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Berinde has shown that Newton’s method for a scalar equation f (x) = 0 converges un-
der some conditions involving only f and f ′ and not f ′′ when a generalized stopping
inequality is valid. Later Sen et al. have extended Berinde’s theorem to the case where
the condition that f ′(x) �= 0 need not necessarily be true. In this paper we have extended
Berinde’s theorem to the class of n-dimensional equations, F(x)= 0, where F :Rn →Rn,
Rn denotes the n-dimensional Euclidean space. We have also assumed that F′(x) has an
inverse not necessarily at every point in the domain of definition of F.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let F be a nonlinear continuous operator mapping D0 ⊂Rn →Rn. D0 is an open convex
subset of Rn, the n-dimensional Euclidean space. We introduce componentwise partial
ordering in Rn.

Componentwise partial ordering inRn is defined as follows. For x, y ∈Rn, x ≤ y if and
only if xi ≤ yi, i= 1,2, . . . ,n. Let 〈a,b〉 denote the order interval {x ∈Rn | a≤ x ≤ b}.

We seek the solution of

F(x)= 0 in 〈a,b〉 ⊂D0. (1.1)

In case the finite derivative F′(x) has an inverse at the iteration points, Newton’s
method is given by the iteration

xm+1 = xm−
[
F′
(
xm
)]−1

F
(
xm
)
, x0 ∈ 〈a,b〉, m≥ 0. (1.2)

The importance of Newton’s method lies in the fact that it offers a quadratic conver-
gence. Nevertheless this quadratic convergence is achieved after making certain assump-
tions about F, F′, F′′ (Ortega and Rheinboldt [6]). In case F(x)= 0 is a scalar equation,
Berinde (Berinde [1–4]) without making any assumption about the existence of F′′(x)
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2 On convergence of a Newton-like method

has achieved linear convergence under the condition that F′(x) �= 0 in the interval under
consideration. In the case of a scalar equation we have not assumed the conditions that
F′(x) �= 0 (Sen et al. [9]). It has been shown that the sequence {xm} given by

xm+1 = xm− 2F
(
xm
)

F′
(
xm
)

+M′
m

, x0 prechosen, m= 0,1,2, . . . , (1.3)

is convergent. In the above expression, M = supx∈[a,b] |F′(x)|, M′
m =M · SignF′(xm).

In case F : Rn → Rn we proceed as follows. Let F be differentiable in D0 ⊆ Rn and let
F′(x)= (ai j(x)).

Let

A= (Cij
)
, where 0≥ Cij =−sup

x

∣
∣ai j(x)

∣
∣, i �= j, Cii ≥ sup

x

n∑

j=1

∣
∣ai j(x)

∣
∣. (1.4)

We can show that under certain conditions A+F′(x) has an inverse even if F′(x) may not
have an inverse. The Newton-like iterative sequence {xm} is given by

xm+1 = xm− 2
[
A+F′

(
xm
)]−1

F
(
xm
)
, x0 ∈ 〈a,b〉, m= 0,1,2, . . . . (1.5)

We show that under certain assumptions {xm} given by (1.2) converges to a solution
of F(x) = 0. The exit criterion has been established. Section 2 presents the mathemati-
cal preliminaries. Section 3 contains the convergence theorem, Section 4 an extension of
Newton’s method, Section 5 contains a numerical example, and Section 6 the discussion.

2. Preliminaries

By componentwise partial ordering in Rn, we mean for x, y ∈Rn,

x < y⇐⇒ xi < yi, ∀i
x ≤ y⇐⇒ xi ≤ yi, ∀i, but x �= y,

x � y⇐⇒ xi ≤ yi.

(2.1)

Let L(Rn,Rn) be the class of matrices which maps Rn→Rn.
Let P ∈ L(Rn,Rn) and P = (ãi j).

P > 0⇐⇒ ãi j > 0, ∀i, j,
P�0⇐⇒ ãi j ≥ 0, ∀i, j,

P ≥ 0⇐⇒ ãi j ≥ 0, ∀i, j, but P �= 0.

(2.2)

Definition 2.1 (M-matrix, a Stieltjes matrix). A matrix Q = (qi j)∈ L(Rn,Rn) is said to be
an M-matrix if qi j ≤ 0, for all i, j, i �= j. Q−1 exists and Q−1 ≥ 0 (Ortega and Rheinboldt
[6]). A symmetric M-matrix is called a Stieltjes matrix.

Definition 2.2 (spectral radius). A spectral radius of a matrix H is denoted by ρ(H) and
ρ(H)= supi |λi|, where λ1, . . . ,λn are eigenvalues of H .
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Theorem 2.3 (Ortega and Rheinboldt [6]). A = (Cij) is an M-matrix if and only if (i)
the diagonal elements of A are positive, and (ii) the matrix H = I −D−1A where D =
diag(a11, . . . ,ann) satisfies ρ(H) < 1.

Lemma 2.4. The following results hold:
(i) A= (Cij) is an M-matrix,

(ii) [A+F′(x)] is an M-matrix, provided the condition

sup
x

( n∑

k=1

∣
∣aik(x)

∣
∣
)

+ aii(x) >
n∑

j=1
j �=i

(
sup
x

∣
∣ai j(x)

∣
∣− ai j(x)

)
(2.3)

holds.

Proof. (i) Let D denote the diagonal matrix (Cii). Then D > 0. Moreover I −D−1A is a
matrix with zero diagonal elements and (i, j)th element =−Cij/Cii, i �= j.

Therefore ‖I −D−1A‖l1 = supi(
∑

j, i �= j |Cij|/Cii) < 1, where ‖ · ‖l1 denotes l1-norm.
Thus ρ(I −D−1A), the spectral radius (Ortega and Rheinboldt [6]) of (I −D−1A), is

less than 1. Hence A is an M-matrix.
(ii) We write F′(x) = D1(x)− B1(x) where the diagonal matrix D1(x) = (aii(x)) and

the matrix B1(x)= (bi j(x)), where bii(x)= 0 and bi j(x)=−ai j(x), for i �= j.

Let Ã = A + F′(x) = D2(x)− B2(x), where the diagonal matrix is given by D2(x) =
(Cii + aii(x)), Cii + aii(x) > 0, and the matrix B2(x) = (b′i j(x)), where b′i j(x) = (−Cij −
ai j(x)), b′ii = 0. Moreover, b′i j(x)= supx |ai j(x)|− ai j(x) � 0.

Let I −D2(x)−1Ã= (ei j(x)), where eii(x)= 0 and

ei j(x)= −Cij − ai j(x)

Cii + aii(x)
≤ supx

∣
∣ai j(x)

∣
∣− ai j(x)

supx

∑n
k=1

∣
∣aik(x)

∣
∣+ aii(x)

, i �= j. (2.4)

Therefore,

∥
∥I −D2(x)−1Ã

∥
∥
l1
= sup

i

n∑

j=1
j �=i

∣
∣ei j(x)

∣
∣= sup

i

∑
j
j �=i

∣
∣Cij + ai j(x)

∣
∣

∣
∣Cii + aii(x)

∣
∣

≤ sup
i

∑
j
j �=i

(
supx

∣
∣ai j(x)

∣
∣− ai j(x)

)

supx

∑n
k=1

∣
∣aik(x)

∣
∣+ aii(x)

< 1

(2.5)

provided that

sup
x

n∑

k=1

∣
∣aik(x)

∣
∣+ aii(x) >

n∑

j=1
j �=i

(
sup

∣
∣ai j(x)

∣
∣− ai j(x)

)
, ∀i. (2.6)

Thus ρ(I −D2(x)−1Ã) < 1 provided the relation (2.6) holds for all i, j. �
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3. Convergence

Theorem 3.1. Let the following conditions be fulfilled.
(i) F : D0 ⊂Rn→Rn.

(ii) D0 is an open convex subset ⊆Rn.
(iii) F is continuously differentiable in D0.
(iv) F has a solution in the order-interval 〈a,b〉 ⊆D0.
(v) x0 ∈ 〈a,b〉 is an initial approximation to the solution.

(vi) A= (Cij) is a matrix defined by (1.4).
(vii) [A+F′(x)] is a Stieltjes matrix.

(viii) F′(x) is symmetric for each x and F′(x)≥ 0.
(ix) The eigenspaces of [A+F′(x)]−1 and of F′(x), respectively, have nonempty intersec-

tion.
(x) ρ(F′(x)) < ρ([A+F′(x)]−1)−1, where ρ stands for the spectral radius.

(xi) ρ(C(x)) < 1 and ρ(C(x))(1− ρ(C(x))) < 1/2, where

C(x)= [A+F′(x)
]−1

F′
(
x+ t

(
x∗ − x

))
, 0 < t < 1. (3.1)

Then {xm} given by

xm+1 = xm− 2
[
A+F′

(
xm
)]−1

F
(
xm
)

(3.2)

will converge to a solution x∗ of F(x)= 0, provided that {xm} ⊆ 〈a,b〉.
Proof. It follows from (3.2) and the application of mean-value theorem in Rn that

xm+1− x∗ = xm− x∗ − 2
[
A+F′

(
xm
)]−1(

F
(
xm
)−F

(
x∗
))

=
∫ 1

0

[
I − 2

[
A+F′

(
xm
)]−1

F′
(
xm + t

(
x∗ − xm

))] · (xm− x∗
)
dt

(3.3)

or

∥
∥xm+1− x∗

∥
∥≤ sup

0<t<1

∥
∥
∥I − 2

[
A+F′

(
xm
)]−1

F′
(
xm + t

(
x∗ − xm

))∥∥
∥
∥
∥xm− x∗

∥
∥. (3.4)

Since F′(x)≥ 0, F′(xm + t(x∗ − xm))≥ 0.
Also, [A + F′(x)] being a Stieltjes matrix is both symmetric and an M-matrix, [A +

F′(x)]−1 ≥ 0. Therefore,

C(x)= [A+F′(x)
]−1

F′
(
x+ t

(
x∗ − x

))≥ 0. (3.5)

Let B(x)= [I − 2[A+F′(x)]−1F′(x+ t(x∗ − x))].
Since C(x)≥ 0, by the Perron-Frobenius theorem (Varga [12]), for a given x, C(x) has

an eigenvalue λ(x) = ρ(C(x)), with ρ being the spectral radius. Therefore, for a given x,
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B(x) has an eigenvalue μ(x)= 1− 2λ′(x), where λ′(x) is an eigenvalue of C(x). If we use
Euclidean norm of a vector and then matrix norm induced by the vector norm,

‖B‖ = [ρ(BTB
)]1/2

, ρ
(
BTB

)= sup
∣
∣μ∗μ

∣
∣= sup

λ′

∣
∣(1− 2λ′

)∗(
1− 2λ′

)∣∣ < 1 (3.6)

if |1− 4Reλ′ + 4|λ′|2| < 1 for all λ′, or, if |λ′|2 < Reλ′ < 1/2 + |λ′|2.
Thus ‖B‖ < 1 if

ρ
(
C(x)

)2
< ρ
(
C(x)

)
<

1
2

+ ρ
(
C(x)

)2
. (3.7)

The left-hand inequality in (3.7) yields ρ(C(x)) < 1, and the right-hand inequality in
(3.7) yields ρ(C(x))(1− ρ(C(x))) < 1/2 always true.

Thus by condition (xi) ‖B‖ < 1.
If

‖B‖ = α < 1,
∥
∥xm+1− x∗

∥
∥≤ α

∥
∥xm− x∗

∥
∥. (3.8)

�

Remark 3.2. The sequence {xm} given by (3.2) is convergent if conditions (ii)–(iv) of
Theorem 3.1 are satisfied, if [A+F′(x)] is an M-matrix and ‖I−2[A+F′(xm)]−1F′(x)‖<1.

The following theorem determines the stopping inequality.

Theorem 3.3. Let the conditions of Theorem 3.1 be true. Then the numerical computation
of the sequence {xm} given by (3.2) is stopped when the following inequality is valid:

∥
∥xm− x∗

∥
∥≤ ∥∥[I +A−1F′

(
xm
)]∥∥‖A‖ ·

(
sup

0<t<1

∥
∥F′

(
xm + t

(
x∗ − xm

))∥∥
)−1∥

∥xm+1− xm
∥
∥.

(3.9)

Proof. Equation (3.2) can be written as

∥
∥xm+1− xm

∥
∥= 2

∥
∥
∥
[
A+F′

(
xm
)]−1[

F
(
xm
)−F

(
x∗
)]∥∥
∥

= sup
0<t<1

∥
∥
∥
∥

∫ 1

0

[
A+F′

(
xm
)]−1

F′
(
xm + t

(
x∗ − xm

)) · (x∗ − xm
)
dt
∥
∥
∥
∥

≤
∥
∥
∥
[
A+F′

(
xm
)]−1

∥
∥
∥ sup

0<t<1

∥
∥F′

(
xm + t

(
x∗ − xm

))∥∥ ·∥∥x∗ − xm
∥
∥.

(3.10)

Since A and A + F′(xm) are both M-matrices, [I + A−1F′(xm)]−1 exists, and therefore
‖([I +A−1F′(xm)]−1)−1‖ ≤ ‖I +A−1F′(xm)‖.
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Thus,

∥
∥x∗ − xm

∥
∥≤

∥
∥
∥
∥
([
A+F′

(
xm
)]−1

)−1
∥
∥
∥
∥

(
sup

0<t<1

∥
∥F′

(
xm + t

(
x∗ − xm

))∥∥
)−1∥

∥x∗ − xm
∥
∥

≤ ∥∥I +A−1F′
(
xm
)∥∥‖A‖

(
sup

0<t<1

∥
∥F′

(
xm + t

(
x∗ − xm

))∥∥
)−1

·∥∥xm+1− xm
∥
∥.

(3.11)
�

Note 3.4. The inequality (3.11) may be termed as “the exit criterion” because if ‖xm+1−
xm‖ < ε, ε a small positive quantity, then ‖x∗ − xm‖ ≤ Cmε, where

Cm =
∥
∥[I +A−1F′

(
xm
)]∥∥‖A‖

(
sup

0<t<1

∥
∥F′

(
xm + t

(
x∗ − xm

))∥∥
)−1

. (3.12)

4. The extension of Newton’s method

However 〈a,b〉 is generally not an invariant set with respect to iterations (3.2); that is, it is
possible to obtain a certain p such that xp /∈ 〈a,b〉. In case xp < a or xp > b, the mapping
F(x) is extended throughoutRn in the light of Berinde’s extension, and the sequence {xm}
given by (3.2) is extended throughout Rn.

Theorem 4.1. Let the following conditions be fulfilled:
(i) F(a)≤ 0,

(ii) F(x) is differentiable at a and A is an M-matrix (Ortega and Rheinboldt [6]),
(iii) F(b)≥ 0,
(iv) F(x) is differentiable at b.

Then if xp goes out of 〈a,b〉, xp+1 will lie in 〈a,b〉.
Extend F(x) throughout Rn as follows:

F̃(x)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A(x− a) +F(a) x ≤ a,

F(x) x ∈ 〈a,b〉,
A(x− b) +F(b) x ≥ b.

(4.1)

Proof. If some iteration xp does not lie in 〈a,b〉 we have either xp < a or xp > b. In the

first case applying (3.2) after extension to F̃(x) we get

xp+1 = xp− 2
[
A+ F̃′

(
xp
)]−1

F̃
(
xp
)= xp− 2[2A]−1[A

(
xp− a

)
+F(a)

]

= xp−
(
xp− a

)−A−1F(a)= a−A−1F(a) > a,
(4.2)

since A is an M-matrix and F(a)≤ 0. Therefore, xp+1 ∈ 〈a,b〉.
If xp > b, repeating the same steps as above we get

xp+1 = xp− 2[2A]−1[A
(
xp− b

)
+F(b)

]= xp−
(
xp− b

)−A−1F(b)= b−A−1F(b).
(4.3)

Since A is an M-matrix and F(b)≥ 0, A−1F(b)≥ 0. Hence xp+1 ∈ 〈a,b〉.
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Thus beginning from a step p0 ≥ 0, we necessarily have xm ∈ [a,b]. If Theorems 3.1
and 4.1 are valid, xm ⊆ 〈a,b〉 for m ≥ p0, and the convergence of {xm} to a solution x∗

in 〈a,b〉 is guaranteed. Furthermore, the error estimate (3.8) and the exit criterion or the
stopping inequality (3.9) are both valid. �

5. Numerical example

Let z = [x, y]T , D0 = 〈−(π/2),π〉×〈0,1〉.

F(z)=
{

f1(x, y)

f2(x, y)

}

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x− π

2

)3

+
((

x− π

2

)
sin
(
x− π

2

))
y− 0.752

π2y +π2y3−
(
x− π

2

)
cos

(
x− π

2

)
+sin

(
x− π

2

)
− 5π2

8
− 0.152.

(5.1)

We are interested in solving F(z)= 0 for z ∈D0.
Initial approximation z0 = (x0, y0)T .

∂ f1
∂x

= 3
(
x− π

2

)2

+
(

sin
(
x− π

2

))
y +

((
x− π

2

)
cos

(
x− π

2

))
y,

∂ f1
∂y

=
(
x− π

2

)
sin
(
x− π

2

)
,

∂ f2
∂x

=
(
x− π

2

)
sin
(
x− π

2

)
,

∂ f2
∂y

= π2 + 3π2y2.

(5.2)

F′(z) is symmetric.
F′(z)≥ 0 for all x ∈ 〈−π,π〉 and y ∈ 〈0,1〉 except at x =−π, y = π.

F(a)= F(x)|x=−π/2
y=0

=

⎧
⎪⎪⎨

⎪⎪⎩

−π3− 0.752

−5π2

8
−π− 0.152

≤ 0,

F(b)= F(x)|x=π
y=1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π3

8
+
π

2
− 0.752

3π2

8
+ 1− 0.152

≥ 0.

(5.3)

F′(z)|x=π/2
y=0

does not have an inverse.

We choose A as

A=
(

2 −1.5708

−1.5708 22

)

(5.4)

and ∈=10−11, the desired accuracy is achieved in 17 iterations.
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Starting from x0 = 1.5708 and y0 = 0, we obtain x1 = 2.67715530056448 and y1 =
0.45117812654687; and x17 = 2.35205300236830 and y17 = 0.50014720328245.

6. Discussion

(i) Convergence of Newton’s method as proposed by Kantorovich (see [11]) is based on
majorization principle which ensures that all the members of the sequence {xm} will lie
in a small neighborhood of the initial approximation x0. Hence majorization principle
has not been used. But in order to ensure that {xm} does not go beyond 〈a,b〉, barring a
finite number of members, an extended formula of the mapping F is taken.

(ii) Here the condition that F′(x) �= 0 has been relaxed and the extended method is
called Newton-like method.

(iii) The convergence is linear.
(iv) The numerical equation under consideration being nonlinear has more than one

solution, the x-component of one solution being x∗ = 1.087961617. In our case, the ini-
tial point taken is close to a point where the Jacobian becomes singular and the purpose
is to show that the sequence of iterations (1.5) with the initial point mentioned above still
converges to a solution of the given equation.

(v) For other modifications of Newton’s method please see (Ortega and Rheinboldt
[6], Keller [5], Sen [7, 8], Sen and Guhathakurta [10]).
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