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Berinde has shown that Newton’s method for a scalar equation f(x) = 0 converges un-
der some conditions involving only f and f’ and not f” when a generalized stopping
inequality is valid. Later Sen et al. have extended Berinde’s theorem to the case where
the condition that f’(x) # 0 need not necessarily be true. In this paper we have extended
Berinde’s theorem to the class of n-dimensional equations, F(x) = 0, where F : R" — R",
R” denotes the n-dimensional Euclidean space. We have also assumed that F’(x) has an
inverse not necessarily at every point in the domain of definition of F.
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1. Introduction

Let F be a nonlinear continuous operator mapping Dy C R” — R". Dy is an open convex
subset of R”, the n-dimensional Euclidean space. We introduce componentwise partial
ordering in R".

Componentwise partial ordering in R” is defined as follows. For x, y € R", x < y ifand
onlyifx; < y;,i=1,2,...,n. Let {a,b) denote the order interval {x € R" | a < x < b}.

We seek the solution of

F(x)=0 1in{a,b) C D. (1.1)

In case the finite derivative F’(x) has an inverse at the iteration points, Newton’s
method is given by the iteration

X1 = Xm — [F' (x)] F(xm), %o € {a,b), m=0. (1.2)
The importance of Newton’s method lies in the fact that it offers a quadratic conver-
gence. Nevertheless this quadratic convergence is achieved after making certain assump-
tions about F, F’, F"" (Ortega and Rheinboldt [6]). In case F(x) = 0 is a scalar equation,
Berinde (Berinde [1-4]) without making any assumption about the existence of F”'(x)
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2 On convergence of a Newton-like method

has achieved linear convergence under the condition that F’(x) # 0 in the interval under
consideration. In the case of a scalar equation we have not assumed the conditions that
F’(x) # 0 (Sen et al. [9]). It has been shown that the sequence {x,,} given by

2F (xm)

m, Xo prechosen, m =0,1,2,..., (1.3)

Xm+1 = Xm —

is convergent. In the above expression, M = sup, ., [F'(x)|, M, = M - Sign F' (x,).
In case F : R" — R" we proceed as follows. Let F be differentiable in Dy < R" and let

F'(x) = (aij(x)).
Let

A= (Cij), where0=Cj;=—suplaij(x)|,i#j, Ci= supz |aij(x)]. (1.4)
x x j=1

We can show that under certain conditions A + F’(x) has an inverse even if F’(x) may not
have an inverse. The Newton-like iterative sequence {x,,} is given by

X1 = Xm —2[A+F (xp)] 'Fxm), xo € (a,b), m=0,1,2,.... (1.5)

We show that under certain assumptions {x,,} given by (1.2) converges to a solution
of F(x) = 0. The exit criterion has been established. Section 2 presents the mathemati-
cal preliminaries. Section 3 contains the convergence theorem, Section 4 an extension of
Newton’s method, Section 5 contains a numerical example, and Section 6 the discussion.
2. Preliminaries
By componentwise partial ordering in R”, we mean for x, y € R",
xX<y<=x;<y, Vi
x<y<x <y, Vibutx#y, (2.1)

xS y<=x<y.

Let L(R",R") be the class of matrices which maps R” — R”".
Let P € L(R",R")and P = (5,']-).

P>0(:>aNij>0, Vi,j,
P20 a;=0, Vij, (2.2)
PZO@(}I']‘ZO, Vi,j, blltP?éO

Definition 2.1 (M-matrix, a Stieltjes matrix). A matrix Q = (q;;) € L(R",R") is said to be
an M-matrix if q;j < 0, for all 4, j, i # j. Q! exists and Q! = 0 (Ortega and Rheinboldt
[6]). A symmetric M-matrix is called a Stieltjes matrix.

Definition 2.2 (spectral radius). A spectral radius of a matrix H is denoted by p(H) and
p(H) = sup; [A;|, where Ay,...,A, are eigenvalues of H.
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Tueorem 2.3 (Ortega and Rheinboldt [6]). A = (Cjj) is an M-matrix if and only if (i)
the diagonal elements of A are positive, and (ii) the matrix H =1 — D™'A where D =
diag(aii,...,an,) satisfies p(H) < 1.

LemMa 2.4. The following results hold:
(i) A = (Cjj) is an M-matrix,
(ii) [A+F'(x)] is an M-matrix, provided the condition

sup( > |aik(x)|> +ai(x) > > (sup |aij(x) | —a,'j(x)) (2.3)
* \k=1 j=1" %
j#i

holds.

Proof. (i) Let D denote the diagonal matrix (C;). Then D > 0. Moreover I — D™'A is a
matrix with zero diagonal elements and (i, j)th element = —C;;/Cj;, i # j.

Therefore ||I — D7'A|l;, = sup,;(2.;,i2;1Cijl/Cii) < 1, where || - [l;, denotes [;-norm.

Thus p(I — D7'A), the spectral radius (Ortega and Rheinboldt [6]) of (I — D7'A), is
less than 1. Hence A is an M-matrix.

(i) We write F'(x) = D;(x) — By (x) where the diagonal matrix D;(x) = (a;i(x)) and
the matrix B; (x) = (b;j(x)), where bji(x) = 0 and b;j(x) = —a;j(x), for i # j.

Let A=A+F (x) = Dy(x) — By(x), where the diagonal matrix is given by D,(x) =
(Cii + aii(x)), Cii + aji(x) >0, and the matrix B,(x) = (blfj(x)), where b,fj(x) =(=Cij -
aij(x)), bj; = 0. Moreover, bfj(x) = sup, |a;j(x)| — a;j(x) = 0.

LetI—Dy(x)"'A = (eij(x)), where e;i(x) = 0 and

—Cij—aij(x) _ sup, |aij(x)| —ai;(x) .
€ij{x) = S 0 , i# ] 2.4
i) Cii +aii(x) sup, > p_y |aix(x) | +aii(x) J (24)
Therefore,
n Z.i'|cij+aij(x)|
_ -1 — . _ j#i
|IT = Dy (x) " All,, SLl}pjgi eij(x) | sup [CoranG)]
i (2.5)
Z{# (sup, | aij(x)| —aij(x))
JF1
<su 7 <1
P sup, S a0 [+ ailx)
provided that
sup > |a(x) | +ai(x) > > (sup|aij(x)| —aij(x)), Vi (2.6)
x k=1 j=1

j#i

Thus p(I - D, (x)1A) <1 provided the relation (2.6) holds for all 4, . |
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3. Convergence

TaeoreM 3.1. Let the following conditions be fulfilled.
(i) F: Dy C R" — R",
(ii) Dy is an open convex subset = R".
(iii) F is continuously differentiable in Dy.
(iv) F has a solution in the order-interval {a,b) < D,.
(v) xo € {a,b) is an initial approximation to the solution.
(vi) A = (Cjj) is a matrix defined by (1.4).
(vii) [A+F'(x)] is a Stieltjes matrix.
(viii) F’(x) is symmetric for each x and F'(x) = 0.
(ix) The eigenspaces of [A+F'(x)]™! and of F' (x), respectively, have nonempty intersec-
tion.
(x) p(F'(x)) < p([A+F'(x)]71)"Y, where p stands for the spectral radius.
(xi) p(C(x)) < 1 and p(C(x))(1 — p(C(x))) < 1/2, where

NS ANGS NN

Clx)=[A+F (x)] 'F (x+t(x* —x)), 0<t<l (3.1)
Then {x,,} given by
Xm+1 = Xm _2[A+F’(xrn)]_1F(xm) (3.2)

will converge to a solution x* of F(x) = 0, provided that {x,,} < (a,b).

Proof. It follows from (3.2) and the application of mean-value theorem in R” that

Xons1 — X* = xp —x* —2[A+F (xm)] " (F(xm) — F(x*))
(3.3)

= JOI [[—2[A+F'(xm)]—1F/(xm+t(x* _xm))] . (-xm_x*)dt

or

[xpe1 — x*]| < sup [T = 2[A+F (xn)] "F (s + t(x* —xm))Hme —x*|. (3.4)

0<t<1

Since F'(x) = 0, F'(x,,, + t(x* — x,,)) = 0.
Also, [A + F'(x)] being a Stieltjes matrix is both symmetric and an M-matrix, [A +
F’(x)]~! = 0. Therefore,

Cx)=[A+F (x)] 'F (x+t(x* —x)) = 0. (3.5)
Let B(x) = [I = 2[A+F (x)] 7 'F (x + t(x* — x))].

Since C(x) = 0, by the Perron-Frobenius theorem (Varga [12]), for a given x, C(x) has
an eigenvalue A(x) = p(C(x)), with p being the spectral radius. Therefore, for a given x,
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B(x) has an eigenvalue p(x) = 1 — 21" (x), where A'(x) is an eigenvalue of C(x). If we use
Euclidean norm of a vector and then matrix norm induced by the vector norm,

IBIl = [p(B"B)]"?, p(BTB) =sup |u*u| = sup [(1-22) (1=21)] <1 (3.6)

if [1—4Re) +4|) 12| < 1forall X, or, if [V |? <Red < 1/2+ |1 |
Thus ||B|| < 1 if

p(Cx))’ < p(C) < 3 +p(C)”. (3.7)

The left-hand inequality in (3.7) yields p(C(x)) < 1, and the right-hand inequality in
(3.7) yields p(C(x))(1 — p(C(x))) < 1/2 always true.

Thus by condition (xi) [|B]| < 1.

If

IBl=a<1, |[xm—x*|| < allxm—x*|. (3.8)
O

Remark 3.2. The sequence {x,,} given by (3.2) is convergent if conditions (ii)—(iv) of
Theorem 3.1 are satisfied, if [A+F’(x)] is an M-matrix and ||[I-2[A+F’(x,,)] " F'(x)| <1.

The following theorem determines the stopping inequality.

THEOREM 3.3. Let the conditions of Theorem 3.1 be true. Then the numerical computation
of the sequence {x,,} given by (3.2) is stopped when the following inequality is valid:

w11 < [T+ A7F Cen) AT ( sup [1F” G+ €% = 5n))IT) T—
O<t<1 (3.9)

Proof. Equation (3.2) can be written as
[t = 0m|| = 2| [[A+F (6) ] [F () = F*)]]|

= sup
0<t<1

[ 1A+ F e G e ) - G s (a0

< |[[A+F (xn)] ™

sup [[F’ (xm +(x™ = xn) ) || - |[x* = x]].
O<t<1

Since A and A + F’(x,,) are both M-matrices, [I + A" F'(x,,)] ! exists, and therefore
NI +AF () 7D < IT+ATTE () |1
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Thus,

(s 117 (o2 —xa)l]) I

O<t<1

b =l < (14 F a1 ™) |

< 11+ A7F (on) 14N ( s |17 ot 106" =) I1) < [men =

O<t<1
(3.11)
(Il

Note 3.4. The inequality (3.11) may be termed as “the exit criterion” because if [|Xp+1 —
Xmll < &, € a small positive quantity, then [|x* — x,,[| < Cy,e, where

Con = |[I+A'F (xm)]||||A||< sup ||F (o + £(x* —x,,,))||)_ . (3.12)

O<t<1

4. The extension of Newton’s method

However (a,b) is generally not an invariant set with respect to iterations (3.2); that is, it is
possible to obtain a certain p such that x,, & (a,b). In case x, < a or x, > b, the mapping
F(x) is extended throughout R” in the light of Berinde’s extension, and the sequence {x,,}
given by (3.2) is extended throughout R”".

THEOREM 4.1. Let the following conditions be fulfilled:
(i) F(a) <0,
(ii) F(x) is differentiable at a and A is an M-matrix (Ortega and Rheinboldt [6]),
(iii) F(b) = 0,
(iv) F(x) is differentiable at b.
Then if x, goes out of (a,b), xp11 will liein {(a,b).
Extend F(x) throughout R" as follows:

A(x—a)+F(a) x<a,
F(x)={F(x) x € (a,b), (4.1)
A(x—b)+F(b) x>b.

Proof. 1f some iteration x, does not lie in (a,b) we have either x, < a or x, > b. In the
first case applying (3.2) after extension to F(x) we get

xp = Xp = 2[A+ F ()] Flxp) = x, 20241 '[A(x, — @) + F(a)] (4.2)
42
=xp— (xp—a) —A"'F(a) =a—A""F(a) >a,

since A is an M-matrix and F(a) < 0. Therefore, x,+1 € (a,b).
If x, > b, repeating the same steps as above we get

Xpo1 = xp — 2[2A][A(x, — b) + F(b)] = x, — (x, — b) — A"'F(b) = b— A'F(b).
(4.3)

Since A is an M-matrix and F(b) = 0, A"'F(b) = 0. Hence x,1, € {(a,b).
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Thus beginning from a step py = 0, we necessarily have x,, € [a,b]. If Theorems 3.1
and 4.1 are valid, x,, € (a,b) for m = py, and the convergence of {x,,} to a solution x*
in (a,b) is guaranteed. Furthermore, the error estimate (3.8) and the exit criterion or the
stopping inequality (3.9) are both valid. O

5. Numerical example

Let z = [x, y]T, Dy = (—(1/2),7) x(0,1).

falx,y)

F(z):{f](x’y)} (x_g>3+((x—%>sin(x—g>>y_o_752

B . 5m?
nly+mty’ — (x— g) cos( —g)+sm<x— %) -2 0152,

8
(5.1)
We are interested in solving F(z) = 0 for z € D.
Initial approximation zy = (xo, yo)”.
ofi m\? . s 4 s )
3 (=3) (= 5) ) (-5 ) eos (5= )
0
8{/1 = <x— %)sin(x— g),
(5.2)
9 _ (x——)sin(x— E)
ox 2 2 )
0
o _ n?+ 3%y
ay
F’(z) is symmetric.
F'(z)=0forallx € (—m,7) and y € (0,1) exceptatx = —7, y = 7.
-3 —0.752
F(a) =F(x)|x=—nn = 2 <0,
y=0 —5%—71—0.152
3 (5.3)
% + % ~0.752
F(b) = F(x)|x=n = >0
y=1 | 372
—+1-0.152
8
F'(2) |x:f(/)2 does not have an inverse.
We choose A as
2 —1.5708
A= (5.4)
—1.5708 22

and €=10"!!, the desired accuracy is achieved in 17 iterations.
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Starting from x; = 1.5708 and y, = 0, we obtain x; = 2.67715530056448 and y; =
0.45117812654687; and x;17 = 2.35205300236830 and y;7 = 0.50014720328245.

6. Discussion

(i) Convergence of Newton’s method as proposed by Kantorovich (see [11]) is based on
majorization principle which ensures that all the members of the sequence {x,,} will lie
in a small neighborhood of the initial approximation xy. Hence majorization principle
has not been used. But in order to ensure that {x,,} does not go beyond (a,b), barring a
finite number of members, an extended formula of the mapping F is taken.

(ii) Here the condition that F’(x) # 0 has been relaxed and the extended method is
called Newton-like method.

(iii) The convergence is linear.

(iv) The numerical equation under consideration being nonlinear has more than one
solution, the x-component of one solution being x* = 1.087961617. In our case, the ini-
tial point taken is close to a point where the Jacobian becomes singular and the purpose
is to show that the sequence of iterations (1.5) with the initial point mentioned above still
converges to a solution of the given equation.

(v) For other modifications of Newton’s method please see (Ortega and Rheinboldt
[6], Keller [5], Sen [7, 8], Sen and Guhathakurta [10]).
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