)

where nq(ζ) := n(ζ) + n(ζ)q(ζ), n(ζ) denotes the exterior unit normal vector to γ at the
point ζ , and ds is an arc length differential.

Green’s identity leads to the Cauchy-Pompeiu integral representation formula for
smooth functions

f (z)=
∫
γ
ez(ζ)nq(ζ) f (ζ)ds− 2

∫
Ω+

ez(ζ)∂
q

ζ
f (ζ)dΩ+, z ∈Ω+, (2.12)

while for hyperanalytic functions coincides with Cauchy’s formula.

f (z)=
∫
γ
ez(ζ)nq(ζ) f (ζ)ds, z ∈Ω+. (2.13)

Definition 2.2. Suppose F is a hyperanalytic function outside of an open ball BR with
radius R > 0 and center at the origin and let γ0 be any rectifiable positively oriented Jordan
closed curve such that γ0 lies in C \BR and surrounds BR. The hypercomplex number

Resζ=∞
[
F(ζ)

]
:=− 1

2π

∫
γ0

Wζ(ζ)nq(ζ)F(ζ)ds (2.14)

is called the residue of F at infinity.

Note that, according to (2.11), the integral in the right-hand side does not depend on
the choice of the curve γ0.

Theorem 2.3. Let F ∈�(Ω−), then

∫
γ
ez(ζ)nq(ζ)F(ζ)ds=



−Resζ=∞

[
F(ζ)

W(ζ)−W(z)

]
, z ∈Ω+

−F(z)−Resζ=∞
[

F(ζ)
W(ζ)−W(z)

]
, z ∈Ω−.

(2.15)
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Proof. Suppose z ∈Ω− and let R > 0 such that Ω+ ⊂ BR and z ∈ BR. From Cauchy’s for-
mula we get

∫
γ
ez(ζ)nq(ζ)F(ζ)ds=−F(z) +

∫
∂BR

ez(ζ)nq(ζ)F(ζ)ds

=−F(z)−Resζ=∞
[

F(ζ)
W(ζ)−W(z)

]
.

(2.16)

The case z ∈Ω+ is similar. �

Notation c will be used for constants which may vary from one occurrence to the next;
in general these constants only depend on q.

Lemma 2.4. Let γε(t) := {ζ ∈ γ : |ζ − t| ≤ ε}, for t ∈ γ and let ε ∈ (0,d].
(i) If F ∈�(Ω+), then

∣∣∣∣
∫
γ\γε(t)

et(ζ)nq(ζ)
(
F(ζ)−F(t)

)
ds
∣∣∣∣≤ c max

z∈Ω+,|z−t|=ε

∣∣F(z)−F(t)
∣∣. (2.17)

(ii) If F ∈�(Ω−), then

∣∣∣∣
∫
γ\γε(t)

et(ζ)nq(ζ)
(
F(ζ)−F(t)

)
ds+F(t) + Resζ=∞

[
F(ζ)

W(ζ)−W(t)

]∣∣∣∣
≤ c max

z∈Ω−,|z−t|=ε

∣∣F(z)−F(t)
∣∣. (2.18)

Proof. The first assertion was already proved in [10]. We consider the second one. Sup-
pose Bε(t) is the open ball with center t and radius ε, and let

Q :=Ω+∪Bε(t). (2.19)

Since γ \ γε(t)= ∂Q \ (∂Q∩ ∂Bε(t)), we have

∫
γ\γε(t)

et(ζ)nq(ζ)
(
F(ζ)−F(t)

)
ds

=
∫
∂Q
et(ζ)nq(ζ)

(
F(ζ)−F(t)

)
ds−

∫
∂Q∩∂Bε(t)

et(ζ)nq(ζ)
(
F(ζ)−F(t)

)
ds

=
∫
∂Q
et(ζ)nq(ζ)F(ζ)ds−F(t)−

∫
∂Q∩∂Bε(t)

et(ζ)nq(ζ)
(
F(ζ)−F(t)

)
ds.

(2.20)

In view of the previous theorem,

∣∣∣∣
∫
γ\γε(t)

et(ζ)nq(ζ)
(
F(ζ)−F(t)

)
ds+F(t) + Resζ=∞

[
F(ζ)

W(ζ)−W(t)

]∣∣∣∣
=
∣∣∣∣
∫
∂Q∩∂Bε(t)

et(ζ)nq(ζ)
(
F(ζ)−F(t)

)
ds
∣∣∣∣≤ c max

z∈Ω−,|z−t|=ε

∣∣F(z)−F(t)
∣∣.
(2.21)

�
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For each f ∈�(γ) the Cauchy-type integral is given by

(
Cγ f

)
(z) :=

∫
γ
ez(ζ)nq(ζ) f (ζ)ds, z /∈ γ. (2.22)

Clearly Cγ f is hyperanalytic in C \ γ.
Thus the singular Cauchy integral operator (Hilbert transform) on γ reads as

(
Sγ f

)
(t) := 2

∫
γ
et(ζ)nq(ζ)

(
f (ζ)− f (t)

)
ds+ f (t), t ∈ γ, (2.23)

where the integral which defines Sγ f has to be taken in the sense of Cauchy’s principal
value, and the function f is such that the integrals

∫
γε(t)

et(ζ)nq(ζ)
(
f (ζ)− f (t)

)
ds (2.24)

converge uniformly to zero for t ∈ γ as ε→ 0.
The space of all continuous functions on γ which satisfy the above condition will be

denoted by �(γ). Taking into account Lemma 2.4, we get �(Ω±)⊂�(γ).
From now on we always assume γ to be a regular closed curve, that is, the quotient of

the length of γ inside any circle to the radius of the circle is less than some fixed constant.
In a previous paper [3] we already studied the problem of establishing necessary and

sufficient condition for the Cauchy-type integral to be continuously extended onto γ. The
following theorem was proved in [3].

Theorem 2.5. Let f ∈ �(γ), then Cγ f has continuous limit values on γ if and only if
f ∈�(γ). Moreover,

lim
Ω±	z→t

(
Cγ f

)
(z)= 1

2

((
Sγ f

)
(t)± f (t)

)
. (2.25)

Therefore, for any f ∈�(γ) the functions

(
C±γ f

)
(z) :=



(

Cγ f
)
(z), z ∈Ω±,

1
2

((
Sγ f

)
(z)± f (z)

)
, z ∈ γ,

(2.26)

are continuous on Ω±.
Let �±(γ) be the spaces of all continuous functions f on γ which have hyperanalytic

extensions f ± to Ω± and f −(∞)= 0.
By Theorem 2.5 we get the splitting of the space �(γ) as

�(γ)=�+(γ)⊕�−(γ), (2.27)

and the corresponding splitting of the functions considered f = f + + f −, where f ± ∈
�±(γ).
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Now, for f ∈�(γ) we consider the modulus of continuity for f as

ωf (ξ) := ξ sup
ρ≥ξ

ρ−1 max
t1,t2∈γ,|t1−t2|≤ρ

∣∣ f (t1)− f
(
t2
)∣∣, ξ > 0. (2.28)

Let

I0(γ) :=
{
f ∈�(γ) :

∫ d
0

ωf (ξ)

ξ
dξ < +∞

}
. (2.29)

For a majorant ϕ, that is, ϕ is a positive real function on (0,d] such that ϕ(ξ) does not de-
crease, ϕ(ξ)/ξ does not increase, and ϕ(ξ)→ 0 as ξ → 0, we now introduce the generalized
Hölder continuous functions space

�ϕ(γ) :=
{
f ∈�(γ) : ωf (ξ)≤ cϕ(ξ), ξ ∈ (0,d]

}
(2.30)

and its subspace

�ϕ(γ) :=
{
f ∈�ϕ(γ) : Θ f (ξ)≤ cϕ(ξ), ξ ∈ (0,d]

}
, (2.31)

where

Θ f (ξ) := ξ sup
ρ≥ξ

ρ−1 sup
ε∈(0,ρ], t∈γ

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
f (ζ)− f (t)

)
ds
∣∣∣∣. (2.32)

One can define a norm in �ϕ(γ) by

‖ f ‖�ϕ :=max
t∈γ

∣∣ f (t)
∣∣+ sup

ξ∈(0,d]

ωf (ξ)

ϕ(ξ)
+ sup
ξ∈(0,d]

Θ f (ξ)

ϕ(ξ)
. (2.33)

In the sequel we will make use of the following two technical lemmas, from which other
results will follow.

Lemma 2.6. Let f ∈�(γ), then for t ∈ γ and ε ∈ (0,d],

sup
z∈Ω±,|z−t|=ε

∣∣(C±γ f
)
(z)− (C±γ f

)
(t)
∣∣≤ c

(
ωf (ε) +Θ f (ε) + ε

∫ d
ε

ωf (ξ)

ξ2
dξ

)
, (2.34)

is true.
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Proof. It is only necessary to distinguish the following two cases.
Case 1. z ∈Ω±. Let tz ∈ γ such that |z− tz| = dist(z,γ)=: ν. Then for |z− t| = ε,

(
Cγ f

)
(z)− (C±γ f

)
(t)

=
∫
γν(tz)

ez(ζ)nq(ζ)
(
f (ζ)− f

(
tz
))
ds

+
∫
γ\γν(tz)

(
ez(ζ)− etz(ζ)

)
nq(ζ)

(
f (ζ)− f

(
tz
))
ds

−
∫
γν(tz)

etz(ζ)nq(ζ)
(
f (ζ)− f

(
tz
))
ds+

1
2

((
Sγ f

)(
tz
)− (Sγ f

)
(t)
)

± 1
2

(
f
(
tz
)− f (t)

)=:
5∑

k=1

Jk.

(2.35)

Because |z− tz| ≤ |ζ − z| and |ζ − tz| ≤ |ζ − z|+ |z− tz| ≤ 2|ζ − z|,

∣∣J1∣∣+
∣∣J2∣∣≤ c

(∫
γν(tz)

ωf
(∣∣ζ − tz∣∣)
|ζ − z| ds+

∣∣z− tz∣∣
∫
γ\γν(tz)

ωf
(∣∣ζ − tz∣∣)

|ζ − z|∣∣ζ − tz∣∣ ds
)

≤ c
(
ωf (ν) +

∣∣z− tz∣∣
∫
γ\γν(tz)

ωf
(∣∣ζ − tz∣∣)∣∣ζ − tz∣∣2 ds

)

≤ c
(
ωf (ν) + ν

∫ d
ν

ωf (ξ)

ξ2
dξ
)
.

(2.36)

First, we remark that the second term in the last inequality is an almost-increasing func-
tion in ν. There is no loss of generality in assuming that ν≤ ε ≤ d/2, then

3ε
∫ d
ε

ωf (ξ)

ξ2
dξ − ν

∫ d
ν

ωf (ξ)

ξ2
dξ

= (ε− ν)
∫ d
ε

ωf (ξ)

ξ2
dξ +

(
2ε
∫ d
ε

ωf (ξ)

ξ2
dξ − ν

∫ ε
ν

ωf (ξ)

ξ2
dξ

)
.

(2.37)

Further, it is clear that

2ε
∫ d
ε

ωf (ξ)

ξ2
dξ ≥ 2εωf (ε)

∫ d
ε

dξ

ξ2
= 2εωf (ε)

d− ε
εd

= 2ωf (ε)
d− ε
d

≥ ωf (ε). (2.38)

On the other hand,

ν

∫ ε
ν

ωf (ξ)

ξ2
dξ ≤ νωf (ε)

∫ ε
ν

dξ

ξ2
= νωf (ε)

ε− ν

νε
= ωf (ε)

ε− ν

ε
≤ ωf (ε), (2.39)
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and hence

3ε
∫ d
ε

ωf (ξ)

ξ2
dξ − ν

∫ d
ν

ωf (ξ)

ξ2
dξ ≥ 0. (2.40)

It then follows that

∣∣J1∣∣+
∣∣J2∣∣≤ c

(
ωf (ε) + ε

∫ d
ε

ωf (ξ)

ξ2
dξ

)
. (2.41)

For J3 we obtain

∣∣J3∣∣≤Θ f (ν)≤Θ f (ε). (2.42)

Since |tz − t| ≤ |tz − z|+ |z− t| ≤ 2|z− t| = 2ε, then

∣∣J4∣∣≤ ωSγ f (ε),
∣∣J5∣∣≤ ωf (ε). (2.43)

On the other hand, starting from the reasonings in [3, Theorem 2] and using the defini-
tion of Θ f , we get

∣∣J4∣∣≤ ωSγ f (ε)≤ c
(
ωf (ε) +Θ f (ε) + ε

∫ d
ε

ωf (ξ)

ξ2
dξ

)
. (2.44)

Therefore

∣∣(Cγ f
)
(z)− (C±γ f

)
(t)
∣∣≤ c

(
ωf (ε) +Θ f (ε) + ε

∫ d
ε

ωf (ξ)

ξ2
dξ

)
. (2.45)

Case 2. z ∈ γ. If |z− t| = ε, then

(
C±γ f

)
(z)− (C±γ f

)
(t)= 1

2

(
Sγ f (z)− Sγ f (t)

)± 1
2

(
f (z)− f (t)

)
. (2.46)

For that

∣∣(C±γ f
)
(z)− (C±γ f

)
(t)
∣∣≤ ωSγ f (ε) +ωf (ε), (2.47)

hence

∣∣(C±γ f
)
(z)− (C±γ f

)
(t)
∣∣≤ c

(
ωf (ε) +Θ f (ε) + ε

∫ d
ε

ωf (ξ)

ξ2
dξ

)
. (2.48)

The statement of the lemma follows now from the above-considered cases. �
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Lemma 2.7. Suppose f ∈�(γ) and let ε ∈ (0,d]. Then

ΘSγ f (ε)≤ c
(
ωf (ε) +Θ f (ε) + ε

∫ d
ε

ωf (ξ)

ξ2
dξ

)
. (2.49)

Proof. For t ∈ γ we have (Sγ f )(t)= 2(C+
γ f )(t)− f (t). Therefore

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
((

Sγ f
)
(ζ)− (Sγ f

)
(t)
)
ds
∣∣∣∣

≤Θ f (ε) + 2
∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
((

C+
γ f
)
(ζ)− (C+

γ f
)
(t)
)
ds
∣∣∣∣.

(2.50)

As a consequence of Lemma 2.4 we have

∫
γ
et(ζ)nq(ζ)

((
C+
γ f
)
(ζ)− (C+

γ f
)
(t)
)
ds= 0, (2.51)

for that

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
((

C+
γ f
)
(ζ)− (C+

γ f
)
(t)
)
ds
∣∣∣∣

=
∣∣∣∣
∫
γ\γε(t)

et(ζ)nq(ζ)
((

C+
γ f
)
(ζ)− (C+

γ f
)
(t)
)
ds
∣∣∣∣.

(2.52)

Thus, returning to the Lemma 2.4, we obtain

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
((

C+
γ f
)
(ζ)− (C+

γ f
)
(t)
)
ds
∣∣∣∣≤ c sup

z∈Ω+,|z−t|=ε

∣∣(C+
γ f
)
(z)− (C+

γ f
)
(t)
∣∣

(2.53)

and the following estimate follows in view of the result of Lemma 2.6:

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
((

C+
γ f
)
(ζ)− (C+

γ f
)
(t)
)
ds
∣∣∣∣≤ c

(
ωf (ε) +Θ f (ε) + ε

∫ d
ε

ωf (ξ)

ξ2
dξ

)
.

(2.54)

Finally

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
((

Sγ f
)
(ζ)− (Sγ f

)
(t)
)
ds
∣∣∣∣≤ c

(
ωf (ε) +Θ f (ε) + ε

∫ d
ε

ωf (ξ)

ξ2
dξ

)
.

(2.55)

This completes the proof. �
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The following theorem gives sufficient condition for the singular Cauchy integral op-
erator to be bounded on �ϕ(γ).

Theorem 2.8. Suppose ϕ is a majorant such that for ε ∈ (0,d],

ε
∫ d
ε

ϕ(ξ)
ξ2

dξ ≤ cϕ(ε). (2.56)

Then the singular Cauchy integral operator Sγ is a bounded operator on �ϕ(γ), that is,

∥∥Sγ f
∥∥

�ϕ
≤ c‖ f ‖�ϕ , (2.57)

for any f ∈�ϕ(γ).

Proof. Suppose f ∈�ϕ(γ), then for ε ∈ (0,d],

ωf (ε)≤ ‖ f ‖�ϕϕ(ε), Θ f (ε)≤ ‖ f ‖�ϕϕ(ε); (2.58)

hence

ε
∫ d
ε

ωf (ξ)

ξ2
dξ ≤ ε‖ f ‖�ϕ

∫ d
ε

ϕ(ξ)
ξ2

dξ ≤ c‖ f ‖�ϕϕ(ε). (2.59)

Combining the previous estimates with Lemma 2.7, we obtain

ΘSγ f (ε)≤ c‖ f ‖�ϕϕ(ε), (2.60)

and similarly

ωSγ f (ε)≤ c‖ f ‖�ϕϕ(ε). (2.61)

So we have at once Sγ f ∈�ϕ(γ). Besides

∣∣Sγ f (t)
∣∣≤ 2Θ f (d) +‖ f ‖�ϕ ≤ c‖ f ‖�ϕ , t ∈ γ, (2.62)

thus

∥∥Sγ f
∥∥

�ϕ
≤ c‖ f ‖�ϕ , (2.63)

that is, Sγ is a bounded operator on �ϕ(γ). �

Notice that the above theorem is a generalization of an analogous result by Bustamante
and González in [11] treated in the framework of complex analysis.

3. Riemann boundary value problem

For the Riemann boundary value problem for hyperanalytic functions, due to the tech-
nique of canonical factorization, the interested reader can find a good introduction in [8].
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At the same time early quite more-general results on complete solution of the Riemann
problem for hypercomplex functions, in case where the integration curve is rectifiable
and the coefficients are assumed to be in special subspace of continuous function space,
have been obtained in [10, 18].

Systematically the study of the solvability of the Riemann boundary problem for an-
alytic functions is technically involved with the Cauchy-type integral which, by taking
boundary values, led to the Sokhotski-Plemelj formulas. In such way the singular Cauchy
integral operator appearing in these formulas transforms the Riemann problem to a sin-
gular integral equation. A good presentation for excellent examples of such study which
is close to the present paper could be [4, 5, 14].

The main goal of this paper is to develop a theory of the well-posed continuous Rie-
mann boundary value problem by assuming that the given continuous coefficients de-
fined on γ have to agree with the desired boundary behavior of the solutions, that is, the
solutions including their boundary values on γ are continuous functions too.

The results of boundedness of the singular Cauchy integral operator and on the con-
tinuous extension of the Cauchy-type integral, as established in the previous section, are
now applied to obtain a necessary and sufficient condition for the solvability of the Rie-
mann problem with coefficient G in the case where G admits a canonical factorization

G= H+

H− , (3.1)

where H± ∈�(Ω±) and the complex parts H±
0 never vanish on Ω±.

Take an arbitrary fixed point z0 in Ω+. We restrict ourselves to the case of a hypercom-
plex function G which has complex part G0 and never vanishes on γ. From this assump-
tion the integer

κ := 1
2π

[
argG0(ζ)

]
γ (3.2)

has significant importance and is called the index of G with respect to γ, also called index
of the Riemann boundary value problem. Note that the index of the function (W(ζ)−
W(z0))κ with respect to γ is κ, and hence the index of (W(ζ)−W(z0))−κG(ζ) is zero.

We may verify directly that

X(z) :=

expΓ(z), z ∈Ω+,(
W(z)−W(

z0
))−κ

expΓ(z), z ∈Ω−,
(3.3)

in which

Γ(z) :=
∫
γ
ez(ζ)nq(ζ) ln

[(
W(ζ)−W(

z0
))−κ

G(ζ)
]
ds, z /∈ γ, (3.4)

is a hyperanalytic function in C \ γ.
Remark about the hypercomplex exponential and logarithmic functions can be found

for instance in [8, 9].
The following theorem gives characterization for hypercomplex function to admit a

canonical factorization.
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Theorem 3.1. The function G admits a canonical factorization if and only if ln[(W(t)−
W(z0))−κG(t)]∈�(γ).

Proof. Assume G admits a canonical factorization, then we deduce

ln
[(
W(t)−W(

z0
))−κ

G(t)v
]= lnH+(t)− ln

[(
W(t)−W(

z0
))κ

H−(t)
]
, (3.5)

for t ∈ γ and H± satisfying (3.1).
Now the necessity follows from Lemma 2.4 and the previous equality.
Conversely, suppose ln[(W(t)−W(z0))−κG(t)]∈�(γ). Taking into account (3.5) and

Theorem 2.5, it is easy to check thatX gives a canonical factorization ofG on γ in the form
G= X+/X−. �

Definition 3.2. p0 + p1W(z) + ···+ ps(W(z))s, s ≥ 0, is called a hypercomplex polyno-
mial.

Theorem 3.3. Suppose G admits a canonical factorization. For the homogeneous Riemann
boundary value problem (g(t)≡ 0), if Φ(∞)= 0, then it has κ linearly independent solutions
when κ > 0 and has only the trivial solution when κ≤ 0. The general solution is given by

Φ(z)= X(z)Pκ−1(z), (3.6)

where Pκ−1 is an arbitrary hypercomplex polynomial whose degree is not greater than κ− 1
(Pκ−1 ≡ 0 when κ≤ 0).

Proof. The proof is standard [1, 8, 9, 10] running along similar lines to those in the com-
plex case [4, 5, 7, 12, 13] and will not be given here. �

Theorem 3.4. Assume G admits a canonical factorization. The Riemann boundary value
problem is solvable if and only if g/X+ ∈�(γ).

Proof. The boundary condition (1.1) may be rewritten as

Φ+(t)
X+(t)

− Φ−(t)
X−(t)

= g(t)
X+(t)

, t ∈ γ. (3.7)

The necessary condition is an immediate consequence of (3.7) and Lemma 2.4. Let now
g/X+ ∈�(γ), then obviously the function

X(z)
(

Cγ
{
g/X+})(z) (3.8)

is a solution of the Riemann boundary value problem. �

We consider now G∈ I0(γ) and g ∈�(γ). Note that

ln
[(
W(t)−W(

z0
))−κ

G(t)
]
∈ I0(γ)⊂�(γ), (3.9)

hence, G admits a canonical factorization.
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Taking into account the condition g ∈�(γ), it can easily be shown that

∫
γε(t)

et(ζ)nq(ζ)
(
g(ζ)
X+(ζ)

− g(t)
X+(t)

)
ds

=
∫
γε(t)

et(ζ)nq(ζ)
(
g+(ζ)
X+(ζ)

− g+(t)
X+(t)

)
ds

+
1

G(t)

∫
γε(t)

et(ζ)nq(ζ)
(
g−(ζ)
X−(ζ)

− g−(t)
X−(t)

)
ds

+
∫
γε(t)

et(ζ)nq(ζ)
(

1
G(ζ)

− 1
G(t)

)
g−(ζ)
X−(ζ)

ds=: J1 + J2 + J3, ε ∈ (0,d].

(3.10)

In view of the result of Lemma 2.4, J1, J2 converge uniformly to zero for t ∈ γ, as ε→ 0.
Furthermore, as

∣∣J3∣∣≤ c
∫ ε

0

ωG(ξ)
ξ

dξ, (3.11)

we have that g/X+ ∈�(γ).
Taking into account the above and Theorem 3.4, we thus have proved the following

theorem.

Theorem 3.5. LetG∈ I0(γ) and g ∈�(γ). Under the requirement Φ(∞)= 0, the Riemann
boundary value problem is solvable when κ≥ 0 with the general solution

Φ(z)= X(z)
(

Cγ
{
g/X+})(z) +X(z)Pκ−1(z). (3.12)

Here Pκ−1(z) is the same as above; when κ < 0, it is (uniquely) solvable with the solution
(3.12) (Pκ−1(z)≡ 0 when κ≤ 0) if and only if the following conditions are satisfied:

∫
γ
∂ζW(ζ)nq(ζ)

g(ζ)
X+(ζ)

(
W(ζ)

)k
ds= 0, k = 0, . . . ,−κ− 1. (3.13)

4. Singular integral equations in the class �ϕ(γ)

This section is devoted to the study of the solvability of the singular integral equation of
the type

a(t)Υ(t) + b(t)
(

SγΥ
)
(t)= f (t), t ∈ γ, (4.1)

for which we assume that a, b, and f are given hypercomplex functions. For this equation,
Υ is an unknown hypercomplex function belonging to �ϕ(γ).

We assume that a,b ∈�ψ(γ), f ∈�ϕ(γ), and a2
0(t)− b2

0(t) �= 0 for t ∈ γ. Here ϕ, ψ are
given majorants satisfying the following relations:

ε
∫ d
ε

ϕ(ξ)
ξ2

dξ ≤ cϕ(ε),

∫ ε
0

ψ(ξ)
ξ

dξ ≤ cϕ(ε), ε ∈ (0,d].

(4.2)
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We consider the Riemann boundary value problem associated with the singular integral
equation (4.1),

Φ+(t)− a(t)− b(t)
a(t) + b(t)

Φ−(t)= f (t)
a(t) + b(t)

, t ∈ γ, Φ(∞)= 0, (4.3)

which is similar to (1.1). To simplify notation we write

G(t) := a(t)− b(t)
a(t) + b(t)

, g(t) := f (t)
a(t) + b(t)

, t ∈ γ. (4.4)

In view of the indicated relation, the index κ of the function (a0(t)− b0(t))/(a0(t) + b0(t)),
and the corresponding functions Γ(z) and X(z), we arrive at the following assertions.

Theorem 4.1. Let a,b ∈�ψ(γ) and f ∈�ϕ(γ). Then
(i) G∈�ψ(γ),

(ii) g,X± ∈�ϕ(γ).

Proof. By straightforward computation, the statement (i) can be obtained. On the other
hand, since ψ(ξ)/ξ does not increase,

ψ(ε)=
∫ ε

0

ψ(ε)
ε

dξ ≤
∫ ε

0

ψ(ξ)
ξ

dξ ≤ cϕ(ε), ε ∈ (0,d], (4.5)

we thus have that g ∈�ϕ(γ).
Let now

h(t) := (a(t) + b(t)
)−1

, t ∈ γ, (4.6)

then

∣∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
f (ζ)h(ζ)− f (t)h(t)

)
ds

∣∣∣∣∣
≤ ∣∣h(t)

∣∣∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
f (ζ)− f (t)

)
ds
∣∣∣∣

+
∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
h(ζ)−h(t)

)
f (ζ)ds

∣∣∣∣
≤ c

(
Θ f (ε) +

∫ ε
0

ωh(ξ)
ξ

dξ

)

≤ c
(
Θ f (ε) +

∫ ε
0

ψ(ξ)
ξ

dξ

)
≤ cϕ(ε), ε ∈ (0,d].

(4.7)

Therefore g ∈�ϕ(γ).



2836 Riemann boundary value problem for hyperanalytic functions

We consider now the function X+. Suppose t1, t2 ∈ γ, then

∣∣∣X+(t1)−X+(t2)∣∣∣≤ c∣∣∣Γ+(t1)−Γ+(t2)∣∣∣
≤ c

(∫ ε
0

ωlnG(ξ)
ξ

dξ + ε
∫ d
ε

ωlnG(ξ)
ξ2

dξ +ωlnG(ε)

)

≤ c
(∫ ε

0

ωG(ξ)
ξ

dξ + ε
∫ d
ε

ωG(ξ)
ξ2

dξ +ωG(ε)

)

≤ c
(∫ ε

0

ψ(ξ)
ξ

dξ + ε
∫ d
ε

ψ(ξ)
ξ2

dξ +ψ(ε)

)
≤ cϕ(ε),

(4.8)

where |t1− t2| = ε.
Thus, we obtain that X+ ∈�ϕ(γ). Further

∣∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
X+(ζ)−X+(t)

)
ds

∣∣∣∣∣
=
∣∣∣∣∣
∫
γ\γε(t)

et(ζ)nq(ζ)
(
X+(ζ)−X+(t)

)
ds

∣∣∣∣∣
≤ c max

z∈Ω+,|z−t|=ε

∣∣X+(z)−X+(t)
∣∣

≤ c max
z∈Ω+,|z−t|=ε

∣∣Γ+(z)−Γ+(t)
∣∣, ε ∈ (0,d].

(4.9)

Making use of the Lemma 2.6, we get

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
X+(ζ)−X+(t)

)
ds
∣∣∣∣≤ c

(
ωlnG(ε) +ΘlnG(ε) + ε

∫ d
ε

ωlnG(ξ)
ξ2

dξ

)
.

(4.10)

Taking into account that

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(

lnG(ζ)− lnG(t)
)
ds
∣∣∣∣≤ c

∫ ε
0

ψ(ξ)
ξ

dξ ≤ cϕ(ε), (4.11)

we have

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
X+(ζ)−X+(t)

)
ds
∣∣∣∣≤ cϕ(ε). (4.12)

This implies that X+ ∈�ϕ(γ), which proves the desired result.
The proof of the assertion concerning X− is based on the fact that the function G

admits a canonical factorization in the form G= X+/X− on γ. �
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Theorem 4.2. Suppose a,b ∈�ψ(γ) and f ∈�ϕ(γ). Then
(i) g/X+ ∈�ϕ(γ),

(ii) X±(t)
∫
γ et(ζ)nq(ζ)((g(ζ)− g(t))/X+(ζ))ds∈�ϕ(γ), t ∈ γ.

Proof. Since g ∈�ϕ(γ)⊂�(γ), then

∣∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
g(ζ)
X+(ζ)

− g(t)
X+(t)

)
ds

∣∣∣∣∣
≤
∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
g+(ζ)
X+(ζ)

− g+(t)
X+(t)

)
ds
∣∣∣∣

+
∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
g−(ζ)
X+(ζ)

− g−(t)
X+(t)

)
ds
∣∣∣∣=: J1 + J2, ε ∈ (0,d].

(4.13)

According to Lemma 2.4, we get

J1 ≤ c max
z∈Ω+,|z−t|=ε

∣∣∣∣ g+(z)
X+(z)

− g+(t)
X+(t)

∣∣∣∣
≤ c

(
max

z∈Ω+,|z−t|=ε

∣∣g+(z)− g+(t)
∣∣+ max

z∈Ω+,|z−t|=ε

∣∣X+(z)−X+(t)
∣∣).

(4.14)

By Lemma 2.6

max
z∈Ω+,|z−t|=ε

∣∣g+(z)− g+(t)
∣∣≤ (ωg(ε) +Θg(ε) + ε

∫ d
ε

ωg(ξ)

ξ2
dξ
)
. (4.15)

Thus, J1 ≤ cϕ(ε). Now we estimate J2:

J2 ≤
∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(

1
G(ζ)

− 1
G(t)

)
g−(ζ)
X−(ζ)

ds
∣∣∣∣

+
∣∣∣∣ 1
G(t)

∣∣∣∣
∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
g−(ζ)
X−(ζ)

− g−(t)
X−(t)

)
ds
∣∣∣∣

≤ c
(∫ ε

0

ωG(ξ)
ξ

dξ + max
z∈Ω−,|z−t|=ε

∣∣∣∣ g−(z)
X−(z)

− g−(t)
X−(t)

∣∣∣∣
)
≤ cϕ(ε).

(4.16)

In view of the previous estimations we get immediately that g/X+ ∈�ϕ(γ).
We now examine the function

Ψ(z) := (Cγ
{
g/X+})(z). (4.17)
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Since g/X+ ∈�ϕ(γ), then the function

Ψ−(t)= (C−γ
{
g/X+})(t)=

∫
γ
et(ζ)nq(ζ)

(
g(ζ)
X+(ζ)

− g(t)
X+(t)

)
ds∈�ϕ(γ). (4.18)

Now by applying Lemma 2.4, we also obtain that

Ψ−(t)= (C−γ
{
g/X+})(t)

=
∫
γ
et(ζ)nq(ζ)

(
g(ζ)− g(t)
X+(ζ)

)
ds

+ g(t)
∫
γ
et(ζ)nq(ζ)

(
1

X+(ζ)
− 1
X+(t)

)
ds

=
∫
γ
et(ζ)nq(ζ)

(
g(ζ)− g(t)
X+(ζ)

)
ds∈�ϕ(γ),

(4.19)

consequently X+Ψ− ∈�ϕ(γ).
On the other hand,

∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
X+(ζ)Ψ−(ζ)−X+(t)Ψ−(t)

)
ds
∣∣∣∣

=
∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
G(ζ)−G(t)

)
X−(ζ)Ψ−(ζ)ds

+G(t)
∫
γε(t)

et(ζ)nq(ζ)
(
X−(ζ)Ψ−(ζ)−X−(t)Ψ−(t)

)
ds
∣∣∣∣

≤ c
(∫ ε

0

ωG(ξ)
ξ

dξ +
∣∣∣∣
∫
γε(t)

et(ζ)nq(ζ)
(
X−(ζ)Ψ−(ζ)−X−(t)Ψ−(t)

)
ds
∣∣∣∣
)

≤ cϕ(ε), ε ∈ (0,d],

(4.20)

hence, X+Ψ− ∈�ϕ(γ).
Finally, since X−Ψ− = (X+Ψ−)/G, then X−Ψ− ∈ �ϕ(γ), which completes the proof.

�

We can now state our final result.

Theorem 4.3. Let a,b ∈�ψ(γ). If κ≥ 0, the singular integral equation (4.1) is solvable in
the class �ϕ(γ) for all f ∈�ϕ(γ); if κ < 0, then this equation is solvable in the class �ϕ(γ) if
and only if the following conditions are satisfied:

∫
γ
∂ζW(ζ)nq(ζ)

(
f (ζ)(

a(ζ) + b(ζ)
)
X+(ζ)

)(
W(ζ)

)k
ds= 0, k = 0, . . . ,−κ− 1. (4.21)
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The general solution of (4.1) in the class �ϕ(γ) has the form

Υ(t)= (X+(t)−X−(t)
)∫

γ
et(ζ)nq(ζ)

(
g(ζ)− g(t)
X+(ζ)

)
ds

+ g(t) +
(
X+(t)−X−(t)

)
Pκ−1(t), t ∈ γ,

(4.22)

where Pκ−1 is an arbitrary hypercomplex polynomial whose degree is not greater than κ− 1
for κ > 0 and Pκ−1 ≡ 0 for κ≤ 0.

Proof. The proof follows directly by using Theorems 3.5, 4.1, and 4.2. �
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