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This paper deals with a broad question—to what extent is topology algebraic—using
two specific questions: (1) what are the algebraic conditions on the underlying mem-
bership lattices which insure that categories for topology and fuzzy topology are indeed
topological categories; and (2) what are the algebraic conditions which insure that alge-
braic theories in the sense of Manes are a foundation for the powerset theories generating
topological categories for topology and fuzzy topology? This paper answers the first ques-
tion by generalizing the Höhle-Šostak foundations for fixed-basis lattice-valued topology
and the Rodabaugh foundations for variable-basis lattice-valued topology using semi-
quantales; and it answers the second question by giving necessary and sufficient con-
ditions under which certain theories—the very ones generating powerset theories gen-
erating (fuzzy) topological theories in the sense of this paper—are algebraic theories,
and these conditions use unital quantales. The algebraic conditions answering the sec-
ond question are much stronger than those answering the first question. The syntactic
benefits of having an algebraic theory as a foundation for the powerset theory underly-
ing a (fuzzy) topological theory are explored; the relationship between these two specific
questions is discussed; the role of pseudo-adjoints is identified in variable-basis powerset
theories which are algebraically generated; the relationships between topological theories
in the sense of Adámek-Herrlich-Strecker and topological theories in the sense of this pa-
per are fully resolved; lower-image operators introduced for fixed-basis mathematics are
completely described in terms of standard image operators; certain algebraic theories are
given which determine powerset theories determining a new class of variable-basis cate-
gories for topology and fuzzy topology using new preimage operators; and the theories
of this paper are undergirded throughout by several extensive inventories of examples.

Copyright © 2007 S. E. Rodabaugh. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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1. Introduction and preliminaries

1.1. Motivation. It is a fascinating question to what extent one area of mathematics is
needed in another area of mathematics, a question fascinating in part because of the
twin facts of mathematics’ almost overwhelming diversity and mathematics’ holistic co-
herence. In particular, it is of interest to formulate and understand the extent to which
algebra is needed for topology or the extent to which topology is algebraic.

The first approach to the question of the extent to which topology needs algebra or is
algebraic uses fuzzy sets—lattice-valued subsets—and may be formulated as follows: what
are the minimal lattice-theoretic conditions on the base lattices, in which these subsets
take their values, which guarantee that the resulting categories for doing lattice-valued
topology are in fact topological over their respective ground categories? This question was
studied for both fixed-basis and (the more general) variable-basis topologies in [1, 2] and
is generalized in this paper using the notion of “topological powerset theory”. The current
answer is as follows: if the underlying lattices (L,≤,⊗) are semi-quantales (s-quantales)—
meaning that (L,≤) is a complete lattice and ⊗ : L× L→ L is simply a binary operation
on L, with morphisms preserving arbitrary

∨
and binary ⊗ (and the unit e if we re-

strict ourselves to unital s-quantales (us-quantales))—then all the concrete categories for
topology considered or constructed in [1, 2] and this paper, and these include many well-
known categories, are topological over their ground categories with respect to the under-
lying forgetful functors. Meta-mathematically restated, the conditions of semi-quantales
guarantee that one is doing topology when working in these categories. Analogously, the
answer in the case of “fuzzy topological theories” being topological is similar and uses
(u)s-quantales which are ordered.

According to this first approach, the amount of algebraic information needed for
doing topology is small, namely a binary operation ⊗ (with a unit in the us-quantale
case)—no associativity, no commutivity, no zero, and so forth, is assumed of this bi-
nary operation. (We regard arbitrary joins and arbitrary meets to be primarily order-
theoretic and limit-theoretic rather than algebraic since they involve infinitary operations
and since PreSet,PoSet,CLat are nonalgebraic constructs—indeed PreSet is a topological
construct and PoSet is a monotopological construct.)

A second approach to the question (of the extent to which topology needs algebra or is
algebraic) also uses fuzzy sets to formulate a crucial bridge between algebra and topology,
namely powersets and powerset operators and powerset theories. This second approach may
be stated “in reverse” as follows: as shown in Section 3.4, to obtain a “topological theory”
or topological category A (over a ground category with respect to a specified functor)
means that A has complete fibres and that the preimage operator lifting ground mor-
phisms to continuous A morphisms is a contravariant functor; the syntax of this preim-
age operator is part of an underlying “topological” powerset theory which sometimes has
an image operator generating the preimage operator via the adjoint functor theorem; and
this underlying powerset theory, or at least the image operator—viewed as the lifting of
a ground morphism to a morphism between powersets over ground objects—could be
possibly generated from an algebraic theory (or monad) in clone form [3]. The second
approach to this question may be summed up thusly: to what extent or under what con-
ditions do algebraic theories (in clone form) account for powerset theories constructing
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(fuzzy) topological theories occurring in traditional and lattice-valued mathematics? We
note that relationships between powerset theories and algebraic theories are considered
briefly in [3] via a few examples, and these relationships are stated in greater detail (with-
out proofs) in [4, 5].

It is the joint-purpose of this paper to extend from [1, 2] the first approach using s-
quantales and us-quantales while thoroughly resolving all aspects of the second approach.
More specifically:

(1) This paper reformulates in Section 1.5 current axioms of topology and fuzzy topol-
ogy by expressing the notion of the whole space being open by the tensor unit of a us-
quantale—this stems from a suggestion of Professor U. Höhle.

(2) This paper extends the first approach in Sections 3.2–3.4 by axiomatizing power-
set theories, specifying which powerset theories are topological, axiomatizing topological
and fuzzy topological theories induced by topological powerset theories, and showing
that under very weak lattice-theoretic conditions, all such topological and fuzzy topolog-
ical theories are topological categories over their ground categories with respect to for-
getful functors—the fuzzy case needs the tensor to be isotone. It is an intriguing fact that
topological theories are not inherently fixed-basis or variable-basis, while fuzzy topolog-
ical theories are inherently variable-basis; see [1, 2] for the notions of “fixed-basis” and
“variable-basis” as well as Sections 1.5 and 3.5 for convenient examples of fixed-basis and
variable-basis powerset theories and categories for topology.

(3) This paper shows in Section 3.6 that the categories of spaces of topological theories
à la [6] functorially embed into certain topological theories à la Definition 3.7 and in this
sense are generalized by Definition 3.7.

(4) This paper axiomatizes in Section 4.2 what it means for an algebraic theory in a
ground category to generate a powerset theory in that category.

(5) This paper gives necessary and sufficient conditions in Section 5.1 for theories in
Set of standard construction (defined following Example 3.15) to be algebraic, theories
which in Section 5.2 generate the fixed-basis topological powerset theories which induce
fixed-basis topological categories for topology and fuzzy topology fuzzy topology (Sec-
tions 1.5, 3.5). This completely resolves the second approach for algebraic theories of
standard construction in the fixed-basis case.

(6) This paper gives necessary and sufficient conditions in Section 6.1 for left-adjoint
theories in ground categories of the form Set×C to be algebraic theories of standard con-
struction, theories which in Section 6.2 generate topological powerset theories in Set×C,
which in turn generate well-known variable-basis categories for topology and fuzzy topol-
ogy (Sections 1.5, 3.5). The term “left-adjoint” refers to the fact that the construction of
left-adjoint theories uses pseudo-left-adjoints (Definition 1.12) of certain isotone maps.
The topological powerset theories which these algebraic theories generate are also desig-
nated as left-adjoint as the topological categories produced from these powerset theories
are. This completely resolves the second approach for algebraic theories of standard con-
struction type in the variable-basis, left-adjoint case.

(7) This paper gives necessary and sufficient conditions in Section 6.1 for right-adjoint
theories in ground categories of the form Set×C to be algebraic theories of standard
construction, theories which in Section 6.3 generate new topological powerset theories
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in Set×C, which in turn generate new categories for topology and fuzzy topology. These
right-adjoint topological categories have the same objects as their left-adjoint siblings,
but have fundamentally different morphisms (i.e., a fundamentally different continuity)
based on new preimage operators based on the notion of a pseudo-right-adjoint. This
completely resolves the second approach for algebraic theories of standard construction
in this new variable-basis, right-adjoint case.

(8) To accomplish the goals of (1)–(7), it is necessary to develop subsidiary ideas
of potential importance in their own right: pseudo-adjoints of mappings between com-
plete lattices, critical to the characterizations of Section 6 and the new kind of topology
developed in Section 6.3, are introduced in Definition 1.12 and studied in Remark 1.13
and Proposition 1.15, particularly their relationship to complete distributivity; the lower-
image operator of ground morphisms, a concept long known in the folklore and crucial
in some of the examples inventoried in Section 1.3, is explicitly defined in Definition 1.19
and its relationship to the standard image operator in the fixed-basis case is completely
resolved in Remark 1.20 and Proposition 1.21; and several extensive inventories of exam-
ples are given, particularly in Sections 1.2, 1.3, 3.5, to undergird and justify this paper’s
several intertwining developments.

With regard to the two approaches described earlier, the algebraic and order-theoretic
price of the second approach is much higher than that of the first approach. The price for
the first approach is that L be an s-quantale, and there is no cost regarding morphisms.
But the object cost for the second approach is that L additionally be a unital quantale (an
associative s-quantale with unit in which ⊗ distributes from both sides across arbitrary
joins)—such a condition is both necessary and sufficient for the topological L-powerset
theory to be generated from an algebraic theory of standard construction; and in the
variable-basis cases, there is also a significant morphism cost (see Sections 1.3 and 6.1)
which is both necessary and sufficient. On the other hand, the second approach coher-
ently generates topological powerset theories which induce topological categories, while
the first approach makes use of topological powerset theories which have been individu-
ally created for each overlying topological category.

The proper role of the second approach appears to be the following: it generates the
proper syntax for powerset theories, particularly of the image and preimage operators,
syntax which makes sense even when the conditions needed for an algebraic theory are not re-
motely satisfied. For example, under quite restrictive conditions (which are necessary and
sufficient), the left-adjoint topological powerset theories are generated from left-adjoint
algebraic theories of standard construction, and the resulting preimage operator has in-
deed the very syntax—known twenty-five years ago—of the standard preimage opera-
tor needed to produce topological categories in variable-basis topology. The conditions
needed to generate this syntax algebraically are far more restrictive than the conditions
needed for this syntax to function in a topological powerset theory giving us topological
categories. In fact, all that is needed for this preimage operator to work properly are the
conditions of s-quantales and s-quantalic morphisms! In example after example, both
fixed-basis and variable-basis, the second approach generates under very restrictive con-
ditions the exact machinery already successfully used for many years by the first approach
under much weaker conditions. Therefore, while the charge is true that topology done in
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the first approach is partly ad hoc, remarkably it is even more true in the left-adjoint case
that this charge turns out to be irrelevant.

With the above paragraphs in mind, we may now summarize the main contributions
of this paper: necessary and sufficient conditions—relatively restrictive—are given under
which topological powerset theories, already in use in lattice-valued mathematics under
much less restrictive conditions, can be given an algebraic foundation using algebraic
theories in clone form [3] of standard construction. These algebraic theories confirm the
syntax of what was already in place. But other algebraic theories generate new topological
powerset theories and new kinds of topology and continuity whose potential opens new
avenues of topological research and whose syntax functions successfully under conditions
much weaker than needed for those algebraic theories—see Section 6.3.

This paper’s limitations include the following, which may be regarded as open ques-
tions:

(1) Although the relationship between topological theories in the sense of [6] and
those in the sense of this paper is fully resolved, this paper gives no relationship between
algebraic theories and topological theories in the sense of [6].

(2) Powerset theories given an algebraic foundation in this paper do not include those
which address powersets of fuzzy subsets and subspaces based on fuzzy subsets in lattice-
valued topology. Such structures are addressed at length by the theories of [7–13]. An
important question—in what way or to what degree can the powerset theories and ap-
proaches of [7–13] be given an algebraic foundation in clone form—is open and awaits
future work.

(3) This paper axiomatizes the algebraic and categorical foundations for (some) topol-
ogy from the standpoint of single powersets and open sets. Alternative algebraic and cat-
egorical foundations for topology from the standpoint of double powersets and “point”
and “density” have been studied in [14]. It is an important question how to link these two
foundational approaches.

1.2. Lattice-theoretic preliminaries and examples. This section gives types of lattices
needed throughout this paper, particularly for algebraic, powerset, and (fuzzy) topologi-
cal theories which are fixed-basis. An important difference compared to [4] is the gener-
alization from complete quasi-monoidal lattices to semi-quantales and from strictly two-
sided quantales to unital quantales. The categories associated with these types of lattices
are needed for variable-basis algebraic, powerset, and (fuzzy) topological theories.

Throughout the following definition, the composition and identities are taken from
Set.

Definition 1.1 (lattice structures and associated categories). (1) A semi-quantale (L,≤,⊗),
abbreviated as s-quantale, is a complete lattice (L,≤) equipped with a binary operation
⊗ : L×L→ L, with no additional assumptions, called a tensor product. SQuant comprises
all semi-quantales together with mappings preserving ⊗ and arbitrary

∨
.

(2) An ordered semi-quantale (L,≤,⊗), abbreviated as os-quantale, is an s-quantale in
which ⊗ is isotone in both variables. OSQuant is the full subcategory of SQuant of all os-
quantales. The class of all os-quantales is precisely that (strict) subclass of po-groupoids
(see [15, page 319]) in each of which there is closure under arbitrary

∨
.
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(3) A unital semi-quantale (L,≤,⊗), abbreviated as us-quantale, is an s-quantale in
which ⊗ has an identity element e ∈ L called the unit [16]—units are necessarily unique.
USQuant comprises all us-quantales together with all mappings preserving arbitrary

∨
,

⊗, and e.
(4) A complete quasi-monoidal lattice (L,≤,⊗), abbreviated as CQML, is an os-quantale

having � idempotent. CQML comprises all cqmls together with mappings preserving ar-
bitrary

∨
, ⊗, and � [1, 2]. Note that CQML is a subcategory of OSQuant. If it is addi-

tionally stipulated that ⊗=∧ (binary), then such cqmls are semiframes and SFrm is the
full subcategory of CQML of all semiframes.

(5) A DeMorgan s-quantale is an s-quantale which is equipped with an order-reversing
involution. DmSQuant is the category of DeMorgan s-quantales and s-quantalic mor-
phisms also preserving ′. If it is additionally stipulated that ⊗ = ∧ (binary), then such
DeMorgan s-quantales are complete DeMorgan algebras and Dmrg is the full subcategory
of DmSQuant of all complete DeMorgan algebras.

(6) A quantale (L,≤,⊗) is an s-quantale with ⊗ associative and distributing across
arbitrary

∨
from both sides (implying that ⊥ is a two-sided zero) [1, 16, 17]. Quant

is the full subcategory of OSQuant of all quantales. If it is additionally stipulated that
⊗=∧ (binary), then such quantales are frames and Frm is the subcategory of Quant of
all frames and quantalic morphisms preserving finite ∧. That Frm is not full in Quant
is demonstrated by Example 1.17(6)(a)(ii). It should be noted that Girard quantales are
DeMorgan quantales [17] using (5) above.

(7) A strictly two-sided semi-quantale (L,≤,⊗) is a us-quantale with e =� [1], abbrevi-
ated as st-s-quantale. ST-SQuant is the full subcategory of USQuant of all st-s-quantales.
Note that ST-SQuant is also a full subcategory of CQML and that the notion of an st-s-
quantale is the same as a complete monoidal lattice, abbreviated as cml.

(8) There are various combinations of the above terms. Of particular importance to
subsequent sections are unital ordered semi-quantales—abbreviated as uos-quantales
and forming the full subcategory UOSQuant of USQuant of all uos-quantales, uni-
tal quantales [1, 16, 17]—abbreviated as u-quantales and forming the full subcategory
UQuant of UOSQuant of all u-quantales, and strictly two-sided quantales—abbreviated
as st-quantales and forming the full subcategory STQuant of UQuant of all st-quantales.
Frm is a full subcategory of STQuant. All of these combinations yield subclasses of po-
monoids [15].

(9) The dual of any category formed using the above terms is additionally called localic
and the term localic is appended to the attributes for the structures in question. Exam-
ples in subsequent sections include SQuantop ≡ LoSQuant, USQuantop ≡ LoUSQuant,
OSQuantop ≡LoOSQuant, UOSQuantop ≡LoUOSQuant, CQMLop ≡LoQML (in this
case, the objects are localic quasi-monoidal lattices), Quantop ≡ LoQuant, UQuantop ≡
LoUQuant. In the cases of SFrm and Frm, the dual categories are already known in the
literature as SLoc and Loc, respectively.

(10) CSLat(
∨

) is the category of complete join-semilattices, together with all map-
pings preserving arbitrary

∨
; and CSLat(

∧
) is the category of complete meet-semi-latti-

ces, together with all mappings preserving arbitrary
∧

. These two categories share the
same objects.
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(11) CLat is the category of all complete lattices and mappings preserving arbitrary
∨

and arbitrary
∧

; and CBool is the full subcategory of CLat of all complete Boolean
algebras.

Proposition 1.2. Let (L,≤,⊗) be an s-quantale. Then the following hold.
(1) (L,≤op,⊗) is an s-quantale. Further, (L,≤,⊗) is an os-quantale [us-quantale, uos-

quantale] if and only if (L,≤op,⊗) is an os-quantale [us-quantale, uos-quantale,
resp.].

(2) (L,≤,⊗) is a quantale [u-quantale, st-quantale] implies (L,≤op,⊗) is an associa-
tive os-quantale [uos-quantale, uos-quantale, resp.], and these implications do not
reverse.

Remark 1.3. SQuant provides the general lattice-theoretic framework within which we
can give necessary and sufficient conditions for certain powerset theories to be gener-
ated from standard construction algebraic theories (Example 3.15) and sufficient condi-
tions for certain powerset theories to generate (fuzzy) topological theories, in the sense
of Section 3.3, which are topological categories; it is also the unifying lattice-theoretic
framework for the following examples. The use of the appellative semi for s-quantales is
analogous to its use for semiframes and semilocales in [2] and subsequent papers.

Examples 1.4. A wealth of examples justifying the above lattice-theoretic notions can be
seen in [14, 1, 18, 19, 16, 20, 2, 21, 22] and references therein. We sample the following
examples to illustrate the above notions. The author is grateful to Professor Höhle for
bringing example (11) to his attention.

(1) Each semiframe, and hence each complete lattice, is a commutative st-s-quantale
(⊗=∧ (binary)). Such examples need not be quantales nor distributive.

(2) Both the five-point asymmetric diamond and the five-symmetric diamond are
nondistributive DeMorgan algebras, and hence are DeMorgan st-s-quantales which are
not quantales. Each nondistributive lattice has a subposet which is order-isomorphic to
one of these diamonds.

(3) The complete DeMorgan algebra �(Hn) comprising all closed linear subspaces of
Hilbert space with n≥ 2, equipped with the inclusion order and orthocomplementation
and with ⊗ = ∩ (binary), is a nondistributive DeMorgan st-s-quantale which is not a
quantale.

(4) Each frame is a commutative st-quantale.

(5) Each (L,≤,T) with (L,≤) a complete lattice (or semiframe) and ⊗ = T a t-norm
on L is a commutative st-s-quantale. Such examples need not be quantales; see [19] for
t-norms and co-t-norms.

(6) Each (L,≤,S) with (L,≤) a complete lattice (or semiframe) and ⊗= S a co-t-norm
on L is a commutative us-quantale (with unit ⊥). Such examples need not be quantales.

(7) Each ([0,1],≤,T) with ≤ the usual ordering on [0,1] and ⊗= T a left-continuous
t-norm on [0,1] is a commutative st-quantale. If T is not left-continuous, then ([0,1],≤,
T) is still a commutative st-s-quantale.

(8) (MaxA,≤,&)—where A is a unital C∗-algebra with unit 1, MaxA is the set of all
closed linear subspaces of A, the join is the closure of the algebraic sum, and ⊗ = & is
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the closure of the algebraic product—is a u-quantale which is not an st-quantale (since
A �= 〈1〉); see [16].

(9) �(G), the family of all normal subgroups of a groupG equipped with the inclusion
order and ⊗ given by H ⊗K =HK , is a commutative u-quantale which is not a quantale
nor an st-s-quantale if |G| ≥ 2 (G⊗{e} �= {e}, and the unit is {e} but � = G). It is well
known in these examples that H ⊗K reduces to H ∨K .

(10) �(S), the family of all subsemigroups of an abelian semigroup S without iden-
tity, equipped with the inclusion order and ⊗ given by H ⊗K =HK , is a nonunital os-
quantale; and for many S (e.g., (N,+),((0,1),·), etc.), there exist H ,K such that H ⊗K is
not H ∨K (e.g., there exist H ,K such that H �⊂HK and K �⊂HK).

(11) (S(L),≤,◦)—where L is a complete lattice,

S(L) =
{
f : L−→ L | f preserves arbitrary

∨}
, (1.1)

≤ is the pointwise order, and ⊗= ◦ is composition of functions—is a u-quantale which
for |L| > 2 is not an st-quantale (since idL is not the universal upper bound mapping

1(b) =
⎧
⎪⎨

⎪⎩

�, b >⊥,

⊥, b =⊥)
(1.2)

nor commutative.

The construction in Example 1.4(11) of a class of examples merits a brief categorical
analysis of its degree of “naturality”, an analysis needing the following ideas and proposi-
tion.

Definition 1.5 (partial-left adjunction). Let �, � be categories and G : � ← � a functor.
Then an object function F : |�| → |�| is a partial-left adjoint of G with F,G forming a
partial-left adjunction, written as

F �l G, (1.3)

if the partial-lifting diagram holds: for each A∈ |�|, there exists a unit ηA : A→G(F(A))
in �, for each B ∈ |�|, for each f ∈ �(A,G(B)), there exists f ∈ �(F(A),B),

f =G( f )◦ηA. (1.4)

Note that f is not assumed to be unique given f . It is well known that if f is uniquely
determined from f , then each g ∈ �(A,B) uniquely determines ηB ◦ g ∈ �(F(A),F(B))
such that choosing F(g) = ηB ◦ g both makes F a functor and left-adjoint of G. Hence
every adjunction yields a partial-left adjunction, but not conversely.

Construction 1.6. For each L∈ |CSLat(
∨

)|, define ηL : L→ S(L) by ηL(a)(b) = a if |L| = 1
and by

ηL(a)(b) =
⎧
⎪⎨

⎪⎩

a, b >⊥,

⊥, b =⊥,
(1.5)
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if |L| ≥ 2. Further, define

S :
∣
∣
∣CSLat

(∨)∣
∣
∣−→ |UQuant| by (L,≤) �−→ (

S(L),≤,◦),

V : CSLat
(∨)

←− UQuant by V(L) = L, V( f ) = f .
(1.6)

Proposition 1.7. The following hold concerning Example 1.4(11) and Construction 1.6:
(1) For each L∈ |CSLat(

∨
)|, ηL : L→ S(L) is well defined, injective, preserves arbitrary

∨
and arbitrary

∧
, and so is isotone; and hence ηL order embeds L into S(L) in the

sense that (ηL)→(L) is a complete sublattice of S(L) which is order-isomorphic to L via
ηL.

(2) Redefining S to have codomain |CSLat(
∨

)| and V to have domain CSLat(
∨

), then
S�l V with unit η and the bar operator given by

f (g) = f
(
g
(�L

))
(1.7)

for f : L→M in CSLat(
∨

) and g ∈ S(L).
(3) The partial-left adjunction S �l V of (2)—with η and the indicated bar operator—

does not hold for each forgetful functor V : CSLat(
∨

) ← � for which � is a subcate-
gory of SQuant containing I equipped with ⊗ any t-norm.

(4) The forgetful functor V : CSLat(
∨

) ← UQuant does not have a left-adjoint using S
on objects, η as the unit, and the bar operator of (2).

Proof. Ad(1) Well-definedness and the preservation of
∨

both partly depend on
∨

dis-
tributing across the pieces of a piecewise defined mapping; and the preservation of

∧

partly depends on
∧

distributing across the pieces of a piecewise defined function. Injec-
tivity is immediate if |L| = 1 and straightforward if |L| ≥ 2.

Ad(2) To check the partial-lifting diagram, we note that f preserves arbitrary
∨

, a
consequence of f preserving arbitrary

∨
; so f is in CSLat(

∨
). Clearly

f
(
ηB(a)

)= f
(
ηB(a)(�)

)= f (a), (1.8)

so that f ◦ηB = f .
Ad(3) Assume to the contrary that S �l V holds with η and the bar operator of (2)

and with forgetful functor V : CSLat(
∨

) ← �, where � is a subcategory of SQuant con-
taining I equipped with ⊗ any t-norm. Then for any f : L→M in CSLat(

∨
), we have

f ∈ �(S(L),M). Choose L =M = I with ⊗ = T a t-norm, f = idL, and g1,g2 ∈ S(L) by
g1(a) = a/2, g2(a) = a2/2. Now f ∈ �(S(L),M) implies that f preserves tensor products,
taking ◦ on S(L) to T on M. The commutivity of T yields

1
4
= g1

(
g2(1)

)= f
(
g1 ◦ g2

)= T
(
f
(
g1
)
, f
(
g2
))

= T
(
f
(
g2
)
, f
(
g1
))= f

(
g2 ◦ g1

)= g2
(
g1(1)

)= 1
8

,
(1.9)

a contradiction.
Ad(4) This is a corollary of (3). �
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1.3. Category-theoretic preliminaries, pseudo-adjoints, and examples. Variable-basis
theories are more subtle from a category-theoretic point of view than fixed-basis theories.
This section introduces the critical notion of pseudo-adjoints and uses this notion to out-
line categorical preliminaries needed for this paper’s variable-basis theories and verifies
through an extensive inventory of classes of examples that the morphism classes of certain
categories, defined in terms of pseudo-adjoints and used in the variable-basis character-
izations of algebraic theories in this paper, are nontrivial. Throughout this paper, the
notation � ⊂ � for � a category means that � is a category which is a subcategory of �.
Unless stated otherwise, C ⊂ LoSQuant ≡ SQuantop in this section.

Definition 1.8 (variable-basis ground categories). The product category Set×C com-
prises the following data:

(1) Objects: (X ,L), with X ∈ |Set| and L∈ |C|.
(2) Morphisms: ( f ,φ) : (X ,L) → (Y ,M), with f : X → Y in Set and φ : L→M in C, that

is,

φop : L←−M (1.10)

is a concrete morphism in Cop ⊂ SQuant.
(3) Composition, identities: these are taken component-wise from Set and C.

Categories of the form Set×C play a fundamental role in topology as the ground
categories of topological variable-basis categories such as C-Top and C-FTop in [23–26,
20, 2, 21, 27].

Definition 1.9. Let f : L→M, g : L←M be isotone maps between presets. Then f � g
provided that

∀a∈ L, a≤ g
(
f (a)

)
,

∀b∈M, f
(
g(b)

)≤ b,
(1.11)

or equivalently,

∀a∈ L, b ∈M, a≤ g(b) ⇐⇒ f (a) ≤ b. (1.12)

If f � g, then one writes g = f � and f = g� and calls f � the right-adjoint of f and g�

the left-adjoint of g.

Theorem 1.10 (adjoint functor theorem (AFT) [18]). Let f : L→M [g : L←M] be a
mapping between posets such that L [M] has arbitrary

∨
[
∧

] and f [g] preserves arbitrary
∨

[
∧

, resp.]. Then f [g] is isotone, there exists a unique f � : L←M [g� : L→M], and f �

[g�] preserves all
∧

[
∨

] existing in M [L], where f � : L←M [g� : L→M] is given by

f �(β) =
∨{

α∈ L : f (α) ≤ β
}

[
g�(α) =

∧{
β ∈M : α≤ g(β)

}]
.

(1.13)
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Notation 1.11 [20, 21]. Given a mapping f : X → Y and any set Z, we may lift f to 〈 f 〉 :
XZ → YZ by

〈 f 〉(a) = f ◦ a. (1.14)

Note that if L, M are presets and f : L→M, g : L←M are isotone maps such that

f � g, (1.15)

then for each set X , LX ,MX are presets and 〈 f 〉 : LX →MX and 〈g〉 : LX ←MX are isotone
maps such that

〈 f 〉 � 〈g〉. (1.16)

Restated,

〈 f 〉� = 〈 f �〉, 〈g〉� = 〈g�〉. (1.17)

Definition 1.12 (pseudo-adjoints and liftings). Let f : L←M be any function between
two complete lattices. Define the pseudo-left-adjoint f � : L→M in Set and the pseudo-
right-adjoint f � : L→M in Set by

f �(a) =
∧

a≤ f (b)

b, f �(a) =
∨

f (b)≤a
b. (1.18)

In particular, for φ : L→M in LoSQuant, put φ� ≡ (φop)� : L→M in Set and φ� ≡
(φop)� : L→M in Set, so that

φ�(a) =
∧

a≤φop(b)

b, φ�(a) =
∨

φop(b)≤a
b. (1.19)

There is also reason to use φ�� ≡ (φ�)� : L←M and φ�� ≡ (φ�)� : L←M. Given a set
X , then

〈
φ�〉 : LX −→MX ,

〈
φ�〉 : LX −→MX (1.20)

are given by Notation 1.11 to be

〈
φ�〉(a) = φ� ◦ a,

〈
φ�〉(a) = φ� ◦ a. (1.21)

The same notation is used for adjoints (Definition 1.9) and pseudo-adjoints (Defini-
tion 1.12), with context identifying the distinction as needed. Of course, many pseudo-
adjoints really are adjoints, one of several issues addressed in Remark 1.13 and Proposi-
tion 1.15. Pseudo-adjoints play a critical role in the characterizations of Section 6 and the
new kind of topology developed in Section 6.3.

Remark 1.13. (1) If f : L←M is any function between two complete lattices, then both
f � and f � are isotone, f � preserves ⊥, and f � preserves �.
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(2) Let φ : L→M in LoSQuant. Note that φop : L←M in SQuant, so that φop preserves
arbitrary

∨
; and by AFT, φ� preserves arbitrary

∧
and

φop � φ�, (1.22)

in which case the pseudo-right-adjoint is the right-adjoint. Also by (1), φ� is isotone and
preserves ⊥; and if φop preserves arbitrary

∧
, then by AFT, φ� preserves arbitrary

∨
and

φ� � φop, (1.23)

in which case the pseudo-left-adjoint is the left-adjoint.
(3) It is easy to verify, given φ : L→M and ψ : M → N in LoSQuant and using the

identity

(g ◦ f )� = f � ◦ g� (1.24)

for right-adjoints of arbitrary
∨

preserving, concrete maps, that

(ψ ◦φ)� = ψ� ◦φ�. (1.25)

(4) The condition

(ψ ◦φ)� = ψ� ◦φ� (1.26)

need not always hold for φ : L→M and ψ : M → N in LoSQuant, is rather delicate, and
is dealt with in Proposition 1.15.

Definition 1.14 (data for adjunction categories). Let C(�)[C(�),C(��),C∗] denote
the following data:

(AC1) Objects: objects in C.
(AC2) Morphisms: given two objects L, M, φ : L→M is a morphism in C(� ) [C(� ),

C(��),C∗] if the following hold:
(a) φ : L→M is a morphism in C;
(b) φ� : L→M [φ� : L→M, φ�� : L←M, there exists φ∗ : L→M which] is a

morphism in Cop.
(AC3) Composition, identities: composition and identities of C.

Morphisms in C(�) [C(�)] have the unusual property that their duals have right-
adjoints [pseudo-left-adjoints] which preserve arbitrary

∨
and binary ⊗. Examples are

given for such morphisms in Example 1.17; and it should be noted that these conditions
are unavoidable in Section 6 for variable-basis powerset theories to be generated by an
algebraic theory of standard construction. It should also be noted that Definition 1.14
simply defines data for C(�), C(�), C(��), C∗ without any claim of whether any is a
category. The next proposition addresses these issues, gives sufficient conditions for C(�)
to be a category, and applies in its proof examples suggested by Professor Höhle for which
the author is grateful.

Proposition 1.15. The following hold:
(1) C(�), C(��), C∗ ⊂ LoSQuant.
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(2) Let C�(�) be that data with |C�(�)| = C and morphisms of the form φ� for φ in
C(�), with composition and identities from Cop. The following hold:

(a) C�(�) ⊂ SQuant if and only if for each φ : L→M, ψ :M→N in C(�),

(ψ ◦φ)� = ψ� ◦φ�. (1.27)

(b) If C�(�) ⊂ SQuant, then C(�) ⊂ LoSQuant.
(c) If the morphisms of C(�) have the additional property that their duals preserve

arbitrary
∧

, then C�(�) ⊂ SQuant.
(d) If each object in C is completely distributive as a lattice and has ⊗=∨ (binary),

then C(�) ⊂ LoSQuant.
(e) None of the implications in (b), (c) reverses.

The proof of Proposition 1.15 uses the following lemma, which stems from a remark
of Professor Höhle.

Lemma 1.16. Let L be a complete lattice, let M be a completely distributive lattice, and
let f : L←M be a map which preserves arbitrary nonempty

∨
[
∧

]. Then the pseudo-left-
adjoint [pseudo-right-adjoint] f � [ f �] : L→M preserves arbitrary

∨
[
∧

].

Proof. We prove the join case and leave the meet case for the reader. By Remark 1.13(1),
f � preserves ⊥ (the empty join); so we need only to check the preservation of nonempty
joins. Let {aγ : γ ∈ Γ} ⊂ L with Γ �= ∅. By Remark 1.13(1), f � is isotone, so immediately
we have

f �
(
∨

γ∈Γ
aγ

)

≥
∨

γ∈Γ
f �
(
aγ
)
. (1.28)

For the reverse inequality, for each γ ∈ Γ, set

Bγ =
{
b ∈M : aγ ≤ f (b)

}
. (1.29)

Invoking the definition of f � and complete distributivity in M yields

∨

γ∈Γ
f �
(
aγ
)=

∨

γ∈Γ

(
∧

b∈Bg
b

)

=
∧

x∈Πγ∈ΓBγ

(
∨

γ∈Γ
x(γ)

)

. (1.30)

Now for each x ∈ Πγ∈ΓBγ and each γ ∈ Γ, we have, using the preservation of arbitrary
nonempty

∨
by f , that

aγ ≤ f
(
x(γ)

)
,

∨

γ∈Γ
aγ ≤

∨

γ∈Γ
f
(
x(γ)

)= f

(
∨

γ∈Γ
x(γ)

)

, (1.31)
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and hence that
∨
γ∈Γ x(γ) ∈ B ≡ {b ∈M :

∨
γ∈Γ aγ ≤ f (b)}. It follows that

{
∨

γ∈Γ
x(γ) : x ∈Πγ∈ΓBγ

}

⊂ B,

∧

x∈Πγ∈ΓBγ

(
∨

γ∈Γ
x(γ)

)

≥
∧
B = f �

(
∨

γ∈Γ
aγ

)

.

(1.32)

Hence

∨

γ∈Γ
f �
(
aγ
)≥ f �

(
∨

γ∈Γ
aγ

)

, (1.33)

which completes the proof. �

Proof of Proposition 1.15. (1) and (2)(a)–(c) are immediate. Now (2)(d) is a consequence
of Lemma 1.16 as follows: φ : L→M, ψ : M →N are in C(�), then φ, ψ are in C, so that
ψ ◦φ∈ C; and since

(ψ ◦φ)� ≡ (
(ψ ◦φ)op)� = (

φop ◦ψop)�, (1.34)

then Lemma 1.16 says that (ψ ◦φ)� ∈ Cop (with ⊗=∨), so that ψ ◦φ∈ C(�).
To confirm (2)(e), let the following maps be defined from I to I:

φop(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3
4
x+

1
4

, x ∈
(

1
2

,1
]

,

x, x ∈
[

0,
1
2

]

,

ψop(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, x ∈
(

3
4

,1
]

,

1
2

, x ∈
(

0,
3
4

]

,

0, x = 0.

(1.35)

Then the following hold:
(i) (ψ ◦φ)� �= ψ� ◦φ�;

(ii) neither φop nor ψop preserves arbitrary
∧

.
To see that (2)(b) does not reverse, choose C in this way: |C| = {I} with ⊗=∨ (binary),
Morph(C)= 〈{idI,φ,ψ}〉, meaning all LoSQuant morphisms obtained through compo-
sition from these three morphisms. Then C(�) ⊂ LoSQuant by (2)(d), yet by (i) above,
C�(�) is not a subcategory of SQuant (and indeed is not a category); so (2)(b) does not
reverse. Now to see that (2)(c) does not reverse, choose C in this way: |C| = {I} with
⊗=∨ (binary), Morph(C) = {idI,ψ}. In this case, it is easy to show that

ψ ◦ψ = ψ, ψ� ◦ψ� = ψ�. (1.36)
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This observation shows that C�(�) ⊂ SQuant, and hence by (2)(b) we have C(�) ⊂
LoSQuant. But by (ii) above, the antecedent of (2)(c) does not hold; so (2)(c) does not
reverse. �

Example 1.17. It is fundamental to Section 6 being meaningful (nonempty, nonredun-
dant) that for many C ⊂ LoSQuant, C(�) and C(�) (and hence C∗) and C(��) are
nontrivial with respect to morphisms; namely, there are nonidentity—even nonisomor-
phism—morphisms in each of these categories. In particular, the examples below include
many classes of nontrivial φ in LoUQuant(L,M) such that φ� and/or φ� and/or φ��

are in UQuant, the latter being (more than) sufficient for the new powerset theories of
Section 6.3 to yield topological and fuzzy topological theories which are meaningful. Note
that ((1)–(5), (10)) give classes of examples of nonisomorphic φ, ((5)–(10)) give exam-
ples in which ⊗ need not be order-theoretic (binary ∧ or binary ∨) on L and M, and (10)
gives an algorithm for generating from ((1)–(9)) many classes of examples of nonisomor-
phism φ in C(�) and/or C(�) and/or C(��) with non-order-theoretic ⊗. Also note that
in all examples, Proposition 1.15(2)(c)—and hence Proposition 1.15(2)(b)—applies.

(1) Let L= {⊥,a,�} and M = {⊥,�}, let φop : L←M be given by

φop(⊥) =⊥, φop(�) =�. (1.37)

Then each of φop, φ�, φ� preserves each of
∨

,
∧

, �.
(a) Let L, M be equipped with ⊗ = ∧ (binary). Then both φ�, φ� : L→M are in

UQuant and so φ ∈ LoUQuant(�)∩LoUQuant(�).
(b) Let L, M be equipped with ⊗ = ∨ (binary). Then both φ�, φ� : L→M are in

UOSQuant and so φ ∈ LoUOSQuant(�)∩LoUOSQuant(�).
(2) This example essentially shifts the previous example one pseudo-adjoint to the left.

To be precise, let L= {⊥,�} and M = {⊥,a,�}, let ψop : L←M be given by

ψop(⊥) =⊥, ψop(a) =�, ψop(�) =�. (1.38)

Note that ψop is the φ� of the previous example. Then it follows that each of ψop, ψ�, ψ��

preserves each of
∨

,
∧

, �.
(a) Let L,M be equipped with⊗=∧ (binary). Then bothψ� : L→M,ψ�� : L←M

are in UQuant, and so ψ ∈ LoUQuant(�)∩LoUQuant(��).
(b) Let L,M be equipped with⊗=∨ (binary). Then bothψ� : L→M,ψ�� : L←M

are in UOSQuant, and so ψ ∈ LoUOSQuant(�)∩LoUOSQuant(��).
(3) LetM={⊥,α,�} and let L={⊥,a,b,c,�} be the product topology of the Šierpinski

topology with itself with the coordinate-wise ordering—⊥ is meet-irreducible (prime)
and {a,b,c,�} is the four-point diamond with

⊥≤ a≤ b ≤�, ⊥≤ a≤ c ≤�, (1.39)

and b, c unrelated. Now let φop : L←M be given by

φop(⊥) =⊥, φop(�) =�, φop(α) = c. (1.40)

Then each of φop : L←M, φ� : L→M preserves each of
∨

,
∧

, �.
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(a) Let L, M be equipped with ⊗ = ∧ (binary). Then φ� ∈ UQuant, and so φ ∈
LoUQuant(�).

(b) Let L, M be equipped with ⊗ = ∨ (binary). Then φ� ∈ UOSQuant, and so
φ∈ LoUOSQuant(�).

Now shift our mappings one pseudo-adjoint to the left as in (2), namely, put

ψop = φ� :M←− L. (1.41)

Then each of ψop : L←M, ψ� : L→M preserves each of
∨

,
∧

, �.
(c) Let M, L be equipped with ⊗ = ∧ (binary). Then ψ� ∈ UQuant, and so ψ ∈

LoUQuant(�).
(d) Let M, L be equipped with ⊗ = ∨ (binary). Then ψ� ∈ UOSQuant, and so

ψ ∈ LoUOSQuant(�).
(4) LetM be as in the previous example, let L be Lop of the previous example, and let φ,

ψ be formally defined as in the previous example. Then each of φop : L←M, φ� : L→M,
ψop : L←M, ψ� : L→M preserves each of

∨
,
∧

, �.
(a) Let L, M be equipped with ⊗ = ∧ (binary). Then φ� ∈ UQuant, and so φ ∈

LoUQuant(�).
(b) Let L, M be equipped with ⊗ = ∨ (binary). Then φ� ∈ UOSQuant, and so

φ∈ LoUOSQuant(�).
(c) Let M, L be equipped with ⊗ = ∧ (binary). Then ψ� ∈ UQuant, and so ψ ∈

LoUQuant(�).
(d) Let M, L be equipped with ⊗ = ∨ (binary). Then ψ� ∈ UOSQuant, and so

ψ ∈ LoUOSQuant(�).
(5) Let L =M = I ≡ [0,1] and let φop : L←M be as follows: [0,1/4] scales to [0,1/2]

with 0 �→ 0 and 1/4 �→ 1/2; [1/4,3/4] maps to {1/2}; and [3/4,1] scales to [1/2,1] with
3/4 �→ 1/2 and 1 �→ 1. Since φop is isotone and continuous and preserves 0 and 1, it pre-
serves arbitrary

∨
and arbitrary

∧
(cf. [22, Lemma 3.6.2]). It should be noted that φ� :

L→M preserves arbitrary
∨

and finite ∧, but not arbitrary
∧

, that φ� : L→M preserves
arbitrary

∧
and finite ∨, but not arbitrary

∨
, and that

φ� � φop � φ�, φ�� = φop = φ��, φ�� �� φ�, φ� �� φ��. (1.42)

Further, if we shift to the left as above in (2) and choose ψop :M← L by

ψop = φ�, (1.43)

then we also have

ψop � ψ� � ψ��. (1.44)

We therefore have the following examples, in some of which occurs ⊗ = TD (the drastic
product t-norm [19]).

(a) Let L, M be equipped with ⊗ = ∧ (binary). Then φ� ∈ UQuant, and so φ ∈
LoUQuant(�).

(b) Let L, M be equipped with ⊗ = ∨ (binary). Then φ� ∈ UOSQuant, and so
φ∈ LoUOSQuant(�).
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(c) Let L, M be equipped with ⊗ = TD. Then φ� ∈ UOSQuant, and so φ ∈
LoUOSQuant(�).

(d) Let L, M be equipped with ⊗ = ∧ (binary). Then ψ� ∈ UQuant, and so ψ ∈
LoUQuant(�).

(e) Let L, M be equipped with ⊗ = ∨ (binary). Then ψ� ∈ UOSQuant, and so
ψ ∈ LoUOSQuant(�).

(f) Let L, M be equipped with ⊗ = TD. Then ψ� ∈ UOSQuant, and so ψ ∈
LoUOSQuant(�).

(g) Let L, M be equipped with ⊗ = ∧ (binary). Then φ�� ∈ UQuant, and so φ ∈
LoUQuant(��).

(h) Let L, M be equipped with ⊗ = ∨ (binary). Then φ�� ∈ UOSQuant, and so
φ∈ LoUOSQuant(��).

(i) Let L, M be equipped with ⊗ = TD. Then φ�� ∈ UOSQuant, and so φ ∈
LoUOSQuant(��).

The maps φop, φ�, φ�� show that the converse of AFT (Theorem 1.10) need not hold and
that C(��) need not be a subcategory of C(�) (it is also the case that C(�) need not be a
subcategory of C(��)); and in particular, we cannot in these examples shift two positions
to the left and rechoose ψop = φ��—reinforcing Remark 1.13 and Proposition 1.15 and
the fact that the converse of AFT (Theorem 1.10) need not hold.

(6) Let X ,Y be sets, let f : X → Y be a function, and let N be a complete lattice. For
powerset operator notation, see Definition 1.19.

(a) Put

L=NX , M =NY (1.45)

and define φop : L←M by

φop = f ←N . (1.46)

Then φ� ≡ f →N : L→M.
(i) Let L, M be equipped with ⊗ = ∨ (binary). Then φ� ∈ UOSQuant, and

so φ∈ LoUOSQuant(�) (note f →N preserves arbitrary joins and hence the
unit ⊥ of ⊗).

(ii) Let L,M be equipped with ⊗=∧ (binary) and f be injective and N be a
frame. Then φ� ∈ Quant, and so φ ∈ LoQuant(�). If it is further assumed
that f is not surjective, then φ� ∈ Quant−Frm and φ ∈ LoQuant(�)−
Loc(�) (cf. 1.2.1(6) above).

(b) Put

L=NY , M =NX (1.47)

and define φop : L←M by

φop = f →N . (1.48)

Then φ� ≡ f ←N : L→M.
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(i) Let L, M be equipped with ⊗ = ∧ (binary) and let f be injective. Then
φ∈ LoOSQuant, φ� ∈ UQuant, and so φ∈ LoOSQuant(�).

(ii) In (i) above, restrict φop, using � ⊂M, � ⊂ L à la Proposition 1.21(6), by

φop = (
f →N
)
|� = (

fN→
)
|� : � ← �, (1.49)

let f be surjective, and let (N ,≤,⊗) be a unital quantale with ⊗ arbitrary.
Then �, � are unital quantales, φ ∈ LoUQuant, and

φ� = (
f ←N
)
|� : � → �,

φ� = (
f ←N
)
|� : � → �,

φ�� = (
fN→

)
|� : � ←− �

(1.50)

are in UQuant (see Remark 1.20, Proposition 1.21). So

φ∈ LoUQuant(�)∩LoUQuant(�)∩LoUQuant(��). (1.51)

(c) Every function f : X → Y gives rise to the examples in (a)((i), (ii))–(b)((i), (ii))
using the epi-mono decomposition of f (cf. Remark 1.20).

(7) Let L =M = I ≡ [0,1], n ∈ N, and φ
op
n : L←M by φ

op
n (x) = xn; and let L, M be

equipped with the t-norm ⊗= TP = · (multiplication). Then φ
op
n preserves arbitrary

∨
,

arbitrary
∧

, and ⊗. So we have that both φ�
n : L→M and φ�

n : L→M exist and φ�
n �

φ
op
n � φ�

n . Further, since both φ
op
n and (φ

op
n )−1 are isotone bijections, φ�

n = (φ
op
n )−1 = φ�

n .
Now (φ

op
n )−1(x) = x1/n and (φ

op
n )−1 preserves arbitrary

∨
, arbitrary

∧
and ⊗. Hence each

of φ�
n : L→M and φ�

n : L→M is in UQuant. Further, φ��
n = φ

op
n and φ��

n = φ
op
n are also

in UQuant. So φ∈ LoUQuant(�)∩LoUQuant(�)∩LoUQuant(��).
(8) To extend the examples of (7) above to classes of examples, let φop : L←M be any

order-isomorphism and assume that (L,≤,⊗) is a unital quantale. Put T : M ×M →M
by

T = (
φop)−1 ◦⊗◦ (φop ×φop). (1.52)

Then (M,≤,T) is a unital quantale and φ ∈ LoUQuant(L,M). Further,

φ� = (
φop)−1 = φ�, φ�� = φop = φ��, (1.53)

all these morphisms are in UQuant, and so

φ∈ LoUQuant(�)∩LoUQuant(�)∩LoUQuant(��). (1.54)

To indicate the richness of this class of examples, let φop be any of the φ
op
n ’s of (7) with

L=M = I, and choose ⊗ to be any left-continuous t-norm on I, of which there are un-
countably many [28, 19].

(9) To indicate how the classes of examples of (8) can be further extended, apply the
setup of (7) to L≡ I3 equipped with

⊗= T∧ ×TP ×TŁ, (1.55)
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where T∧, TP, TŁ are the continuous min, product, and Łukasiewicz t-norms on I, and
finally choose

ψop = φ
op
n ×φ

op
n ×φ

op
n : L≡ I3 ←−M ≡ I3, (1.56)

where φ
op
n is any of the mappings of (7). Then à la the construction of (8), put

T = (
ψop)−1 ◦⊗◦ (ψop ×ψop) :M×M −→M. (1.57)

Then ψ ∈ LoUQuant(L,M) and indeed

ψ ∈ LoUQuant(�)∩LoUQuant(�)∩LoUQuant(��). (1.58)

(10) All of the examples in (1)–(9) can be used to generate example classes having
whichever combination of desired properties simply by using products of semi-quantales,
where the underlying sets are Cartesian product of sets and the partial orders and lim-
its and colimits and tensors are taken pointwise, and by noting that adjunctions occur
pointwise as well. We illustrate this with two constructions.

(a) Suppose we wish an example class of nonisomorphism morphisms in

LoUQuant(�)∩LoUQuant(�) (1.59)

with ⊗’s not order-theoretic. We simply “cross” (1) and (7) as follows. Put

L= {⊥,a,�}× I, M = {⊥,�}× I,
⊗=∧×TP on each of L, M, ψop = φop ×φ

op
n ,

(1.60)

where φop is taken from (1) and φ
op
n is taken from (7) for some n ∈ N. Then

ψ is not an isomorphism, ⊗ is not order-theoretic, and ψ ∈ LoUQuant(�)∩
LoUQuant(�).

(b) Supppose we wish an example class of nonisomorphism morphisms in

LoUQuant(�)∩LoUQuant(��) (1.61)

with ⊗’s not order-theoretic. We simply “cross” (2) and (7) as follows. Put

L= {⊥,�}× I, M = {⊥,a,�}× I,
⊗=∧×TP on each of L, M, ψop = φop ×φ

op
n ,

(1.62)

where φop is taken from (2) and φ
op
n is again taken from (7) for some n ∈ N.

Then ψ is not an isomorphism, ⊗ is not order-theoretic, and

ψ ∈ LoUQuant(� )∩LoUQuant(��). (1.63)
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1.4. Powerset operator preliminaries. We catalogue the powerset operators for tradi-
tional and lattice-valued mathematics used in this paper.

Definition 1.18 (powersets). LetX ∈ |Set| and L∈ |SQuant|. Then LX is the L-powerset of
X . The constant member of LX having value α is denoted α. All order-theoretic operations
(e.g.,

∨
,
∧

) and algebraic operations (e.g., ⊗) on L lift point-wise to LX and are denoted
by the same symbols. In the case L ∈ |USQuant|, the unit e lifts to the constant map e,
which is the unit of ⊗ as lifted to LX .

Definition 1.19 (powerset operators). (1) Let X ,Y ∈ |Set|, let f : X → Y be in Set, and
define the standard (traditional) image and preimage operators f → : ℘(X) → ℘(Y), f ← :
℘(X) ← ℘(Y) by

f →(A) = {
f (x) ∈ Y : x ∈A

}
, f ←(B) = {

x ∈ X : f (x) ∈ B
}
. (1.64)

(2) Fix L ∈ |SQuant|, let X ,Y ∈ |Set|, let f : X → Y be in Set, and define the standard
image and preimage operators f →L : LX → LY , f ←L : LX ← LY [29] by

f →L (a)(y) =
∨{

a(x) : x ∈ f ←
({y})}, f ←L (b) = b ◦ f . (1.65)

If L is understood, then it may be dropped provided that the context distinguishes these
operators from the traditional operators of (1). It is also needed in this paper (e.g., Exam-
ple 1.17(6)) to consider the lower-image operator fL→ : LX → LY given by

fL→ = (
f ←L
)�

(1.66)

using Definition 1.12. Note f →L (a)(y) =∧{a(x) : x ∈ f ←({y})}.
(3) Let (X ,L),(Y ,M) ∈ |Set×LoSQuant| and let ( f ,φ) : (X ,L) → (Y ,M) be in Set×

LoSQuant. Define ( f ,φ)→ : LX →MY , ( f ,φ)← : LX ←MY , (cf. [30–33, 23–26, 20, 2, 21,
34, 27]), by

( f ,φ)→(a) =
∧{

b ∈MY : f →L (a) ≤ 〈
φop〉(b)

}
, ( f ,φ)← = 〈

φop〉◦ f ←M , (1.67)

where 〈φop〉 uses Notation 1.11.
The above powerset operators get repackaged in various ways in Sections 2.2 and 3.5.

Remark 1.20. This remark resolves the relationship between the upper- (or standard)
image operator and the lower-image operator. We consider the general lattice-valued case
first and then various special cases including the traditional case.

(1) Let f : X → Y be any function. Then the following relationship holds between the
standard and lower-image operators:

∀a∈ LX , fL→(a) = χY− f →(X) ∨ f →L
(
q←L (â)

)
, (1.68)



S. E. Rodabaugh 21

where

∀x ∈ X , [x] = {
z ∈ X : f (x) = f (z)

}
,

q : X −→ X/ f ≡ {
[x] : x ∈ X

}⊂ ℘(X) by q(x) = [x],

â : ℘(X) −→ L : â(B) =
∧

x∈B
a(x).

(1.69)

(2) The identity (1.68) for f injective reduces to

∀a∈ LX , fL→(a) = χY− f →(X) ∨ f →L (a). (1.70)

(3) The identity (1.68) for f surjective reduces to

∀a∈ LX , fL→(a) = f →L
(
q←L (â)

)
. (1.71)

(4) The identity (1.68) for the traditional case (with L= 2) reduces to

∀A∈ ℘(X), f→(A) = (
Y − f →(X)

)∪ f →
(
q←
(
℘(A)

))
. (1.72)

Proof. We prove only (1.68) in (1). Let a∈ LX . It is helpful to consider the set D = {d ∈
LY : f ←L (d) ≤ a} and write fL→(a) =∨

D (using AFT). We observe that for x ∈ X ,

χY− f →(X)
(
f (x)

)=⊥≤ a(x); (1.73)

so that f ←L (χY− f →(X)) ≤ a, χY− f →(X) ∈D, and

fL→(a) = χY− f →(X) on Y − f →(X). (1.74)

Now let y ∈ f →(X); then there exist x ∈ X , y = f (x). Since q(x) �= ∅, we first observe
that

f ←L
(
f →L
(
q←L (â)

))
(x) = f →L

(
q←L (â)

)(
f (x)

)=
∨

w∈q(x)

â
(
q(w)

)

=
∨

w∈q(x)

[
∧

z∈q(w)

a(z)

]

=
∨

w∈q(x)

[
∧

z∈q(x)

a(z)

]

=
∧

z∈q(x)

a(z) ≤ a(x)

(1.75)

so that f ←L ( f →L (q←L (â))) ≤ a on X , which means that f →L (q←L (â)) ∈D. We further observe
for fixed d0 ∈D, again for y = f (x), that for each z ∈ q(x), we have

d0(y) = d0
(
f (z)

)= f ←L
(
d0
)
(z) ≤ a(z). (1.76)

From this it follows, using the sixth term and then the third term from (1.75), that

d0(y) ≤
∧

z∈q(x)

a(z) = f →L
(
q←L (â)

)(
f (x)

)= f →L
(
q←L (â)

)
(y). (1.77)
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Hence

fL→(a) =
∨
D = f →L

(
q←L (â)

)
on f →(X). (1.78)

It is now easy to check that

fL→(a) = χY− f →(X) ∨ f →L
(
q←L (â)

)
on Y , (1.79)

concluding the proof. �

Proposition 1.21. Under the conditions of Definitions 1.19(2), 1.19(3) and with the nota-
tion of Remark 1.20, the following hold:

(1) f ←L [( f ,φ)←] preserves arbitrary
∨

, arbitrary
∧

, ⊗, and all constant maps.
(2) f →L [( f ,φ)→] preserves arbitrary

∨
[if φop preserves arbitrary

∧
].

(3) f ←L [( f ,φ)←] preserves the unit if L∈ |USQuant| [L,M ∈ |USQuant|].
(4) fL→ preserves arbitrary

∧
.

(5) If f is injective, then fL→ preserves arbitrary nonempty
∨

.
(6) If f is surjective, then ( fL→)|� = ( f →L )� : � → � preserves arbitrary

∨
and arbitrary

∧
and ⊗, where

� = {
a∈ LX : ∀x ∈ X , ∀w ∈ [x], a(w) = a(x)

}
, � = (

f →L
)→

(�) = (
fL→

)→
(�).
(1.80)

Proof. Key properties of the powerset operators of Definition 1.19, as well as those of
other powerset operators, can be found in [8, 9, 30–32, 10, 11, 13, 25, 26, 20, 2, 21, 34]. We
comment only on (4), (5), (6) regarding fL→. First, fL→ preserves arbitrary

∧
by AFT since

it is the right-adjoint of f ←L and the latter is a map preserving arbitrary joins. Second, the
claim that fL→ also preserves nonempty

∨
when f is injective follows from f →L preserving

arbitrary
∨

and from the identity of Remark 1.20(2). Finally, the claims of (6) when f is
surjective follow from the identity of Remark 1.20(3), the fact that ( fL→)|� = ( f →L )|�, and
the fact that � [�] is a complete sublattice of LX [LY ] which is closed under ⊗ as lifted
to LX [LY ]. �

1.5. Topological preliminaries. We catalogue the notions of topology used in this pa-
per. Such notions generalize those of [1, 2] with respect to the underlying membership
lattices, essentially generalizing CQML to SQuant and/or USQuant.

Definition 1.22 (cf. [35, 33, 36, 1, 2]). Fixing L ∈ |SQuant|, the category L-QTop has
ground category Set and comprises the following data:

(1) Objects: (X ,τ), where X ∈ |Set| and τ ⊂ LX is closed under ⊗ and arbitrary
∨

. The
structure τ is a(n) (L-)q(uasi)-topology and the object (X ,τ) is a(n) (L-)q(uasi)-
topological space.

(2) Morphisms: f : (X ,τ) → (Y ,σ), where f : X → Y is from Set and τ ⊃ ( f ←L )→(σ).
(3) Composition, identities: from Set.

If L ∈ |USQuant|, the category L-Top is defined as L-QTop with the additional condi-
tion on objects (X ,τ) that τ also contains the constant subset e, where e is the unit of
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⊗ in L; and the structure τ is this case is a(n) (L-)topology and the object (X ,τ) is a(n)
(L-)topological space.

Definition 1.23 (cf. [37, 1, 38–50]). Fixing L ∈ |SQuant|, the category L-FQTop has
ground category Set and comprises the following data:

(1) Objects: (X ,	), where X ∈ |Set| and 	 : LX → L satisfies the following conditions.
(a) For each indexing set J , for each {uj : j ∈ J} ⊂ LX ,

∧

j∈J
	
(
uj
)≤ 	

(
∨

j∈J
uj

)

. (1.81)

(b) For each indexing set J with |J| = 2, for each {uj : j ∈ J} ⊂ LX ,

!

j∈J
	
(
uj
)≤ 	

(
!

j∈J
uj

)

. (1.82)

The structure 	 is a(n) (L-)q(uasi)-fuzzy topology and the object (X ,	) is a(n)
(L-)q(uasi)-fuzzy topological space.

(2) Morphisms: f : (X ,	) → (Y ,�), where f : X → Y is from Set and 	 ◦ f ←L ≥ � on
LY .

(3) Composition, identities: from Set.
If L∈ |USQuant|, the category L- FTop is defined as L-QFTop with objects (X ,	) in (1)
additionally satisfying that

(c) 	(e) = e (where e is the identity of ⊗ on L and e is the corresponding constant
L-subset).

For an object (X ,	) in L-FTop, the structure 	 in this case is a(n) (L-)fuzzy topology and
the object (X ,τ) is a(n) (L-)fuzzy topological space.

Definition 1.24 [30–33, 23–26, 20, 2, 27] (cf. [51, 52]). Fixing � ⊂ SQuant and C = �op,
the category C-QTop has ground category Set×C and comprises the following data:

(1) Objects: (X ,L,τ), where (X ,L) ∈ |Set×C| and (X ,τ) ∈ |L-QTop|. The object (X ,
L,τ) is a q(uasi)-topological space and τ is a q-topology on (X ,L).

(2) Morphisms: ( f ,φ) : (X ,L,τ) → (Y ,M,σ), where ( f ,φ) : (X ,L) → (Y ,M) is from Set
×C and τ ⊃ (( f ,φ)←)→(σ).

(3) Composition, identities: from Set×C.
If � ⊂ USQuant, the category C-Top is defined as C-QTop with the additional condition
that objects (X ,L,τ) satisfy the condition that (X ,τ) ∈ |L-Top|, in which case (X ,L,τ) is
a topological space and τ is a topology on (X ,L).

Definition 1.25 (cf. [2]). Fixing � ⊂ SQuant and C = �op, the category C-QFTop has
ground category Set×C and comprises the following data:

(1) Objects: (X ,L,	), where (X ,L) ∈ |Set×C| and (X ,	) ∈ |L-QFTop|. The object
(X ,L,	) is a q(uasi)-fuzzy topological space and 	 is a q-fuzzy topology on (X ,L).

(2) Morphisms: ( f ,φ) : (X ,L,	) → (Y ,M,�), where ( f ,φ) : (X ,L) → (Y ,M) is from
Set×C and 	 ◦ ( f ,φ)← ≥ φop ◦� on MY .

(3) Composition, identities: from Set×C.
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If � ⊂ USQuant, the category C-FTop is defined as C-QFTop with the additional con-
dition that objects (X ,L,	) satisfy the condition that (X ,	) ∈ |L-FTop|, in which case
(X ,L,	) is a fuzzy topological space and 	 is a fuzzy topology on (X ,L).

The above categories arise naturally in the sequel: for example, the L-Top’s and C-Top’s
[L-FTop’s and C-FTop’s, resp.] are generated in Section 3.4 as topological [fuzzy topologi-
cal] theories arising from certain topological powerset theories in their respective grounds;
and characterizations of standard construction algebraic theories (Example 3.15) gener-
ating these powerset theories are given in Sections 5 and 6. The following theorem, which
generalizes analogous theorems in [1, 2], follows from Theorems 3.10–3.12, 3.26 (whose
proofs generalize those in [1, 2]).

Theorem 1.26 (cf. [1, 2]). For each L∈|SQuant| and C ⊂ LoSQuant [L∈ |USQuant|
and C ⊂ LoUSQuant], L-QTop and C-QTop [L-Top and C-Top, resp.] are topological
over their specified ground categories with respect to the usual forgetful functors; and for
each L ∈ |OSQuant| and C ⊂ LoOSQuant [L ∈ |UOSQuant| and C ⊂ LoUOSQuant],
L-QFTop and C-QFTop [L-FTop and C-FTop, resp.] are topological over their specified
ground categories with respect to the usual forgetful functors.

Example 1.27. There is a rich example inventory extant in the literature of both objects
and morphisms of the above categories; see [14], topology chapters of [36, 53, 38, 54, 55],
and the bibliographies of these citations.

2. Motivating examples for algebraic, powerset, topological theories

2.1. Semigroups. The study of semigroups is considered a part of mathematics called
“algebra,” and one could therefore think of this part of mathematics as comprising a
family of “algebraic” theories.

How should one specify in what sense semigroups are algebraic theories? One way
would be to examine whether the category SGroup is an algebraic category over Set; and
in fact this is the case—see [6, Examples 23.34(1)]. But another way would be to examine
in what sense semigroups are “equational” and decide if this sense is indeed what we
would like to call “algebraic.” We now explore this second option, adapting the following
paragraphs and Proposition 2.1 below from [3, Section 1].

A semigroup S≡ (S,•) is a set S equipped with an associative binary operation •. Now
let A be any set, which may be thought of as a set of variables which take values in S. Then
given variables a,b,c ∈ A, the two variable expressions a • (b • c) and (a • b) • c, for any
instantiation with values in S, are equal; and hence these expressions may be viewed as
equivalent. In particular, the “equivalence class” of these strings may be identified with
the ordered, grouping-symbol-free string abc.

More generally, for a setA, we consider the family of all finite expressions with variable
names in A, place on this family an equivalence relation—two expressions are equiva-
lent if and only if they use the same ordered, grouping-symbol-free string, and note that
the quotient set of all equivalence classes is bijective with the set of all finite, ordered,
grouping-symbol-free strings of the form

a1 ···an, n > 0. (2.1)
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Given set A, call the associated family of all finite, ordered, grouping-symbol-free
strings T(A) (“T” for “theory”). Then T : |Set| → |Set| is an object function on the cat-
egory Set. We now collect some facts and observations involving this theory T which
provide a template for the axiomatization of an algebraic theory (or monad) in clone
form.

(1) Given sets B, C, each function g : B→ T(C) extends to g# : T(B) → T(C) by

b1 ···bn �−→ g
(
b1
)···g(bn

)
, (2.2)

that is, by insertion of g determined expressions with variables in C for variables in ex-
pressions with variables in B, in short, by concatenation of strings.

(2) Given sets A, B, C and functions f :A→ T(B), g : B→ T(C), we may form a “clone
composition”

g � f :A−→ T(C) (2.3)

by setting

g � f = g# ◦ f . (2.4)

(3) Given set A, there is the “insertion of variables as singular expressions” or “vari-
ables as expressions” map ηA : A→ T(A) given by

a �−→ a. (2.5)

We put T ≡ (T ,η,�) and speak of T as the “algebriac theory in Set induced by semi-
group S”. We note several additional facts.

Proposition 2.1. The following hold:
(1) The clone composition is associative.
(2) The components of η yield identities on both sides for the clone composition.
(3) If the objects of Set, functions of the form f : A→ T(B), the clone composition, and

the identities of the clone composition are taken, a new category SetT is obtained.
(4) For each function f : A→ B, there is a mapping f Δ :A→ T(B) induced by

f Δ = ηB ◦ f . (2.6)

(5) For each mapping f : A→ B, there is a mapping T( f ) : T(A) → T(B) induced by

T( f ) = f Δ� idT(A) . (2.7)

2.2. Traditional powerset operators. Let X be a set. Then to X we may associate

℘(X) = {A : A⊂ X}, (2.8)

called the “powerset” of X , as well as an “insertion map” ηX : X → ℘(X) defined by

ηX(x) = {x}. (2.9)
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Further, a function f : X → Y determines mappings f → : ℘(X) → ℘(Y), f ← : ℘(X) ←
℘(Y) defined by Definition 1.19, respectively called the “forward/image” and “backward/
preimage” powerset operators of f . Then we know that the “adjunction condition”

f → � f ← (2.10)

holds, where these operators are viewed as isotone mappings between presets, and that
the “lifting condition”

f → ◦ηX = nY ◦ f (2.11)

also holds.
The ordered tuple (℘,→,←) yields a “powerset theory in Set” which provides a tem-

plate for the axiomatization of powerset theories considered later in this paper, especially
because of these well-known features of (℘,→,←).

Proposition 2.2. Let X , Y , Z be sets and f : X → Y , g : Y → Z be functions. The following
hold:

(1) adjunction condition: f → � f ←.
(2) Concreteness, naturality conditions: there is an “insertion map” ηX : X → ℘(X) de-

fined by

ηX(x) = {x} (2.12)

such that

f → ◦ηX = nY ◦ f . (2.13)

(3) Topological conditions:
(T1) f ← ∈ CBool (and so f ← preserves universal and empty sets).
(T2) (g ◦ f )← = f ← ◦ g←.
(T3) (idX)← = id℘(X).

Other important facts are given in the following remark.

Remark 2.3. Under the assumptions of Proposition 2.2, the following hold:
(1) f → ∈ CSLat(

∨
) and so f → preserves arbitrary

⋃
(and ∅), while f ← preserves

arbitrary
⋃

and
⋂

as well as complements.
(2) f → : ℘(X) → ℘(Y), f ← : ℘(X) ← ℘(Y) can be reformulated as follows:

f →(A) =
⋂{

B ∈ ℘(Y) : A⊂ f ←(B)
}

,

f ←(B) =
⋃{

A∈ ℘(X) : f →(A) ⊂ B
}
.

(2.14)

(3) The adjunction f → � f ← is a fundamental part of the foundations of analysis. It
is the essence of the proof that continuity preserves compactness, which together with
the Heine-Borel theorem proves the extreme value theorem, which in turn leads to the
Rolle-Fermat lemma and the mean-value theorem upon which the differential calculus
rests.
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(4) The concreteness condition of Proposition 2.2(2) suggests that powersets and
powerset operators may form a theory related to algebraic theories as motivated by semi-
groups; see Section 3.

(5) The topological conditions of Proposition 2.2(3), along with the existence of com-
plete fibres, are crucial to the proof that Top is a topological construct; and conditions of
this type will prove critical to the formulation of powerset theories which yield topologi-
cal categories and hence topological theories; see Section 3.

Formalizing the axioms of a powerset theory should capture many of these traditional
properties and thereby enable us to recognize many powerset theories in Set and other
“ground categories” which have powerful consequences similar to those of the powerset
theory described above, including recognizing those which are generated from algebraic
theories and those which build topological theories. The interesting question is to formu-
late powerset theories which are both generated from algebraic theories and which build
topological theories.

2.3. Topological spaces and continuous maps. Since Top is categorically isomorphic
to 2-Top (choosing L = 2 in Definition 1.22), it behooves us to review some basic facts
concerning Top in order to gain insights into the categories of Section 1.5 and their re-
lationship with lattice-valued powersets. Recall the following definition of the category
Top:

(1) Objects: (X ,τ), where X ∈ |Set| and τ ⊂ ℘(X) is closed under arbitrary
⋃

and
finite ∩.

(2) Morphisms: f : (X ,τ) → (Y ,σ), where f : X → Y is from Set and τ ⊃ ( f ←)→(σ).
(3) Composition, identities: from Set.
The notion of a topological category is found and extensively developed in [6] and

midrashed and exampled in [2, Section 1].

Theorem 2.4. Top is a fibre-small category topological over Set with respect to the forgetful
functor V : Top → Set defined by V(X ,τ) = X , V( f ) = f .

The key ingredients in the proof that Top is a category are (T2) and (T3) of Proposition
2.2(3), one of the key ingredients in the proof that the expected lift of a V-structured
source is in fact initial is the equivalence of continuity with subbasic continuity, and this
equivalence rests squarely on (T1) of Proposition 2.2(3), and the key ingredient in the
proof that the standard lift of a V-structured source is in fact unique rests on (T3) of
Proposition 2.2(3) above. A fundamental ingredient not accounted for in the topological
conditions of Proposition 2.2(3) is that the fibre of topologies on each set is a complete
lattice ordered by inclusion (in the double powerset), but this is an object issue and not
a morphism issue (unless we replace objects by identity morphisms and repackage the
notion of fibres in terms of morphisms) and hence not a preimage operator issue. These
observations justify calling the conditions of Proposition 2.2(3) “topological conditions.”
Further, it would seem that if a powerset theory has a preimage operator with conditions
similar to Proposition 2.2(3) and such a theory produces in an appropriate way a category
which has complete fibres with respect to its “ground category” and a “forgetful” functor,
then such a category ought to be a topological category over its ground with respect to
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such a functor. Such thinking will guide our formulation of “topological powerset theo-
ries” and “(fuzzy) topological theories” in the next section, and it will be seen (Sections
3.2–3.3, 3.6) that our axiomatizations are somewhat “dual” to that of [6, Exercise 22.B].

3. Axioms for algebraic, powerset, topological, fuzzy topological theories

3.1. Axioms for algebraic theories

Definition 3.1 (axioms for algebraic theories, [3, Definition 1.3.1]). Let K be a category,
called the base or ground category. An algebraic theory (in clone form) in K is an ordered
triple T ≡ (T ,η,�) which is specified by the following data and axioms:

(D1) T : |K| → |K| is an object function on K.
(D2) η assigns to each A∈ |K| a K morphism ηA : A→ T(A).
(D3) � assigns to each pair of K morphisms, f : A→ T(B), g : B→ T(C), a K mor-

phism g � f : A→ T(C).
(A1) � is associative, that is, for each f : A→ T(B), g : B→ T(C), h : C→ T(D),

h� (g � f ) = (h� g)� f . (3.1)

(A2) η furnishes left-identities, that is, for each f :A→ T(B),

ηB � f = f . (3.2)

(A3) � is compatible with the composition ◦ of K morphisms, that is, given f :A→
B, g : B→ T(C), and setting f Δ : A→ T(B) by

f Δ = ηB ◦ f , (3.3)

then it is the case that

g � f Δ = g ◦ f . (3.4)

In comparison to [6, 3], the phrase “ground category” is preferred in this paper to
“base category” for the following reasons: our first goal in this paper is applications to
powerset theories in which the words “base”, “basis” refer to the underlying lattice of
membership values; our second goal is applications to lattice-valued topology in which
the words “base”, “basis” can also refer to a generating collection of lattice-valued open
sets; and finally, from [30–32] on, the term “ground category” has been used for the
category underlying the topological concrete categories in lattice-valued mathematics,
and as shown this paper, ground categories of certain algebraic theories are indeed the
ground category of certain topological categories in lattice-valued mathematics.

Remark 3.2 (cf. infra [3, Definition 1.3.1]). (1) Axiom (A2) only specifies that η gives
left-hand identities. But in fact the following holds:

(A2’) η furnishes identities on both sides for �, that is, for each f : A→ T(B),

ηB � f = f , f �ηA = f . (3.5)

(The proof replaces f in (A3) by idA and g by f .)
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(2) An algebraic theory T induces a new category KT, the Kleisli category of T , as fol-
lows:

(a) objects: the same as |K|;
(b) morphisms: K morphisms of the form f : A→ T(B);
(c) composition: the clone composition �;
(d) identities: the components of η.

(3) Each K morphism f : A→ B induces a K morphism T( f ) : T(A) → T(B), lifting f ,
by

T( f ) = f Δ� idT(A) . (3.6)

In fact, T : K → K is a functor and η is a natural transformation from IdK to T .

Convention 3.3. It is convenient to call T ≡ (T ,η,�) satisfying (D1)–(D3) a theory, usually
in the context of it being a candidate for an algebraic theory.

3.2. Axioms for powerset theories

Definition 3.4 (inventory of conditions related to powerset theories). Let a category K be
given, called a ground category, and let � ⊂ SQuant. Consider the following conditions:

(P1) powerset generator: P : |K| → |�| is an object-mapping.
(P2) forward/image powerset operator: assuming (P1), there is an operator → such

that for each f : A→ B in K, there exists f →P : P(A) → P(B) in PreSet.
(P3) backward/preimage powerset operator: assuming (P1), there is an operator ←

such that for each f : A→ B in K, there exists f ←P : P(A) ← P(B) in PreSet.
(Ad) adjunction: assuming (P1)–(P3), for each f :A→ B in K,

f →P � f ←P ; (3.7)

(C) concreteness: assuming (P1), (P2), there exists a concrete functor V : K → Set and
an insertion map η which determines for each A∈ |K| a Set morphism

ηA :V(A) −→ P(A). (3.8)

(N) naturality: assuming (P1), (P2), (C), and f : A→ B in K, then in Set

f →P ◦ηA = nB ◦V( f ). (3.9)

(QT) q(uasi)-topological criterion: assuming (P1), (P3), this criterion comprises the
following conditions:

(QT1) for each f : A→ B in K, f ←P : P(A) ← P(B) is in �.
(T2) for each f : A→ B in K, for each g : B→ C in K, (g ◦ f )←P = f ←P ◦ g←P .
(T3) for each A in K, (idA)←P = idP(A).

(T) topological criterion: this criterion comprises the same conditions as in (QT),
but assumes that � ⊂ USQuant and relabels (QT1) as (T1).

Definition 3.5 (axioms for powerset theories). Let a category K be given, called a ground
category, and let � ⊂ SQuant.
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(1) P ≡ (P,→) is a forward �-powerset theory in K if (P1), (P2) are satisfied.
(2) P ≡ (P,←) is a backward �-powerset theory in K if (P1), (P3) are satisfied.
(3) P ≡ (P,→,←) is a balanced �-powerset theory in K if (P1)–(P3) are satisfied.
(4) P ≡ (P,→,←) is an adjunctive �-powerset theory in K if (P1)–(P3), (Ad) are satis-

fied.
(5) P ≡ (P,→,V ,η) is a concrete �-powerset theory in K if (P1), (P2), (C) are satisfied;

and P is natural if additionally (N) is satisfied.
(6) P ≡ (P,←) is a q(uasi)-topological [topological] �-powerset theory in K if (P1), (P3),

(QT) [(P1), (P3), (T), resp.] are satisfied.
“�”, “K”, “forward”, “backward”, and so forth may be dropped if they are understood.

Modifiers may be combined to define many other powerset theories; for example, an
adjunctive natural topological powerset theory satisfies all the conditions of Definition 3.4.
A label is applied to a powerset theory when the appropriate parts of its structure satisfy
the axioms for that label; for example, if P ≡ (P,→,←,V ,η) is a topological �-powerset
theory in K, this means that (P,←) is a topological �-powerset theory in K, in which
case P ≡ (P,←) may also be written if there is no confusion. If one part of P’s structure
creates another part of P’s structure, P may be written with both parts or with only the
generating part; for example, if → creates ←, then P ≡ (P,→) or P ≡ (P,→,←) may be
written. These conventions apply throughout this paper and particularly to the following
proposition.

Proposition 3.6. Let K be a ground category, � ⊂ SQuant [USQuant], and P satisfy (P1).
The following hold:

(1) If (P2) is satisfied, then 〈for each f : A→ B in K, f →P : P(A) → P(B) is in CSLat(
∨

)〉
if and only if 〈for each f : A→ B in K, f ←P : P(A) ← P(B) is uniquely determined such
that P ≡ (P,→,←) is an adjunctive powerset theory〉.

(2) If (P3) is satisfied, then 〈for each f : A→ B in K, f ←P : P(A) ← P(B) is in CSLat(
∧

)〉
if and only if 〈for each f : A→ B in K, f →P : P(A) → P(B) is uniquely determined such
that P ≡ (P,→,←) is an adjunctive powerset theory〉.

(3) There is an operator ← such that P ≡ (P,←) is a q-topological [topological] powerset
theory if and only if the object mapping P extends to a contravariant functor P← : K →
�.

Proof. Both (1) and (2) are a corollary of AFT Theorem 1.10. For necessity in (3), assume
that P is a q-topological [topological] �-powerset theory in K, define P← : K → � by

P←(A) = P(A), P←( f : A−→ B) = f ←P : P(A) ←− P(B), (3.10)

and note that P← being a contravariant functor is immediate from (QT) [(T)]; and for
sufficiency in (3), assume that the object mapping P extends to a contravariant functor
P← : K → �, define the operator ← for f : A→ B in K by

f ←P = P←( f ), (3.11)

and note that P ≡ (P,←) being a q-topological [topological] �-powerset theory in K is
immediate from P← being a contravariant functor. �
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Comparing Proposition 3.6(3) with Remark 3.2(3), a simple observation is that alge-
braic theories are associated with covariant functors, and topological powerset theories
in our sense (which give rise to topological theories in Definition 3.7 and Theorem 3.10)
are essentially contravariant functors; and in Section 3.6 we compare our approach to
q-topological powerset theories with topological theories in the sense of [6], the latter us-
ing covariant functors. The role of q-topological and topological powerset theories, and
hence the justification of the modifiers “q-topological” and “topological” in Definitions
3.4 and 3.5, is clarified in the next two sections.

3.3. Axioms for topological and fuzzy topological theories

Definition 3.7 (axioms for quasi-topological and topological theories). Let � ⊂ SQuant.
A q(uasi)-topological theory TKP of a backward �-powerset theory P in a ground category
K is a collection of objects and morphisms satisfying the following axioms:

(1) Objects: (A,τ), where A ∈ |K| and the q(uasi)-topology τ ⊂ P(A) is closed under
arbitrary

∨
and binary ⊗.

(2) Morphisms: f : (A,τ) → (B,σ), where f ∈ K(A,B) and τ ⊃ ( f ←P )→(σ) (i.e., f is
continuous), where ( f ←P )→ : ℘(P(A)) ← ℘(P(B)) indicates the traditional forward
powerset operator of f ←P : P(A) ← P(B).

(3) Composition: inherited from K, that is, f ∈ TKP((A,τ),(B,σ)) and g ∈ TKP((B,σ),
(C,υ)) ⇒ g ◦ f ∈ TKP((A,τ),(C,υ)).

(4) Identities: inherited from K, that is,

(A,τ) ∈ ∣
∣TKP

∣
∣=⇒ idA ∈ TKP

(
(A,τ),(A,τ)

)
. (3.12)

A q-topological theory TKP is a topological theory if � ⊂ USQuant and each object (A,τ)
additionally has the property that e ∈ τ, where e is the unit of P(A).

Definition 3.8 (axioms for quasi-fuzzy topological and fuzzy topological theories). Let
� ⊂ SQuant. A q(uasi)-fuzzy topological theory TFKP of a backward �-powerset theory P
in a fuzzy ground category K of the form

K = Ks×Kl, (3.13)

where Ks, Kl are categories and Kl ⊂ �op, is a collection of objects and morphisms satis-
fying the following axioms:

(1) Objects: (A,	), whereA≡ (As,Al) ∈ |K| and the q(uasi)-fuzzy topology 	 : P(A) →
Al satisfies the following conditions:
(O1) Union condition: for each indexing set J , for each {uj : j ∈ J} ⊂ P(A),

∧

j∈J
	
(
uj
)≤ 	

(
∨

j∈J
uj

)

, (3.14)
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(O2) Intersection condition: for each indexing set J with |J| = 2, for each {uj : j ∈
J} ⊂ P(A),

!

j∈J
	
(
uj
)≤ 	

(
!

j∈J
uj

)

. (3.15)

(2) Morphisms: ( f ,φ) : (A,	) → (B,�), where ( f ,φ) ∈ K(A,B) and

	 ◦ ( f ,φ)←P ≥ φop ◦� (3.16)

on P(B) (i.e., ( f ,φ) is fuzzy continuous), where ( f ,φ)←P : P(A) ← P(B) is the preim-
age powerset operator given by P.

(3) Composition: inherited from K, that is, ( f ,φ) ∈ TFKP((A,	),(B,�)) and (g,ψ) ∈
TFKP((B,�),(C,
)) imply that

(g,ψ)◦ ( f ,φ) ∈ TFKP
(
(A,	),(C,
)

)
. (3.17)

(4) Identities: inherited from K, that is,

(A,	) ∈ |ß| =⇒ idA ∈ TFKP
(
(A,	),(A,	)

)
. (3.18)

A q-fuzzy topological theory TFKP is a fuzzy topological theory in K if � ⊂ USQuant and
each object (A,	) in (1) additionally satisfies the following:

(O3) Space condition: 	(eP(A)) = eAl , where eP(A) is the unit of P(A) and eAl is the
unit of Al.

In Definition 3.8, the “s” in the subscript stands for “set” since As is “acting like” a
set, and the “l” in the subscript stands for “lattice” since Al is “acting like” a lattice of
membership values for As.

How are topological theories related to fuzzy topological theories? If � ⊂ USQuant
and P is a backward �-powerset theory in K, then each topological theory TKP in K
is categorically isomorphic to the fuzzy topological theory TF(K×2)P in K× 2op, where
2 is the singleton category whose sole object is 2 and whose sole morphism is id2, via
Gχ : TKP → TF(K×2op)P defined by

Gχ(A,τ) = (
A,χτ

)
, Gχ( f ) = (

f , id2
)
, (3.19)

where χτ : P(A) → 2 is the characteristic mapping associated with τ ⊂ P(A). For lattices
more general than 2, Gχ may be constructed along the lines of [2, 6.2.3(1)] (using the
notion of subbasis introduced in the proof of Theorem 3.11 for L not a strictly two-
sided quantale), but Gχ weakens to a bireflective embedding not necessarily an isomor-
phism. But the case briefly considered here gives the motivation behind fuzzy topolog-
ical theories vis-a-vis topological theories, namely to capture the predicate of openness
[37, 38, 1, 40–42, 2]. Such relationships are related to the next definition.

Definition 3.9 (axioms for L-quasi-fuzzy topological and L-fuzzy topological theories).
Let � ⊂ SQuant [USQuant]. An L-q(uasi)-fuzzy topological theory [L-fuzzy topological
theory] TLFKP of a backward �-powerset theory P in a ground category K is a q-fuzzy
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topological theory [fuzzy topological theory] of P in the fuzzy ground category K×Lop

in the sense of Definition 3.8, where L ∈ |�| and L is the singleton category whose sole
object is L and whose sole morphism is idL (from �).

For reasons that will be apparent in Section 3.4, it is easier to define the variable-basis
version of a fuzzy topological theory first, and then define the fixed-basis version in terms
of the variable-basis, than the other way round.

3.4. Topological and fuzzy topological theories as topological categories. The basic
theme of this section is that topological theories of topological powerset theories are in
fact topological categories, justifying the label “topological”.

Theorem 3.10 ((q-)topological theories and topological categories). Let K be a ground
category, let P be a backward �-powerset theory in K, and let TKP be a q-topological [topo-
logical] theory of P in K. Then TKP is a fibre-small category topological over K with respect
to the forgetful functor VKP : TKP → K defined by

VKP(A,τ) = A, VKP( f ) = f (3.20)

provided that P is a q-topological [topological] powerset �-powerset theory in K.

Proof. Since the topological case is a corollary of the q-topological case, we prove only the
latter. Axiom (T2) guarantees that the composition axiom of Definition 3.7 is satisfied;
and (T3) guarantees that the identity axiom of Definition 3.7 is satisfied. Further,

τ(A) ≡ {
τ ⊂ P(A) : (A,τ) ∈ ∣

∣TKP
∣
∣
}⊂ ℘(P(A)

)
. (3.21)

Hence TKP is a fibre-small category.
The proof that TKP is topological over K with respect to VKP is analogous to the proof

that Top is a topological construct, so we only comment on the most important steps,
leaving the details to the reader.
Step 1. TKP has complete fibres. For each A ∈ K, it can be shown that the fibre τ(A) is
a complete sublattice of ℘(P(A)) with respect to inclusion as the order and with meets
equal to intersections.
Step 2. Subbasic continuity holds if and only if continuity holds. For each f : VKP(A,τ1) →
VKP(B,τ2) in K with σ ⊂ P(B) and

τ2 =
〈〈σ〉〉≡

⋂{
τ ∈ τ(B) : σ ⊂ τ

}
, (3.22)

σ may be called a subbasis for τ2, we have that f : (A,τ1) → (B,τ2) is in TKP (i.e., f is
continuous) if and only if τ1 ⊃ ( f ←)→(σ) (i.e., f is subbasic continuous). The proof hinges
around the fact that

{
v ∈ P(B) : f ←P (v) ∈ τ1

}
(3.23)

is a topology on B containing σ and hence containing τ2, and the proof of this fact follows
directly from Step 1 and axiom (QT1).
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Step 3. Each VKP-structured source ( fi : A→ VP(Ai,τi))i∈I has a unique, initial lift in TKP.
The lift ( fi : (A,τ) → (Ai,τi))i∈I comes from choosing

⋃

i∈I

((
fi
)←

P

)→(
τi
)

(3.24)

as the subbasis (using Step 2) for the topology τ on A: clearly all the fi’s are continu-
ous. That this lift is initial is a consequence of Step 2 and (T2); and its uniqueness is a
consequence of axiom (T3).

�

Theorem 3.11 ((q-)fuzzy topological theories and topological categories). Let K ≡ Ks×
Kl be a fuzzy ground category in the sense of Definition 3.8, let P be a backward �-powerset
theory in K, and let TFKP be a q-fuzzy topological [fuzzy topological] theory of P. Then TFKP

is a fibre-small category topological over K with respect to the forgetful functorVFKP : TFKP →
K defined by

VFKP(A,	) =A, VFKP( f ,φ) = ( f ,φ) (3.25)

provided that � ⊂ OSQuant [UOSQuant] and P is a q-topological [topological] �-powerset
theory in K.

Proof. We prove only the q-fuzzy topological case. Axiom (T2) guarantees that the com-
position axiom of Definition 3.8 is satisfied; and (T3) guarantees that the identity axiom
of Definition 3.8 is satisfied. Further,

	(A) ≡ {
	 : P(A) −→ Al | (A,	) ∈ ∣

∣TFKP
∣
∣
}⊂AP(A)

l . (3.26)

Hence TFKP is a fibre-small category.
The proof that TFKP is topological over K with respect to VFKP is analogous to the

proof in [2] that KL-FTop is topological over K with respect to the usual forgetful functor
(see [2, Theorem 3.3.9] and its supporting lemmas), so we only comment on the most
important steps, leaving the details to the reader.
Step 1. TFKP has complete fibres. For each A ∈ K, it can be shown that the fibre 	(A)

is a complete sublattice of AP(A)
l with respect to the following: the order and meets are

the liftings of those of Al. The details are straightforward, analogous to the proof of [1,
Proposition 2.3], and make necessary use of the isotonicity of ⊗.
Step 2. Fuzzy subbasic continuity holds if and only if fuzzy continuity holds. For each ( f ,φ) :
VFKP(A,	1) →VFP(B,	2) in K with � : P(B) → Bl such that

	2 =
〈〈�〉〉≡

∧{
	 ∈ 	(B) : � ≤ 	

}
, (3.27)

� may be called a subbasis for 	2, ( f ,φ) : (A,	1) → (B,	2) is in TFKP (i.e., ( f ,φ) is fuzzy
continuous) if and only if 	1 ◦ ( f ,φ)←P ≥ φop ◦� (i.e., ( f ,φ) is subbasic continuous). The
proof hinges around the fact that

φ� ◦	1 ◦ ( f ,φ)←P , (3.28)
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where φ� ≡ (φop)� (see Definition 1.12), is a fuzzy topology on B containing � and hence
containing 	2. The proof of this step follows from Step 1 and axiom (QT1) and is analo-
gous to the proofs of [2, Theorems 3.2.12(1), (2), (3), (4), and 3.2.13((3)⇒(1))].
Step 3. EachVFKP-structured source (( fi,φi) : A→VFKP(Ai,	i))i∈I has a unique, initial lift
in KFP. The lift (( fi,φi) : (A,	) → (Ai,	i))i∈I comes from choosing a subbasis � : P(A) →
Al for 	 (using Step 2) by defining � at a∈ P(A) as follows:

�(a) =

⎧
⎪⎪⎨

⎪⎪⎩

∨

i∈I ,b∈(( fi,φi)←P )←({a})

φ
op
i

(
	i(b)

)
, ∃i∈ I ,

((
fi,φi

)←
P

)←({a}) �= ∅,

⊥, ∃i∈ I ,
((
fi,φi

)←
P

)←({a})=∅,
(3.29)

where b ∈ (( fi,φi)←P )←({a}) means that ( fi,φi)←P (b) = a, that is, (( fi,φi)←P )← is the tra-
ditional backward powerset operator of the backward powerset operator ( fi,φi)←P from
powerset theory P. It can now be shown that each ( fi,φi) is fuzzy continuous by a proof
analogous to that given for [2, Lemma 3.3.5]. That this lift is initial is a consequence of
Step 2 and (T2) and is analogous to the proof of [2, Lemma 3.3.6]; and the uniqueness of
this lift is a consequence of axiom (T3) and is analogous to the proof of [2, Lemma 3.3.8].

�

Theorem 3.12. Let K be a ground category, let P be a backward �-powerset theory in K,
let L ∈ |�|, and let KLFKP be an L-q-fuzzy topological [L-fuzzy topological] theory of P.
Then TLFKP is a fibre-small category topological over K with respect to the forgetful functor
VLFKP : TLFKP → K is defined by

VLFKP(A,	) = A, VLFKP( f ) = f (3.30)

provided that � ⊂ OSQuant [UOSQuant] and P is a q-topological [topological] �-powerset
theory in K.

Proof. We prove only the L-q-fuzzy topological case. It is immediate from Theorem 3.11
that TLFKP is a fibre-small category. Now let the q-topological set theory P be denoted by
(P,←) and define Q ≡ (Q,←) in K×Lop as follows:

(P1) Q : |K×L| → |�| by Q(A,L) = P(A).
(P3) For each ( f , idL) : (A,L) → (B,L) in K×L, define ( f , idL)←Q = f ←P : Q(A,L) ←

Q(B,L).
Since P is a backward �-powerset theory in K, it follows immediately that Q is a backward
�-powerset theory in K×Lop. Furthermore, it can be seen that since P is q-topological in
K, Q is q-topological in the fuzzy ground category K×Lop: the axiom (QT1) is immedi-
ately satisfied for Q; concerning axiom (T2), we have

[(
g, idL

)◦ ( f , idL
)]←

Q = (
g ◦ f , idL◦ idL

)←
Q = (

g ◦ f , idL
)←

Q

= (g ◦ f )←P = f ←P ◦ g←P = (
f , idL

)←
Q ◦ (g, idL

)←
Q ;

(3.31)

and concerning axiom (T3), we have

(
id(A,L)

)←
Q = (

idA, idL
)←

Q = (
idA

)←
P = idP(A) = idQ(A,L) . (3.32)
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Since Q is a q-topological set theory in the fuzzy ground category K×Lop, it follows from
Theorem 3.11 that TF(K×Lop)Q is a category which is topological over K×Lop with respect
to the forgetful functor VF(K×Lop)Q : TF(K×Lop)Q → K×Lop defined by

VF(K×Lop)Q
(
(A,L),	

)= (A,L), VF(K×Lop)Q
(
f , idL

)= (
f , idL

)
. (3.33)

Now we observe the following: the obvious functor H is a categorical isomorphism from
K×Lop to K; the obvious functor J is a categorical isomorphism from TF(K×Lop)Q to TLFKP;
and H , J yield that

VLFKP =H ◦VF(K×Lop)Q ◦ J−1. (3.34)

Since TF(K×Lop)Q is topological over K×Lop with respect to VF(K×Lop)Q, it follows from [2,
Proposition 1.3.1] that TLFKP is topological over K with respect to VLFKP. This concludes
the proof of the theorem. �

Comment 3.13. The extent to which topological powerset theories are generated by alge-
braic theories may be viewed as one measure of the extent to which topology (and fuzzy
topology) has an algebraic foundation. The question of determining this extent is part
of the larger question as to the extent to which powerset theories are generated by alge-
braic theories, a question studied at length in Sections 5 and 6 after some preliminaries in
Section 4. The rest of this section is concerned with examples (Section 3.5) of the various
theories defined above as well the close relationship (Section 3.6) of topological theories
as defined above with those defined in [6].

3.5. Examples of algebraic, powerset, topological, fuzzy topological theories

Example 3.14. Each semigroup induces an algebraic theory in K ≡ Set. See Section 2.1
for details and [3] for many other such examples.

Example 3.15 (cf. [3, Examples 1.3.5, 4.3.3]). Traditional powersets collectively form
an algebraic theory in K = Set. Define T = (T ,η,�) as follows:

(D1) For each X ∈ |Set|, define T(X) = ℘(X).
(D2) For each X ∈ |Set|, define ηX : X → ℘(X) by

ηX(x) = {x}. (3.35)

(D3) For each f : X → ℘(Y), g : Y → ℘(Z), define g � f : X → ℘(Z) by

(g � f )(x) =
⋃

y∈ f (x)

g(y). (3.36)

Sequens, we may speak of a theory constructed in the manner of Example 3.15 as being
of standard construction. The following theorem concerns the theory T constructed in
Example 3.15.

Theorem 3.16. T = (T ,η,�) is an algebraic theory in Set.
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Proof. Ad(A1) Let f : X → ℘(Y), g : Y → ℘(Z), h : Z → ℘(W). Then h� (g � f ),(h� g)�
f : X → ℘(W). Now

[
h� (g � f )

]
(x) =

⋃{
h(z) : z ∈

⋃{
g(y) : y ∈ f (x)

}}
,

[
(h� g)� f

]
(x) =

⋃{⋃{
h(z) : z ∈ g(y)

}
: y ∈ f (x)

}
.

(3.37)

The reader can check that these are the same subset of W .
Ad(A2) Let f : X → ℘(Y) and ηY : Y → ℘(Y). It is claimed that

ηY � f = f . (3.38)

Now for x ∈ X ,

(
ηY � f

)
(x) =

⋃

y∈ f (x)

ηY (y) =
⋃

y∈ f (x)

{y} = f (x). (3.39)

Ad(A3) Let f : X → Y , g : Y → ℘(Z). To see that

g � f Δ = g ◦ f , (3.40)

let x ∈ X . Then
(
g � f Δ

)
(x) = (

g � (η℘(Y) ◦ f
))

(x) =
⋃

y∈η℘(Y)( f (x))

g(y)

=
⋃

y∈{ f (x)}
g(y) =

⋃

y= f (x)

g(y) = g
(
f (x)

)= (g ◦ f )(x).
(3.41)

This concludes the proof. �

Example 3.17. Traditional powerset theory in Set. Put K = Set, define P : |K| → |CBool|
by

P(X) = ℘(X), (3.42)

define f →P : P(X) → P(Y), f ←P : P(X) ← P(Y) to be the traditional powerset operators as in
Section 1.2, define V : K → Set by V = IdSet, and for X ∈ |Set|, define ηX : V(X) → P(X)
as in Section 2.1 and Example 3.15 by

ηX(x) = {x}. (3.43)

The following lemma and theorem concern P ≡ (P,→,←,V ,η) constructed in Example
3.17.

Lemma 3.18. P ≡ (P,→,←,V ,η) is an adjunctive, natural, topological CBool-powerset the-
ory in Set, called the traditional powerset theory in Set, in which case

f →P (A) =
⋂{

B ∈ ℘(Y) : A⊂ f ←(B)
}

,

f ←P (B) =
⋃{

A∈ ℘(X) : f →(A) ⊂ B
}
.

(3.44)
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Theorem 3.19. The topological theory TSetP of P in Set is the topological construct Top of
Section 2.3.

Example 3.20. Fixed-basis powerset theories in Set. Let � ⊂ SQuant, put K = Set, and let
L∈ |�|. Put P : |K| → |�| by

P(X) = LX , (3.45)

for f : X → Y , put f →P ≡ f →L : LX → LY , f ←P ≡ f ←L : LX ← LY as in Definition 1.19(2); and
when L∈ |USQuant| with unit eL, putV : K → Set byV = IdSet, and for X ∈ |Set|, define
ηX :V(X) → P(X) by

ηX(x)(z) = χeL{x}(z) ≡
⎧
⎨

⎩

eL, z = x,

⊥, z �= x.
(3.46)

The following lemma and theorem concern P≡(P,→,←) constructed in Example 3.20.

Lemma 3.21. P ≡ (P,→,←) is an adjunctive, q-topological �-powerset theory in Set, called
the L-powerset theory in Set, in which case

f →P (a) =
∧{

b∈ LY : a≤ f ←L (b)
}

, f ←P (b) =
∨{

a∈ LX : f →L (a) ≤ b
}

; (3.47)

and if � ⊂ USQuant, P ≡ (P,→,←,V ,η) is natural and topological. Further, if � ⊂ Squant
[USQuant], the q-topological [topological] theory TSetP of P in Set is L-QTop [L-Top] and
the L-q-fuzzy [L-fuzzy] topological theory TLFSetP of P in Set is L-QFTop [L-FTop].

Proof. Given the extensive literature on these operators, the only axioms needing com-
ment are (N), (QT1), and (T1). Concerning (N), it is easy to check that f →P (χeL{x}) = χeL{ f (x)}
for each x ∈ dom( f ). Now f ←P preserves ⊗ (by evaluation); and additionally for the topo-
logical case, evaluation shows that

f ←P
(
eLY
)= eLY ◦ f = eLX . (3.48)

�

Theorem 3.22 (cf. Theorem 1.26). For � ⊂ Squant [USQuant, OSQuant, UOSQuant]
and L∈ |�|, L-QTop [L-Top, L-QFTop, L-FTop, resp.] are topological constructs with re-
spect to the usual forgetful functors.

Proof. These statements are consequences of Theorems 3.10, 3.12, and Lemma 3.21. �

Example 3.23. Left-adjoint (variable-basis) powerset theory in Set×C. Let � ⊂ SQuant,
put C = �op, and put K = Set×C. The left-adjoint (variable-basis) powerset theory

P(�) ≡ (P,−→,←−) (3.49)

in Set×C is given by the following data: define P : |K| → |�| by

P(X ,L) = LX , (3.50)
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and for ( f ,φ) : (X ,L) → (Y ,M), put

( f ,φ)→P(�) ≡ ( f ,φ)→� ≡ ( f ,φ)→ : P(X ,L) −→ P(Y ,M),

( f ,φ)←P(�) ≡ ( f ,φ)←� ≡ ( f ,φ)← : P(X ,L) ←− P(Y ,M)
(3.51)

from Definition 1.19(3), namely

( f ,φ)→� (a) =
∧{

b : f →L (a) ≤ 〈
φop〉(b)

}
, ( f ,φ)←� (b) = φop ◦ b ◦ f , (3.52)

or equivalently,

( f ,φ)→� = 〈
φ�〉◦ f →L , ( f ,φ)←� = 〈

φop〉◦ f ←M . (3.53)

Finally, given � ⊂ USQuant, put V : K → Set by V = Π1 (the first projection functor),
namely V(X ,L) = X and V( f ,φ) = f , and for X ∈ |Set|, define η(X ,L) :V(X ,L) → P(X ,L)
by

η(X ,L)(x) = χeL{x} (3.54)

as in Example 3.20; and in this case we also use the notation

P(�) ≡ (P,−→,←−,V ,η). (3.55)

The reason for the phrase “left-adjoint” in this example will be made clear in Section 6:
the left-adjoint powerset theories just described arise under certain conditions from “left-
adjoint” algebraic theories; and there are corresponding “right-adjoint” algebraic the-
ories which generate new “right-adjoint” variable-basis powerset theories in Set×C—
using “right-adjoint” image and preimage operators ( f ,φ)→� , ( f ,φ)←�—different from the
above left-adjoint powerset theories. Showing that these right-adjoint operators are dis-
tinct from the left-adjoint operators uses the lower-left-adjoint image operator ( f ,φ)�→
guaranteed as the unique right-adjoint of ( f ,φ)←� by the AFT and the preservation of
arbitrary

∨
by ( f ,φ)←� (cf. Definition 1.19(2))—see Definition 6.23 and Theorem 6.24.

The following lemma, proposition, theorem, and corollary concern P ≡ (P,→,←) con-
structed in Example 3.23.

Lemma 3.24. The following hold:
(1) For each � ⊂ SQuant [USQuant], P(�) ≡ (P,→,←) is a q-topological [topological]

�-powerset theory in Set×C.
(2) P(�) ≡ (P,→,←) is an adjunctive powerset theory in Set×C if and only if for each

φ ∈ C, φop preserves arbitrary
∧

.
(3) For each � ⊂ USQuant, P(�) ≡ (P,→,←,V ,η) is a natural powerset theory in Set×

C if and only if for each φ ∈ C, φ�(eL) = eM ; and if � ⊂ ST-SQuant, this latter
condition holds if and only if for each φ∈ C, ker(φop) ≡ (φop)←{�} = {�}.

Proposition 3.25. The predicate of the condition of Lemma 3.24(2) holds under each of
the following conditions:

(1) φ ∈ LoDmSQuant(L,M).
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(2) φop is a backward Zadeh operator; that is, there exists N ∈ |SQuant|, there exists
g ∈ Set(W ,Z), φop = g←N .

(3) φ is any of the examples constructed in [2, 7.1.7.2] or [34, 9.9(2(b),3)].
(4) φ is as given by φop in any of the examples of Example 1.17(1)–(10).
(5) φ is an isormorphism in LoSQuant.

Lemma 3.26. If � ⊂ SQuant [USQuant], the q-topological [topological] theory T(Set×C)P(�)

of P(�) is the category C-QTop [C-Top] and the q-fuzzy [fuzzy] topological theory
TF(Set×C)P(�) of P(�) is the category C-QFTop [C-FTop].

Theorem 3.27 (cf. Theorem 1.26). For � ⊂ Squant [USQuant,OSQuant,UOS-Quant],
C-QTop [C-Top, C-QFTop, C-FTop, resp.] are topological over Set×C with respect to the
usual forgetful functors.

Proof. These statements are consequences of Theorems 3.10, 3.11, and Lemma 3.26. �

3.6. Topological theories à la Definition 3.7 vis-a-vis topological theories à la [6]. This
section completely resolves the relationship between the approach to topological theories
in Definition 3.7 and both that in [6] and a variation of the approach in [6].

Definition 3.28 [6]. A topological theory in a ground category K is a (covariant) functor
T : K → CSLat(

∨
).

(1) The category Top(T) is the concrete category over K defined as follows:
(a) Objects: (X , t), where X ∈ |K| and t ∈ T(X).
(b) Morphisms: f : (X , t) → (Y ,s), where f : X → Y in K and T( f )(t) ≤ s.
(c) Composition, identities: from K.

(2) The category Topalt(T) is the same as Top(T) except that the inequality defining
morphisms is T( f )(t) ≥ s. (The subscript “alt” stands for “alternative”.)

It can be checked that each of Top(T) and Topalt(T) is indeed a category.

Theorem 3.29. Let T be a topological theory in K in the sense of Definition 3.28. The fol-
lowing hold.

(1) Top(T) is a fibre-small topological category over K with respect to the forgetful functor
V : Top(T) → K given by V(X , t) = X , V( f ) = f [6].

(2) Topalt(T) is a fibre-small topological category over K with respect to the forgetful func-
tor V : Top(T) → K given by V(X , t) = X , V( f ) = f .

Proof. The proof of (1) is [6, Exercise 22.B(a)]; and the proof of (2) is similar except that
given a source ( fγ :A→ (Bγ,σγ))γ∈Γ, the lifting topology on the domain is

τ =
∧
{

t ∈ T(A) : T( f )(t) ≥
∨

γ∈Γ
σγ

}

. (3.56)

That τ is the topology providing the unique initial lift is left to the reader. �

Lemma 3.30. Let K be a ground category.
(1) Let � = CSLat(

∨
) with ⊗ = ∨ (binary) for each L. Then each topological theory T

in the sense of Definition 3.28 induces a topological �-powerset theory PT in the sense of
Definition 3.7.
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(2) Let � = CSLat(
∨

) with a ⊗ for each L (e.g., ⊗ could be ∨ (binary) or ∧ (binary)).
Then each q-topological �-powerset theory P in K in the sense of Definition 3.7 induces a
topological theory TP in the sense of Definition 3.28.

Proof. Ad(1) Let T : K → CSLat(
∨

) be a topological theory in the sense of Definition
3.28. Put PT : K → � by

PT(A) = T(A)op, PT( f : A−→ B) = T( f )� : T(A)op ←− T(B)op, (3.57)

where the superscripts “op” refer to the dual orders—which yield objects of CSLat(
∨

)—
and T( f )� is the right-adjoint of T( f ) guaranteed by AFT Theorem 1.10 with respect to
the original orderings on T(A) and T(B). To show that

PT ≡ (
PT on objects, PT on morphisms

)
(3.58)

is a topological �-powerset theory, it suffices by Proposition 3.6(3) to show that PT is a
contravariant functor. Clearly, with respect to the dual orders, each PT( f ) preserves

∨

and ⊗ (=∨) and the unit e =⊥. Further, using Remark 1.13, we have the following:

PT(g ◦ f ) = T(g ◦ f )� = (
T(g)◦T( f )

)�

= T( f )� ◦T(g)� = PT( f )◦PT(g),

PT
(

idA
)= T

(
idA

)� = (
idT(A)

)� = idT(A) = idPT (A) .

(3.59)

Ad(2) Let P ≡ (P,←) be a q-topological �-powerset theory in K and put TP : K →
CSLat(

∨
) by

TP(A) =
{
τ ⊂ P(A) : τ is closed under ⊗ and arbitrary

∨}
⊂ ℘(P(A)

)
,

TP( f : A−→ B) = (
f ←P
)←
|TP(A) : TP(A) −→ TP(B),

(3.60)

where the inner arrow of T( f ) is the preimage operator ← of P and the outer arrow of
T( f ) is the traditional preimage operator of a function. To see that TP( f ) is well defined,
we first note that TP( f ) ∈ CSLat(

∨
) since the traditional preimage operator preserves

arbitrary
∨

(=⋃
). It must also be checked that TP maps TP(A) into TP(B): given τ ∈

TP(A), then TP( f )(τ) ∈ TP(B) since

TP( f )(τ) = (
f ←P
)←
|TP(A)(τ) = {

v ∈ P(B) : f ←P (v) ∈ τ
}

(3.61)

is a q-topology on P(B), which holds because f ←P preserves arbitrary
∨

and ⊗ from (QT1)
of P being a q-topological theory (cf. the proof of Step 2 in Theorem 3.10).
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To see that T is a functor, we note from (T2), (T3) of P being a q-topological theory
and the properties of the traditional preimage operator, ignoring the appropriate restric-
tions of domains, that

TP(g ◦ f ) = (
(g ◦ f )←P

)← = (
f ←P ◦ g←P

)←

= (
g←P
)← ◦ ( f ←P

)← = TP(g)◦TP( f ),

TP
(

idA
)= ((

idA
)←

P

)← = (
idP(A)

)← = id℘(P(A)) = idTP(A) .

(3.62)

�

Theorem 3.31. Let K be a ground category.
(1) Let � = CSLat(

∨
) with ⊗=∨ (binary) for each L, T : K → CSLat(

∨
) be a topolog-

ical theory in the sense of Definition 3.28, and PT be the topological �-powerset theory in K
in the sense of Definition 3.5 induced from T in Lemma 3.30(1). Then there exists a functo-
rial embedding F : Top(T) → TKPT , where the codomain is a topological theory in the sense
of Definition 3.7.

(2) Let � = CSLat(
∨

) with a ⊗ for each L (e.g., ⊗ could be ∨ (binary) or ∧ (binary)),
P be a q-topological �-powerset theory in K in the sense of Definition 3.5, and TP be the
topological theory in the sense of Definition 3.28 induced from P in Lemma 3.30(2). Then
Topalt(TP) = TKP, the latter a q-topological theory in the sense of Definition 3.7.

Proof. Ad(1) Let (A,τ) ∈ |Top(T)|. Then τ∈T(A) and the principal ideal ↓(τ)⊂T(A)op,
where we use the dual ordering ≤op to construct ↓(τ). Now T(A)op is a complete lattice
and ↓(τ) is closed under

∨
and ⊗ (both in the dual order) and contains e =⊥. We write

T= ↓(τ) and note that T⊂ PT(A). It follows that (A,T) ∈ |TKPT |.
Now let f : (A,τ) → (B,σ) be a morphism in Top(T). Then we have T( f )(τ) ≤ σ in

the original ordering of T(B); and also we have

T= ↓(τ), S= ↓(σ) (3.63)

in the duals T(A)op and T(B)op. We claim that f : (A,T) → (A,S) is a morphism in TKPT .
This means showing that

∀s∈ ↓(σ), PT( f )(s) ∈ ↓(τ). (3.64)

Let s∈ ↓(σ). Then s≤op σ , or s≥ σ . Using the adjunction properties of Definition 1.9, it
follows in the original ordering of T(A) that

τ ≤ T( f )�
(
T( f )(τ)

)≤ T( f )�(σ) ≤ T( f )�(s). (3.65)

Hence τ ≤ T( f )�(s), which means in the dual ordering that we have

PT( f )(s) = T( f )�(s) ≤op τ, (3.66)

so that PT( f )(s) ∈ ↓(τ).
From above, we put F : Top(T) → TKPT by

F(A,τ) = (A,T), F
(
f : (A,τ) −→ (B,σ)

)= f : (A,T) −→ (A,S). (3.67)
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It follows that F is a functor (since T and PT are functors) and faithful; and because
a �= b⇒↓(a) �=↓(b) in a poset, we have that F injects objects and hence is an embedding.

Ad(2) Let (A,τ) ∈ |Topalt(TP)|. Then τ ∈ TP(A), so that τ ⊂ P(A) and τ is closed un-
der ⊗ and arbitrary

∨
. Hence τ is a q-topology on A, so that (A,τ) ∈ |TKP|. This argu-

ment clearly reverses. Therefore |Topalt(TP)| = |TKP|.
Now let f : (A,τ) → (B,σ) be a morphism in Topalt(TP). Then in ℘(P(B)), we have

σ ⊂ TP( f )(τ) = (
f ←P
)←

(τ). (3.68)

But by Proposition 2.2,

((
f ←P
)←)� = (

f ←P
)→

, (3.69)

and using AFT Theorem 1.10 and the properties of Definition 1.9, it is the case that

σ ⊂ (
f ←P
)←

(τ) ⇐⇒ (
f ←P
)→

(σ) ⊂ τ. (3.70)

This implies that f : (A,τ) → (B,σ) is a morphism in TKP. Now the reverse argument
also holds. Hence Topalt(TP) = TKP with respect to morphisms. Therefore, Topalt(TP) =
TKP. �

Remark 3.32. We state some consequences of the above results. When referring to
Definition 3.28, we may not distinguish between Definitions 3.28(1) and 3.28(2).

(1) The approach of Definition 3.7 rests (because of Proposition 3.6(3)) on a con-
travariant functor, while that of Definition 3.28 rests on a covariant functor.

(2) The approach of Definition 3.7 is essentially a “first-order” or single-powerset the-
ory and a preimage operator, while that of Definition 3.28 is a “second-order” or fibre
theory resting on a double-powerset theory and a double preimage operator. This could
be the most important point of comparison.

(3) The phrase “topological theory” is applied in Definition 3.7 to the category of
spaces generated by a powerset theory, while this phrase in Definition 3.28 is applied to
the functor motivated by the double-powerset theory behind the category of spaces.

(4) The approach of Definition 3.7 has an extremely general lattice-theoretic founda-
tion, while that of Definition 3.28 (either (1) or (2)) is restricted to CSLat(

∨
) with typi-

cally two choices of tensors; however, there seems no reason not to generalize CSLat(
∨

) in
Definition 3.28 to more general lattice-theoretic categories � (see inventory in Definition
1.1 and [1, 2]).

(5) While the approach of Definition 3.7 has an extension in Definition 3.8 to fuzzy
topological theories, it may be possible to meaningfully extend Definition 3.28 in this
direction as well.

(6) As to which of Definitions 3.7 or 3.28 is more general, we have a mixed situation
even if we restrict � to be CSLatt(

∨
) with appropriate choice of tensor. On one hand,

for � = CSLat(
∨

) with ⊗ = ∨ (binary), the approach of Definition 3.28(1) is a spe-
cial case of Definition 3.7, due to the categorical embedding of Theorem 3.31(1); more
precisely, for each category of spaces Top(T) of a topological theory T in the sense of
Definition 3.28(1), there is a topological theory TKPT in the sense of Definition 3.7 into
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which Top(T) categorically embeds. On the other hand, for � = CSLat(
∨

) with a ⊗ for
each L (e.g., ⊗ could be ∨ (binary) or ∧ (binary)), the approach of Definition 3.7 may be
regarded as a special case of Definition 3.28(2) due to Theorem 3.31(2); more precisely,
for each topological theory TKP in the sense of Definition 3.7, there is a topological theory
T in the sense of Definition 3.28(2) so that TKP = Top(T).

(7) One advantage of a single-powerset theory approach in the sense of Definition 3.7
is that its syntax lends itself to an examination of when the underlying single powerset
theory arises from an algebraic theory in the sense of [3]. In resolving this question for
topology in the sense of Definition 3.7, and thereby giving one answer concerning the
degree to which topology has an algebraic foundation, the results of this section moti-
vate the open question concerning the extent to which topology in the sense of [6] and
Definition 3.28 has an algebraic foundation.

4. Algebraic generation of powerset theories: preliminary notions

4.1. Motivating example: algebraic generation of traditional powerset theory in Set

Referring to the algebraic theory T of standard construction in Example 3.15, Theorem
3.16, and to the traditional powerset theory P of Example 3.17, we have the following
result.

Lemma 4.1. Given f : X → Y in Set, the operator f →T : ℘(X) → ℘(Y) induced from T by
setting

f →T = T( f ) = f Δ� id℘(X) (4.1)

is the same as the image operator f →P ≡ f → from traditional powerset theory P. In this sense,
the algebraic theory T generates the traditional powerset theory in the sense of P ≡ (P,→).

Proof. Let A∈ ℘(X). Then

f →T (A) = [
T( f )

]
(A) = [

f Δ� id℘(X)
]
(A) = [(

ηY ◦ f )� id℘(Y)
]
(A)

=
⋃

x∈id℘(X)(A)

(
ηY ◦ f )(x) =

⋃

x∈A
ηY
(
f (x)

)=
⋃

x∈A

{
f (x)

}

= {
f (x) : x ∈A

}= f →P (A).

(4.2)

�

Given that the AFT applies to the traditional f → to obtain the traditional f ← and that η
comes from T and that V is trivial, then in the sense of Section 4.2, we have the following
theorem.

Theorem 4.2. The traditional powerset theory P ≡ (P,→,←,V ,η) in Set is algebraically
generated from T and so is algebraic.

Remark 4.3. In light of Theorem 3.10 and Example 3.17, Theorem 4.2 says that tradi-
tional topology has an algebraic foundation (of standard construction). This is related to
the general question motivating this paper: determine the extent to which lattice-valued
topology is algebraic.



S. E. Rodabaugh 45

4.2. Definition of algebraic generation of powerset theories

Definition 4.4. Let � ⊂ SQuant. An algebraic theory T = (T , η̂,�) in a category K gener-
ates a concrete �-powerset theory P ≡(P,→,V ,η) if the following are satisfied:

(G1) Compatibility of objective functions: for each A∈ |K|, V(T(A)) = P(A).
(G2) Compatibility of insertion morphisms: for each A∈ |K|, V(η̂A) = ηA.
(G3) Generation of forward/image powerset operator: for each f : A→ B, the operator

f →T :V(T(A)) →V(T(B)) defined by setting

f →T =V
(
T( f )

)
(4.3)

is precisely the image operator

f →P : P(A) −→ P(B) (4.4)

of P, where T( f ) : T(A) → T(B) is the arrow induced by T (Remark 3.2(3)).
If P ≡(P,→,←,V ,η) is a balanced, concrete �-powerset theory, then P is generated from
an algebraic theory T if T generates (P,→,V ,η) and the following additional condition
holds:

(G4) Generation of backward/preimage powerset operator: f ←P is always uniquely de-
termined from f →P so that (P3) and (Ad) are satisfied.

In any case, if there is an algebraic theory T which generates P, then P is algebraically
generated or algebraic.

Proposition 4.5. Let � ⊂ SQuant [USQuant] and suppose that P ≡(P,→,V ,η) is an al-
gebraic powerset theory in K. The following hold:

(1) P ≡(P,→,←,V ,η) is algebraic if the antecedent of the consequent of Proposition 3.6(1)
holds.

(2) P ≡(P,→,←,V ,η) is algebraic and (QT1) [(T1)] holds if and only if P is q-topological
[topological].

Remark 4.6 (formulating when topology has algebraic foundation). (1) The traditional
powerset theory in Set is algebraic (cf. Theorem 4.2) of standard construction.

(2) For algebraic concrete powerset theories, the issue between being a balanced alge-
braic powerset theory and a (q-)topological powerset theory is precisely whether f ←P ∈ �.

Proof.By definition, f ←P ∈ � is necessary. To see that f ←P ∈ � is sufficient, it suffices to
see that the other conditions imply (T2), (T3). We leave (T3) to the reader and show
that (T2) holds. Since T and V are functors, their composition is a functor and preserves
composition. It follows that (g ◦ f )→P = g→P ◦ f →P . Then applying Remark 1.13 and the fact
(Ad) is satisfied, we have

(g ◦ f )←P = [
(g ◦ f )→P

]� = [
g→P ◦ f →P

]� = (
f →P
)� ◦ (g→P

)� = f ←P ◦ g←P . (4.5)
�

As we know from Section 3.4, under rather general lattice-theoretic conditions, topo-
logical powerset theories produce topological and fuzzy topological theories which are
topological categories over their grounds with the expected forgetful functors.
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(3) This paper is concerned with the overall question of how much algebra is needed in
topology. The question of whether a known topological category has an algebraic founda-
tion can be reformulated in this way: is this topological category the topological or fuzzy
topological theory of a topological powerset theory which is algebraic?

Remark 4.6(3) leads us to Section 4.3 in which we pose specific questions concerning
the topological and fuzzy topological theories inventoried in Section 3.5.

4.3. Questions concerning algebraic generation of topological powerset theories

Question 4.7. Let � ⊂ SQuant.
(1) Are there necessary and sufficient conditions under which the (q-topological) L-

powerset theory in Set is algebraic of standard construction (where L∈ |�|)? This ques-
tion was open prior to this paper except for the case L= 2 (which is “isomorphic” to the
traditional powerset theory in Set); and a sufficient condition of L being a frame is given
in [3]—a condition shown in Section 5 to be not necessary. Restating the question, does
there exist a theory T of standard construction such that there are necessary and suffi-
cient conditions under which the (topological) L-powerset theory in Set is algebraically
generated from T as an algebraic theory in Set? The answer to this question is yes, details
for which are given in Section 5.

(2) Are there necessary and sufficient conditions under which the (q-topological) left-
adjoint powerset theory in Set×C is algebraic of standard construction (where C = �op)?
This question was completely open prior to this paper except for the case C = 2 (the
latter being the category with 2 as the one object and id2 as the one morphism). Restating
the question, does there exist a theory T of standard construction such that there are
necessary and sufficient conditions under which the left-adjoint topological set theory in
Set×C is algebraically generated from T as an algebraic theory in Set×C? The answer to
this question is yes, details for which are given in Section 6.

5. Algebraic generation of topological powerset theories: fixed-basis case

Throughout this section, L≡ (L,≤,⊗) is a semi-quantale (Section 1) with possibly addi-
tional conditions considered. The conditions of an s-quantale [us-quantale, os-quantale,
uos-quantale] suffice to guarantee that each L-QTop [L-Top, L-QFTop, L-FTop, resp.] is
a topological category over Set (Section 3.4, cf. [1, 2]).

This section constructs two theories T1 and T2 of standard construction (see [3],
Convention 3.3, Example 3.15) and finds a necessary and sufficient condition on L for
these theories to be algebraic theories in Set, theories from which the (topological) L-
powerset theory in Set (Example 3.20, Lemma 3.21) is generated. To contextualize these
results, the proofs (Theorems 3.10, 3.12, 3.22) that each L-QTop, L-Top, L-QFTop, L-
FTop is topological rest on the Zadeh preimage operator (Definition 1.19(2), Example
3.20), this operator comes from the q-topological L-powerset theory in Set, this
L-powerset theory is generated from each of T1 and T2 under a certain condition which is
both necessary and sufficient for T1 and T2 to be algebraic; and so under this certain con-
dition, the topological behavior of L-QTop, L-Top, L-QFTop, L-FTop rests on algebraic
theories T1 and T2 of standard construction.



S. E. Rodabaugh 47

This certain condition is that (L,≤,⊗) is a u-quantale (1.2.1.8). Section 5.1 furnishes
the critical Lemma 5.1 showing that a particular theory T1 of standard construction is
an algebraic theory in Set if and only L is a u-quantale. A simple modification of the
clone composition of T1 yields a second theory T2 of standard construction with the
corresponding result that T2 is an algebraic theory in Set if and only L is a u-quantale.
A restriction Corollary 5.4 of Lemma 5.1 using st-quantales is also given, this case being
first given in [4]; sufficiency in this restriction generalizes the result essentially appearing
in [3, Example 4.3.3] that assumes that L is a frame with ⊗ = ∧ (binary); but necessity
even in this restriction of Lemma 5.1 is new.

Section 5.2 uses Lemma 5.1 to give the theorem that the (topological) L-powerset the-
ory in Set (Example 3.20), under the assumption that L is a u-quantale, is generated from
each of T1 and T2 of Section 5.1. The corollary then follows that the (topological) L-
powerset theory is algebraically generated from T1 and T2 if and only if L is a u-quantale.

5.1. Necessary and sufficient condition for algebraic theories T1 and T2 of standard
construction in Set. Initially, we will give a necessary and sufficient condition for L ∈
|SQuant| under which a theory T (defined below) is algebraic in Set. We then “double”
this theory to obtain two theories T1 and T2 for each of which this same necessary and
sufficient condition on L makes that theory algebraic in Set. In the following section, we
show that these theories algebraically generate the (same) L-powerset theory in Set.

Lemma 5.1 (characterization lemma). Let (L,≤,⊗) ∈ |SQuant|, e ∈ L be some fixed ele-
ment, and T = (T ,η,�) be as follows:

(D1) T : |Set| → |Set| by T(X) = LX .
(D2) For each X ∈ |Set|, the component ηX : X → LX of η is defined by

ηX(x)(z) = χe{x}(z) ≡
⎧
⎨

⎩

e, z = x,

⊥, z �= x.
(5.1)

(D3) For each f : X → LY , for each g : Y → LZ in Set, define g � f : X → LZ by

[
(g � f )(x)

]
(z) =

∨

y∈Y

[(
f (x)

)
(y)⊗ (g(y)

)
(z)
]
. (5.2)

Then T is an algebraic theory in Set (of standard construction) if and only if (L,≤,⊗) is a
unital quantale with unit e, that is, ⊗ satisfies each of the following conditions:

(L1) ⊗ distributes across arbitrary
∨

from both the left and right.
(L2) ⊗ is associative.
(L3) e is a two-sided unit for ⊗.

In either case, ⊗ also satisfies the following condition:
(L4) ⊥ is a two-sided zero for ⊗.

Proof. Sufficiency. We first note from Definition 1.1(6) that (L1) implies (L4). Now the
goal is to demonstrate the sufficiency of (L1)–(L3), using (L4), for T to be an algebraic
theory. To that end, we verify (A1)–(A3) of Definition 3.1.
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Ad(A1) Let f : X → LY , g : Y → LZ , h : Z → LW . Then h� (g � f ),(h� g) � f : X →
LW . Let x ∈ X . But to show that

[
h� (g � f )

]
(x) = [

(h� g)� f
]
(x) (5.3)

as L-subsets of W , let w ∈W . It follows that

([
h� (g � f )

]
(x)
)
(w) =

∨

z∈Z

[(
∨

y∈Y

[(
f (x)

)
(y
)⊗ (g(y)(z)

)]
)

⊗ (h(z)
)
(w)

]

, (5.4)

([
(h� g)� f

]
(x)
)
(w) =

∨

yeY

[
(
f (x)

)
(y)⊗

(
∨

z∈Z

[(
g(y)

)
(z)⊗ (h(z)

)
(w)

]
)]

. (5.5)

One can use (L1) to rewrite both (5.4) and (5.5) as double joins, and these joins commute
by the associativity of joins. Finally, to make the terms of these double joins the same, we
apply the associativity of ⊗ (L2).

Ad(A2) Let f : X → LY , and recall that ηY : Y → LY is defined by ηY (y) = χe{y}. To show
that ηY � f = f , let x ∈ X and y ∈ Y . Then

[(
ηY � f )(x)

]
(y) =

∨

z∈Y

[(
f (x)

)
(z)⊗ (ηY (z)

)
(y)

]=
∨

z∈Y

[(
f (x)

)
(z)⊗ χe{z}(y)

]

=
∨

z∈Y

⎡

⎣
(
f (x)

)
(z)⊗

⎧
⎨

⎩

e, z = y

⊥, z �= y

⎤

⎦=
∨

z∈Y

⎧
⎨

⎩

(
f (x)

)
(z)⊗ e, z = y,

(
f (x)

)
(z)⊗⊥, z �= y,

=
∨

z∈Y

⎧
⎨

⎩

(
f (x)

)
(y), z = y,

⊥, z �= y,

= (
f (x)

)
(y),

(5.6)

where we have used that e is a right-sided identity and ⊥ is a right-sided zero for ⊗ from
(L3), (L4).

Ad(A3) Let f : X → Y and let g : Y → LZ . To show that g � f Δ = g ◦ f , we let x ∈ X
and z ∈ Z. Then
[(
g � f Δ

)
(x)
]
(z) =

∨

y∈Y

[(
f Δ(x)

)
(y)⊗ (g(y)

)
(z)
]=

∨

y∈Y

[(
ηY
(
f (x)

))
(y)⊗ (g(y)

)
(z)
]

=
∨

y∈Y

[
χe{ f (x)}(y)⊗ (g(y)

)
(z)
]=

∨

y∈Y

⎡

⎣

⎧
⎨

⎩

e, y = f (x)

⊥, y �= f (x)
⊗ (g(y)

)
(z)

⎤

⎦

=
∨

y∈Y

⎧
⎨

⎩

(
g
(
f (x)

))
(z), y = f (x),

⊥, y �= f (x),

= (
g
(
f (x)

))
(z),

(5.7)
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where we have used that e is a left-sided identity and ⊥ is a left-sided zero for ⊗ from
(L3), (L4).

Necessity. The goal is to demonstrate the necessity of (L1)–(L3) for T to be an algebraic
theory. The general trick is to assume (A1)–(A3), make the appropriate choices of sets and
functions, and then force each of the conditions (L1)–(L3).

Ad(L3) Let a ∈ L. Choose X = {x}, Y = {y}, and let f : X → LY by f (x) = a . Then
applying (A2)—ηY � f = f—we have

a⊗ e = (
f (x)

)
(y)⊗ e=

∨

z∈Y

[(
f (x)

)
(z)⊗ (ηY (z)

)
(y)

]

= [(
ηY � f

)
(x)
]
(y) = (

f (x)
)
(y) = a.

(5.8)

So a⊗ e = a, and e is a right-hand identity. But (A3), as noted above, implies (for any
algebraic theory T) that η gives right-hand identities for �; hence, in particular, we have
f �ηX = f , and this equation for our chosen f forces e⊗ a= a by a symmetric argument.

Ad(L1) For the nonempty case, let a∈ L and {bγ}γ∈Γ ⊂ L. Choose X = {x}, Y = {y},
Z = Γ, W = {w}—X , Y , W are singletons and Z is the indexing set Γ—and choose
f : X → LY , g : Y → LZ , h : Z → LW by f (x) = a (constant map), g(y)(γ) = bγ, h(γ) = e
(constant map). Then applying (L3) established above and (A1), we have

a⊗
(
∨

γ∈Γ
bγ

)

= a⊗
(
∨

γ∈Γ

(
bγ ⊗ e

)
)

= [(
(h� g)� f

)
(x)
]
(w)

= [(
h� (g � f )

)
(x)
]
(w) =

∨

γ∈Γ

[(
a⊗ bγ

)⊗ e
]=

∨

γ∈Γ

(
a⊗ bγ

)
,

(5.9)

which yields that ⊗ distributes across arbitrary
∨

from the right. Now if we keep the same
mapping g, but rechoose f by f (x) = e and rechoose h by h(z) = a, then a symmetric
argument yields that ⊗ distributes across

∨
from the left in the nonempty case.

Now for the empty case (the same as (L4)), choose X , Y , W , f as in the nonempty
case, choose Z = ∅, choose h to be the empty function, and choose g : Y → L∅ to be the
constant function. Then (5.4) in this context becomes

[(
h� (g � f )

)
(x)
]
(w) =⊥, (5.10)

while (5.5) in this context becomes
[(

(h� g)� f
)
(x)
]
(w) = a⊗⊥, (5.11)

in which case (A1) forces

a⊗⊥=⊥, (5.12)

showing that ⊥ is a right zero for ⊗. To show that ⊥ is a left zero, rechoose Y = ∅, Z =
{z}, f : X → L∅ to be the constant function, g to be the empty function, and h : Z → LW

by h(z) = a. Then (5.4), (5.5), and (A1) force

⊥⊗ a=⊥, (5.13)

finishing the proof of (L1) in the empty case.
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Ad(L2) Let a,b,c ∈ L, choose X = {x}, Y = {y}, Z = {z}, W = {w}, and choose f :
X → LY , g : Y → LZ , h : Z → LW by f (x) = a, g(y) = b, h(z) = c. Then applying (A1)
yields

a⊗ (b⊗ c) = [(
(h� g)� f

)
(x)
]
(w) = [(

h� (g � f )
)
(x)
]
(w) = (a⊗ b)⊗ c. (5.14)

This concludes the proof of the lemma. �

Remark 5.2 (doubling theories). Since ⊗ is generally not commutative, it follows that
the tensor products appearing in the definition of the clone composition in (D3) of
Lemma 5.1 are ordered according to our choice. Restated, the clone composition

[
(g � f )(x)

]
(z) =

∨

y∈Y

[(
f (x)

)
(y)⊗ (g(y)

)
(z)
]

(5.15)

could also be chosen as

[
(g � f )(x)

]
(z) =

∨

y∈Y

[(
g(y)

)
(z)⊗ ( f (x)

)
(y)

]
. (5.16)

This yields an alternative clone composition and therefore an alternative theory T. Let us
denote the theory presented in Lemma 5.1 by T1 = (T ,η,�1) and the alternative theory
by T2 = (T ,η,�2). We have then the following corollary.

Corollary 5.3. The following are equivalent:
(1) T1 = (T ,η,�1) is an algebraic theory in Set;
(2) (L,≤,⊗) is a u-quantale with unit e;
(3) T2 = (T ,η,�2) is an algebraic theory in Set.

Proof. The proof of (1)⇔(2) follows from Lemma 5.1; and clearly the proof of Lemma 5.1
may be modified—given that e is a two-sided unit and ⊥ is a two-sided zero ((L3), (L4))
in the proof of sufficiency—to yield that T2 = (T ,η,�2) is an algebraic theory in Set if
and only if (L,≤,⊗) is a u-quantale, thus verifying (2)⇔(3). �

The following corollary to Lemma 5.1 is a special case of that lemma in two closely
related ways: first, we restrict the setting of the necessary and sufficient condition of the
lemma from |UQuant| to |STQuant|; and second, the components of η of the algebraic
theory of the lemma are adjusted to use characteristic mappings based on � instead of
some element e. This incorporates [4] as a special case.

Corollary 5.4 (special restriction of Lemma 5.1). Let (L,≤,⊗) ∈ |SQuant| and T =
(T ,η,�) be as follows:

(D1) T : |Set| → |Set| by T(X) = LX .
(D2) For each X ∈ |Set|, the component ηX : X → LX of η is defined by

ηX(x)(z) = χ{x}. (5.17)
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(D3) For each f : X → LY , for each g : Y → LZ in Set, define g � f : X → LZ by

[
(g � f )(x)

]
(z) =

∨

y∈Y

[(
f (x)

)
(y)⊗ (g(y)

)
(z)
]
. (5.18)

Then T is an algebraic theory in Set if and only if (L,≤,⊗) is an st-quantale.

Remark 5.5. The corresponding restrictions of Remark 5.2 and Corollary 5.3 can now be
stated by the reader and follow using st-quantales with e =�.

5.2. Algebraic generation of L-powerset theories

Theorem 5.6. Let (L,≤,⊗) be a u-quantale with unit e. Then T1 and T2 are algebraic
theories in Set, in which case each f : X → Y in Set lifts to f →T ≡ T( f ) : LX → LY in each of
T1 and T2, and each f →T = f →P ≡ f →L . Hence each of T1 and T2 algebraically generates the
adjunctive natural topological L-powerset theory P ≡ (P,→,←,V ,η) in Set (Example 3.20).

Proof. Working with Definition 4.4, we first discuss the T1 case. Comparing Example 3.20
and Lemma 5.1 shows that (G1), (G2) of Definition 4.4 are satisfied. To show that (G3)
of Definition 4.4 is satisfied, we first recall

f Δ : X −→ LY by f Δ = ηY ◦ f ,

T( f ) : LX −→ LY by T( f ) = f Δ� idT(X) .
(5.19)

Let a∈ LX . Then f →T (a) ∈ LY . To compute this L-subset of Y , let y ∈ Y . Then using (L3),
(L4), we have

(
f →T (a)

)
(y) = [(

T( f )
)
(a)
]
(y) = [(

f Δ� idT(X)
)
(a)
]
(y)

=
∨

x∈X

[(
idT(X)(a)

)
(x)⊗ ( f Δ(x)

)
(y)

]

=
∨

x∈X

[
a(x)⊗ (ηY

(
f (x)

))
(y)

]

=
∨

x∈X

[
a(x)⊗ χe{ f (x)}(y)

]

=
∨

x∈X

⎡

⎣a(x)⊗
⎧
⎨

⎩

e, f (x) = y

⊥, f (x) �= y

⎤

⎦

=
∨

x∈X

⎧
⎨

⎩

a(x)⊗ e, f (x) = y,

⊥, f (x) �= y,

=
∨{

a(x) : x ∈ f ←{y}}

= (
f →L (a)

)
(y) = (

f →P (a)
)
(y).

(5.20)

This shows that f →T = f →P and so (G3) holds. As for (G4) of Definition 4.4, we apply the
AFT to f →P to obtain f ←P —see details in [20, 21]. Hence T1 algebraically generates the
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L-powerset theory P ≡ (P,→,←,V ,η). The proof for the T2 case is symmetric using (L3),
(L4). �

Corollary 5.7. The following are equivalent:
(1) The adjunctive q-topological L-powerset theory P ≡ (P,→,←,V ,η) is algebraically

generated from the algebraic theory T1, in which case P is also natural and topological.
(2) (L,≤,⊗) is a u-quantale.
(3) The adjunctive q-topological L-powerset theory P ≡ (P,→,←,V ,η) is algebraically

generated from the algebraic theory T2, in which case P is also natural and topological.

Remark 5.8. Theorem 5.6 and Corollary 5.7 show that two different algebraic theories in
Set can algebraically generate the same powerset theory in Set.

Remark 5.9. (1) Note that the derivation of f →P needs only the properties (L3), (L4).
Moreover, the proof of f →P � f ←P uses only that L is an s-quantale (and in fact ignores
⊗ altogether). Further, the various characterizations [21] of these operators, restated for
the more general lattices of this paper and replacing χ by χe, only require that L be an
integral s-quantale, namely L is an s-quantale which satisfies (L4) and has e as a right-
hand identity of ⊗. Thus, the powerset theories constructed in the above results from
algebraic theories account for a significant subclass of fixed-basis powerset theories in Set,
but do not account for a significant subclass of fixed-basis powerset theories in Set; that is,
there are significant L-powerset theories in Set which do not arise from algebraic theories
constructed in Lemma 5.1 even though they behave syntactically exactly like powerset
theories arising from such algebraic theories. Thus a significant part of fixed-basis lattice-
valued topology has an algebraic foundation in the sense of Lemma 5.1 and a significant
part of fixed-basis lattice-valued topology does not have an algebraic foundation in the
sense of Lemma 5.1.

(2) We augment the comments of (1). Some preimage powerset operators which guar-
antee that L-QTop, L-Top, L-QFTop, L-FTop are topological constructs arise from ad-
junctive natural topological L-powerset theories and some do not arise from adjunctive
natural topological L-powerset theories, though the syntax of many examples of the latter
is identical to that of the former. This means that a significant part of fixed-basis lattice-
valued topology has adjunctive natural topological powerset theory foundation in the
sense of Sections 3.4 and 3.5 and a significant part of fixed-basis lattice-valued topology
does not have adjunctive natural topological powerset theory foundation in the sense of
Sections 3.4 and 3.5; topology and fuzzy topology in the latter case are therefore twice
removed from having an algebraic foundation in the sense of Lemma 5.1.

6. Algebraic generation of topological powerset theories: variable-basis case

This section gives lattice-theoretic and category-theoretic conditions which are both nec-
essary and sufficient for variable-basis powerset theories in a ground category to be al-
gebraically generated from theories of standard construction. Throughout this section,
C ⊂ LoSQuant with additional restrictions as indicated.

Section 6.1, by Lemmas 6.1–6.3 analogous to Lemma 5.1 and identifies four variable-
basis theories of standard construction—two right-adjoint theories T1(�), T2(�) and
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two left-adjoint theories T1(�), T2(�)—and proves that there are necessary and suffi-
cient conditions guaranteeing that they are algebraic in Set×C, as well as two variable-
basis theories T1(∗), T2(∗) of standard construction for which there are sufficient condi-
tions guaranteeing that they are algebraic. A restriction of these lemmas to st-quantales,
analogous to Corollary 5.4, is stated, this restriction being first given in [4].

Section 6.2 proves that whenever T1(�), T2(�) are algebraic, they generate the well-
known left-adjoint (topological) powerset theory P(�) in Set×C (hence the label “left-
adjoint” for T1(�),T2(�))—see Example 3.23. To contextualize the results of Section 6.2,
we note the following:

(1) Lemma 3.26 says that the categories C-QTop, C-Top, C-QFTop, C-FTop are topo-
logical over Set×C (with respect to the usual forgetful functor) for any C ⊂
LoSQuant, LoUSQuant, LoOSQuant, LoUOSQuant, respectively; and

(2) Lemma 3.24(2) says that the preimage operators underneath these categories can
be recovered from the image operator of the left-adjoint (q-)topological powerset
theory—making this theory adjunctive—precisely for those subcategories C in
which the dual morphisms also preserve arbitrary

∧
.

Thus Section 6.2 finds a condition necessary and sufficient for P(�) to be algebraically
generated from certain left-adjoint algebraic theories in Set×C of standard construction;
and together, Sections 6.1 and 6.2 identify those subcategories C of LoSQuant for which
the topological behavior of C-QTop, C-Top, C-QFTop, C-FTop rests on algebraic theories
in Set×C.

Section 6.3 proves that whenever T1(�) and T2(�) are algebraic, they generate a new
variable-basis powerset theory P(�) in Set×C, which we dub the right-adjoint (variable-
basis) powerset theory in Set×C; and indeed the syntax of such powerset theories, even
when there is no algebraic foundation (in the sense of T1(�) and T2(�) being alge-
braic), builds new right-adjoint topological powerset theories on which new topologi-
cal and fuzzy topological theories rest, the right-adjoint counterparts to C-QTop, C-Top,
C-QFTop, C-FTop. In particular, we show these right-adjoint powerset theories are not
redundant compared with the left-adjoint powerset theories—so they really are new—
and hence they induce new preimage operators, new topological and fuzzy topological
theories, and new topological categories, that is, new kinds of variable-basis topology
and fuzzy topology.

6.1. Necessary and sufficient conditions for T1,2(�) and T1,2(�) to be algebraic theo-
ries in Set×C. This section gives a necessary and sufficient condition on C ⊂ LoSQuant
for theories T(�) and T(�) (defined below) to be algebraic in Set×C; and then a suf-
ficient condition is given on C ⊂ LoSQuant for theory T(∗) (also defined below) to be
algebraic in Set×C. Then, analogous to the fixed-basis case, each of these theories is
“doubled” to obtain four theories T1,2(�) and T1,2(�) for which there is a necessary and
sufficient condition on C ⊂ LoSQuant making these theories algebraic in Set×C, as well
as two theories T1,2(∗) for which there is a sufficient condition on C ⊂ LoSQuant making
these theories algebraic in Set×C. One important distinction between this section and
Section 5.1 is the role of choice functions.
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Lemma 6.1 (right-adjoint theory characterization). Let C ⊂ LoSQuant and let T(�) ≡
(T ,η,�) be as follows:

(D1) T : |Set×C| → |Set×C| by

T(X ,L) = (
LX ,L

)
. (6.1)

(D2) For each (X ,L) ∈ |Set×C|, the component

η(X ,L) : (X ,L) −→ (
LX ,L

)
(6.2)

of η is η(X ,L) = (ηX , idL), where idL : L→ L is the identity morphism of L in C,

e : |C| −→
⋃

M∈|C|
M (6.3)

is a choice function with eM ≡ e(M) ∈M for each M ∈ |C|, and

ηX(x)(z) = χeL{x}(z) ≡
⎧
⎨

⎩

eL, z = x,

⊥, z �= x.
(6.4)

(D3) For each ( f ,φ) : (X ,L) → (MY ,M), (g,ψ) : (Y ,M) → (NZ ,N) in Set×C, define

(g,ψ)� ( f ,φ) : (X ,L) −→ (
NZ ,N

)
(6.5)

by (g,ψ)� ( f ,φ) = (g � f ,φ�ψ), where φ�ψ = φ ◦ψ and

[
(g � f )(x)

]
(z) =

∨

y∈Y

[
ψ�(( f (x)

)
(y)

)⊗ (g(y)
)
(z)
]
. (6.6)

Then the following are equivalent:
(1) there exists a choice function e such that T(�) is an algebraic theory in Set×C;
(2) C ⊂ LoUQuant(�).

Lemma 6.2 (left-adjoint theory characterization). The same statement as Lemma 6.1 ex-
cept that C ⊂ LoUQuant(�) replaces C ⊂ LoUQuant(�), � is redefined by

[
(g � f )(x)

]
(z) =

∨

y∈Y

[
ψ�(( f (x)

)
(y)

)⊗ (g(y)
)
(z)
]
, (6.7)

T(�) replaces T(�), and statement (2) adds that C�(�) ⊂ SQuant.

Lemma 6.3 (adjoint-like theory existence). The same statement as the direction of Lemma
6.1 asserting the sufficiency of the condition C⊂LoUQuant(�), except that C⊂LoUQuant∗

replaces C ⊂ LoUQuant(�), � is redefined by

[
(g � f )(x)

]
(z) =

∨

y∈Y

[
ψ∗(( f (x)

)
(y)

)⊗ (g(y)
)
(z)
]

(6.8)

provided that ψ∗ : L→M is chosen uniquely for each ψ, and T(∗) replaces T(�).
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The proofs of these lemmas are sufficiently similar that we prove in detail only Lemma
6.1 dealing with the right-adjoint case; but we explicitly indicate the one part where the
proof of Lemma 6.2 is not analogous to the proof of Lemma 6.1.

Proof of Lemma 6.1 (right-adjoint case). (1)⇐(2). Referring to the statement of Lemma
5.1, we assume (L1)–(L4) as well as assuming that each morphism φ : L→M in C has
φ� : L→M in UQuant, that is, φ� preserves arbitrary

∨
, ⊗, e, the first property of which

implies that φ� preserves ⊥. Note that the obvious candidate for the choice function
e : |C| →⋃

L∈|C|L needed in Lemma 6.1(1) is given by choosing e(L) to be the unit eL of
⊗ on L (L3). We now prove (A1)–(A3).

Ad(A1) Let ( f ,φ) : (X ,L) → (MY ,M), (g,ψ) : (Y ,M) → (NZ ,N), (h,υ) : (Z,N) →
(KW ,K). Then we are to show that

(h,υ)� ((g,ψ)� ( f ,φ)
)
,

(
(h,υ)� (g,ψ)

)� ( f ,φ) (6.9)

are the same morphism from (X ,L) to (KW ,K). Since the clone composition is defined
component-wise, and since the clone composition in the second component is the com-
position from C, then we have associativity in the second component; and thus we have
only to show associativity in the first component, that is,

h� (g � f ) = (h� g)� f (6.10)

as maps from X to KW . Let x ∈ X . But to show that

[
h� (g � f )

]
(x) = [

(h� g)� f
]
(x) (6.11)

as K-subsets of W , let w ∈W . It follows that
([
h� (g � f )

]
(x)
)
(w)

=
∨

z∈Z

[

υ�
(
∨

y∈Y

[
ψ�[( f (x)

)
(y)

]⊗ (g(y)(z)
)]
)

⊗ (h(z)
)
(w)

]
(6.12)

and that
([

(h� g)� f
]
(x)
)
(w)

=
∨

yeY

[

(υ ◦ψ)�
[(
f (x)

)
(y)

]⊗
(
∨

z∈Z

[
υ�
[(
g(y)

)
(z)
]⊗ (h(z)

)
(w)

]
)]

.
(6.13)

The verification that (6.12) and (6.13) are equal, similar to the corresponding verification
that (5.4) and (5.5) in the proof of Lemma 5.1 are equal, uses these facts: ⊗ distributes
from left and right over

∨
; ⊗ is associative; each of ψ� and υ� preserves

∨
and ⊗; and

(ψ ◦ υ)� = ψ� ◦ υ� (Remark 1.13).
Ad(A2) Let ( f ,φ) : (X ,L) → (MY ,M), and recall that η(Y ,M) : (Y ,M) → (MY ,M) by

η(Y ,M) = (ηY , idM), where ηY (y) = χeM{y}. Then

(
ηY , idM

)� ( f ,φ) = (
ηY � f , idM�φ)= (

ηY � f , idM ◦φ)= (
ηY � f ,φ

)
. (6.14)
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Now

[(
ηY � f

)
(x)
]
(y) =

∨

y∈Y

[(
idM

)�((
f (x)

)
(y)

)⊗ (ηY (y)
)
(z)
]
. (6.15)

Since id�
M = id

op
M ,

[(
ηY � f

)
(x)
]
(y) =

∨

y∈Y

[(
f (x)

)
(y)⊗ (ηY (y)

)
(z)
]
. (6.16)

The completion of the proof now follows, using (L3) and (L4), from Ad(A2) in the proof
of Lemma 5.1.

Ad(A3) Let ( f ,φ) : (X ,L) → (Y ,M) and (g,ψ) : (Y ,M) → (NZ ,N). Then

( f ,φ)Δ = η(Y ,M) ◦ ( f ,φ) = (ηY ◦ f ,φ),

(g,ψ)� ( f ,φ)Δ = (
g � (ηY ◦ f ),ψ ◦φ),

(g,ψ)◦ ( f ,φ) = (g ◦ f ,ψ ◦φ).

(6.17)

So to show that the two previous lines are the same, it suffices to show that g � (ηY ◦ f ) =
g ◦ f . Note that

[(
g � (ηY ◦ f ))(x)

]
(y) =

∨

y∈Y

[
ψ�((ηY

(
f (x)

))
(y)

)⊗ (g(y)
)
(z)
]

=
∨

y∈Y

[

ψ�
(
eM , x ∈ f ←{y}
⊥, x /∈ f ←{y}

)

⊗ (g(y)
)
(z)

]

.

(6.18)

Since ψ� preserves units and ⊥, then the proof that the above is (g( f (x)))(z) now follows,
using (L3) and (L4), from Ad(A3) in the proof of Lemma 5.1.

(1)⇒(2). Our task now is to show—assuming we have a choice function e such that
T(�) ≡ (T ,η,�) as constructed in (D1), (D2), (D3) is algebraic in Set×C—that C ⊂
LoUQuant(�).

First, we show that each object of C is a unital quantale. Let L ∈ |C|. Then for each
X ∈ |Set| , (X ,L) ∈ |Set×C|. If we choose the same sets and functions as in the proof of
necessity of Lemma 5.1, always choose L as the lattice, and always choose idL : L→ L in C
as the lattice-theoretic component of each morphism, then the proof that (A1)–(A3) im-
plies (L1)–(L3) for L is essentially that given in the proof of necessity of Lemma 5.1—we
need only to add the trivial fact that id�

L = id
op
L . To illustrate, the proof that ⊗ distributes

across
∨

from the left in L uses the same X , Y , Z, f , g, h as in Lemma 5.1, along with
K =N =M = L and φ = ψ = υ = idL; and then the mechanics are essentially the same as
for Lemma 5.1. Thus |C|⊂|LoUQuant(�)|.

To finish the proof of (1)⇒(2), we must verify that the morphisms of C are in
LoUQuant(�). This verification, using the now established fact that each object of C
satisfies (L1)–(L4), comprises the following series of claims.

Claim 1: For each C-morphism φ, φ� preserves e. Let φ :M→N in C. We first show that
(A3) implies that φ�(eM) is a left-sided unit. Let L=M, N be objects in C, pick X = {x},
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Y = {y}, Z = {z}, let b ∈N , pick f : X → Y by f (x) = y and g : Y →NZ by g(y) = b (the
constant map with value b). Then ( f , idL) : (X ,L) → (Y ,M), (g,φ) : (Y ,M) → (NZ ,N),
and

(A3) =⇒ g � (ηY ◦ f )= g ◦ f
=⇒

∨

y∈Y

[
φ�((ηY

(
f (x)

))
(y)

)⊗ (g(y)
)
(z)
]= (

g
(
f (x)

))
(z)

=⇒ φ�(eM
)⊗ b = b.

(6.19)

Now choosing b = eN implies that

φ�(eM
)= φ�(eM

)⊗ eN = eN . (6.20)

Claim 2: For each C-morphism φ, φ� preserves ⊗. Let φ : L → K in C and a,b ∈ L.
Choose X = {x}, Y = {y}, Z = {z}, L =M = N , W any set, and define f : X →MY , g :
Y →NZ , h : Z → KW by f (x) = a, g(y) = b, h(z) = eK . Then ( f , idL) : (X ,L) → (MY ,M),
(g, idL) : (Y ,M) → (NZ ,N), (h,φ) : (Z,N) → (KW ,K) in Set×C. Now (A1) implies that
(6.12) and (6.13) agree. This means that

∨

z∈Z

[

φ�
(
∨

y∈Y

[
id

op
L

[(
f (x)

)
(y)

]⊗ ((g(y)
)
(z)
)]
)

⊗ (h(z)
)
(w)

]

=
∨

yeY

[
(
φ ◦ id

op
L

)�[(
f (x)

)
(y)

]⊗
(
∨

z∈Z

[
φ�[(g(y)

)
(z)
]⊗ (h(z)

)
(w)

]
)]

,

(6.21)

which reduces to

φ�([( f (x)
)
(y)

]⊗ (g(y)(z)
))⊗ (h(z)

)
(w
)

= φ�[( f (x)
)
(y)

]⊗ [φ�[(g(y)
)
(z)
]⊗ (h(z)

)
(w)

]
,

(6.22)

that is,

φ�(a⊗ b)⊗ eK = φ�(a)⊗ (φ�(b)⊗ eK
)
. (6.23)

Hence φ�(a⊗ b) = φ�(a)⊗φ�(b).

Claim 3: For each C-morphism φ, φ� preserves arbitrary
∨

(and hence ⊥). Let φ :N → K
in C. For the nonempty case, let {aγ : γ ∈ Γ} ⊂ N . Choose X = {x} and Y = Γ, Z any
set, W any set, choose L =M = N , and define f : X →MY , g : Y → NZ , h : Z → KW ,
by f (x) = eM , g(γ) = aγ (for each γ), h(z) = eK (for each z). Then ( f , idL) : (X ,L) →
(MY ,M), (g, idM) : (Y ,M) → (NZ ,N), (h,φ) : (Z,N) → (KW ,K). Now (A1) implies that
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(6.12) and (6.13) agree. This means that

∨

z∈Z

[

φ�
(
∨

y∈Y

[
id

op
M

[(
f (x)

)
(y)

]⊗ (g(y)(z)
)]
)

⊗ (h(z)
)
(w)

]

=
∨

yeY

[
(
φ ◦ idM

)�[(
f (x)

)
(y)

]⊗
(
∨

z∈Z

[
φ�[(g(y)

)
(z)
]⊗ (h(z)

)
(w)

]
)]

,

(6.24)

which reduces to

φ�
(
∨

y∈Y

[[(
f
(
x)
)
(y)

]⊗ (g(y)(z)
)]
)

⊗ (h(z)
)
(w)

=
∨

yeY

[
φ�[( f (x)

)
(y)

]⊗ [φ�[(g(y)
)
(z)
]⊗ (h(z)

)
(w)

]]
,

(6.25)

that is,

φ�
(
∨

y∈Y

[
eM ⊗ aγ

]
)

⊗ eK =
∨

yeY

(
φ�(eM

)⊗φ�(aγ
))⊗ eK . (6.26)

Since we have already established that φ� preserves units and tensors, it follows that

φ�
(
∨

y∈Y
aγ

)

=
∨

yeY

φ�(aγ
)
. (6.27)

Now for the empty case, rechoose Y = ∅ in the nonempty case. Then from (6.12),
(6.13), we have

φ�(⊥)⊗ eK =⊥⊗ eK , (6.28)

and hence

φ�(⊥) =⊥. (6.29)

This finishes the proof of the empty case, the claim, and Lemma 6.1. �

Proof of Lemma 6.2 (left-adjoint case). In comparison with the proof of Lemma 6.1 and
in light of Proposition 1.15, we need only to add to the end of the proof of (1)⇒(2) the
verification of the composition law—if φ :M→N , ψ :N → K , then

(ψ ◦φ)� = ψ� ◦φ�, (6.30)

verifying that C�(�) ⊂ SQuant. Given such φ, ψ, let α ∈M and let some object x be
given, and choose L=M, X = Y = Z =W = {x},

f : X −→MY by f (x) = α,

g : Y −→NZ by g(x) = eN ,

h : Z −→ KW by h(x) = eK ,

(6.31)
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and further consider the Set×C morphisms

(
f , idL

)
: (X ,L) −→ (

MY ,M
)
,

(g,φ) : (Y ,M) −→ (
NZ ,N

)
,

(h,ψ) : (Z,N) −→ (
KW ,K

)
.

(6.32)

Then the associativity of � implies that (6.12) and (6.13) agree for these morphisms. But
(6.12) in this context reduces to saying that

([
h� (g � f )

]
(x)
)
(w) = ψ�(φ�[α]⊗ eN

)⊗ eK = ψ�(φ�(α)
)

(6.33)

and (6.13) in this context reduces to saying that

([
(h� g)� f

]
(x)
)
(w) = (ψ ◦φ)�[α]⊗ (ψ�[eN

]⊗ eK
)

= (ψ ◦φ)�[α]⊗ (eK ⊗ eK
)

= (ψ ◦φ)�(α).

(6.34)

Associativity now says that ψ�(φ�(α)) = (ψ ◦φ)�(a). �

Remark 6.4 (doubling theories). Since ⊗ is generally not commutative, it follows that
the tensor products appearing in the definition of the clone compositions in (D3) of
Lemmas 6.1, 6.2, 6.3 are ordered according to our choice. As in Remark 5.2, different
clone compositions could be chosen by reversing these tensor products; for example, in
the case of Lemma 6.1,

[
(g � f )(x)

]
(z) =

∨

y∈Y

[
ψ�(( f (x)

)
(y)

)⊗ (g(y)
)
(z)
]

(6.35)

could also be chosen as

[
(g � f )(x)

]
(z) =

∨

y∈Y

[(
g(y)

)
(z)⊗ψ�(( f (x)

)
(y)

)]
. (6.36)

This yields for each of T(�), T(�), T(∗) an alternative clone composition and there-
fore an alternative theory. Let us denote the theory presented in Lemma 6.1 by T1(� ) ≡
(T ,η,�1), and the alternative theory by T2(�) ≡ (T ,η,�2), the theory presented in
Lemma 6.2 by T1(�) ≡ (T ,η,�1), and the alternative theory by T2(�) ≡ (T ,η,�2), and
the theory presented in Lemma 6.3 by T1(∗) ≡ (T ,η,�1) and the alternative theory by
T2(∗) ≡ (T ,η,�2). We have then the following corollary.

Corollary 6.5. The following statements hold.
(1) The following statements are equivalent:

(a) there is a choice function e such that T1(�) is an algebraic theory in Set×C;
(b) C ⊂ LoUQuant(�);
(c) there is a choice function e such that T2(�) is an algebraic theory in Set×C.

The choice function in any case is given by e(L) = unit of ⊗ on L.
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(2) The following statements are equivalent:
(a) there is a choice function e such that T1(�) is an algebraic theory in Set×C;
(b) C ⊂ LoUQuant(�) with C�(�) ⊂ SQuant;
(c) there is a choice function e such that T2(�) is an algebraic theory in Set×C.

The choice function in any case is given by e(L) = unit of ⊗ on L.
(3) The condition C ⊂ LoUQuant∗ is sufficient for each of the following statements:

(a) T1(∗) is an algebraic theory in Set×C;
(b) T2(∗) is an algebraic theory in Set×C.

The proof is analogous to that for Corollary 5.3.

Remark 6.6. Note that Lemmas 6.1, 6.2 are independent of the axiom of choice because
(i) choice functions are part of the construction of the theories in question, (ii) such
theories being algebraic are consistent with only one allowable choice function! Due to
this fact, we will not sequens refer to a choice function making a standard construction
theory algebraic; rather, we will simply speak of such a theory being algebraic (in a ground
category).

à la Corollary 5.4 and Remark 5.5, we have the following restriction of Lemmas 6.1–
6.3, from which the reader can construct the corresponding restrictions of Remark 6.4
and Corollary 6.5 and which incorporates [4] as a special case.

Corollary 6.7 (special restriction of Lemmas 6.1–6.3). If in Lemmas 6.1–6.3 the first
coordinate function

ηX(x)(z) = χeL{x}(z) ≡
⎧
⎨

⎩

eL, z = x,

⊥, z �= x,
(6.37)

of the insertion map component

η(X ,L) ≡
(
ηX , idL

)
: (X ,L) −→ (

LX ,L
)

(6.38)

is replaced by

ηX(x) = χ{x} (6.39)

(i.e., replace eL with �), then each of T1(�) [T1(�)] and T2(�) [T2(�)] is an algebraic
theory in Set×C if and only if C ⊂ LoSTQuant(�) [C ⊂ LoSTQuant(�) with C�(�) ⊂
SQuant], and T1(∗) [T2(∗)] is an algebraic theory in Set×C if C ⊂ LoSTQuant∗.

6.2. Algebraic generation of left-adjoint topological powerset theories in Set×C. This
section shows that whenever T1(�) and T2(�) are algebraic theories in Set×C, each gen-
erates the left-adjoint natural topological powerset theory P(�) in Set×C (Example 3.23
et sequens).

Theorem 6.8. Let C ⊂ LoUQuant(�) with C�(�) ⊂ SQuant. Then T1(�) and T2(�) are
algebraic theories in Set×C. In each case, ( f ,φ) : (X ,L) → (Y ,M) lifts to each of
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T1(�)( f ,φ) : (LX ,L) → (MY ,M) and T2(�)( f ,φ) : (LX ,L) → (MY ,M) and

( f ,φ)→T1(�) =V
[
T1(�)( f ,φ)

]= ( f ,φ)→� =V
[
T2(�)( f ,φ)

]= ( f ,φ)→T2(�), (6.40)

where T1(�) and T2(�) are the functors arising from T1(�) and T2(�), respectively
(Remark 3.2(3)). Hence each of T1(�) and T2(�) algebraically generates the same natural
topological powerset theory P(�) in Set×C.

Proof. Using Definition 4.4, we first discuss the T1(�) case. Comparing Example 3.23 and
Lemma 6.2 shows that (G1), (G2) are satisfied. To show that (G3) is satisfied, first recall

( f ,φ)Δ : (X ,L) −→ (
MY ,M

)
by ( f ,φ)Δ = (

ηY , idMY

)◦ ( f ,φ) = (
ηY ◦ f ,φ

)
,

T1(�)( f ,φ) :
(
LX ,L

)−→ (
MY ,M

)

by T1(�)( f ,φ) = ( f ,φ)Δ� ( idLX , idL
)= ((

ηY ◦ f )� idLX ,φ
)
,

V
[
T1(�)( f ,φ)

]
: LX −→MY by V

[
T1(�)( f ,φ)

]= (
ηY ◦ f )� idLX .

(6.41)

Let a∈ LX . Then (V[T1(�)( f ,φ)])(a) ∈MY . To compute this M-subset of Y , let y ∈ Y .
Then using (L3), (L4) of Lemma 5.1, we have
[
( f ,φ)→T1(�)(a)

]
(y) = [(

V
[
T1(�)( f ,φ)

])
(a)
]
(y) = [((

ηY ◦ f )� idLX
)
(a)
]
(y)

=
∨

z∈X

[
φ�(( idLX (a)

)
(z)
)⊗ (ηY

(
f (z)

))
(y)

]

=
∨

z∈X

[
φ�(a(z)

)⊗ χ{ f (z)}(y)
]

=
∨

z∈X

{
φ�(a(z)

)
: z ∈ f ←{y}}

= φ�(( f →L (a)
)
(y)

)
.

(6.42)

Hence

( f ,φ)→T1(�)(a) = (
V
[
T1(�)( f ,φ)

])
(a) = φ�( f →L (a)

)
, (6.43)

so that

V
[
T1(�)( f ,φ)

]= 〈
φ�〉◦ f →L = ( f ,φ)→� . (6.44)

Therefore (G3) holds. As for (G4), we apply the AFT to ( f ,φ)→� to obtain ( f ,φ)←� (see
details in [20, 21]), noting that ( f ,φ)→� is a composition of arbitrary

∨
preserving maps.

Hence T1(�) algebraically generates P(�) ≡ (P,→,←,V ,η). The proof for the T2(�) case
is symmetric using (L3), (L4). �

Corollary 6.9. The following are equivalent:
(1) P(�) is algebraically generated from the algebraic theory T1(�);
(2) C ⊂ LoUQuant(�) with C�(�) ⊂ SQuant;
(3) P(�) is algebraically generated from the algebraic theory T2(�).

Corollary 6.10. Corollary 6.9 implies Corollary 5.7.
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Proof. Let L∈|SQuant| and put C=L≡({L}, idL). Then the three statements of Corollary
6.9 under this restriction become, respectively, logically equivalent to the three statements
of Corollary 5.7. �

Remark 6.11. Theorem 6.8 and Corollary 6.9 show that two different left-adjoint alge-
braic theories in Set×C can algebraically generate the same powerset theory in Set×C.

Remark 6.12. (1) Analogous to Remark 5.9, note that the derivation of ( f ,φ)→� needs only
the properties (L3), (L4). Moreover, the proof of ( f ,φ)→� � ( f ,φ)←� requires only that
the underlying L, M be s-quantales and that φop additionally preserve arbitrary

∧
(cf.

Proposition 1.15); indeed, given s-quantales L, M, this adjunction holding for all f ∈ Set
is logically equivalent to φ being in LoSQuant such that φop preserves arbitrary

∧
—the

proofs of [20, 21] trivially generalize to the s-quantalic case (cf. Lemma 3.24(2)). Thus,
the algebraically generated powerset theories constructed in Theorem 6.8 account for a
significant number of left-adjoint topological powerset theories, but not for most of them,
including most left-adjoint adjunctive (q-)topological powerset theories; that is, most left-
adjoint topological powerset theories in Set×C do not arise from the algebraic theories
constructed in Lemma 6.2 even though their preimage operators topologically behave like
those from powerset theories algebraically generated from such algebraic theories.

(2) To state some of the above comments more precisely, for each C ⊂ LoSQuant
[LoOSQuant,LoUSQuant,LoUOSQuant], there is an appropriate preimage operator
making C-QTop [C-QFTop, C-Top, C-FTop, resp.] topological over Set×C. Some of
these preimage operators come from a left-adjoint topological powerset theory which is
algebraic, but most of them come from nonalgebraic left-adjoint q-topological or topo-
logical powerset theories. However, the syntax of all these preimage operators is the same.

(3) For each C ⊂ LoSQuant, there is a right-adjoint variable-basis powerset theory in
Set×C which does not arise from left-adjoint algebraic theories, and this brings us to the
next section (see Theorem 6.24).

6.3. Algebraic generation of new right-adjoint topological powerset theories in Set×C.
This section creates new variable-basis powerset theories P(�) in Set×C, theories dubb-
ed right-adjoint theories. Some of these powerset theories are algebraically generated
from right-adjoint algebraic theories T1(�) and T2(�) in Set×C, namely when C ⊂
LoUQuant(�), and so this section partially parallels the previous section and Example
3.23. Under the restriction C ⊂ LoUSQuant(��), these new powerset theories become
topological; and hence for C ⊂ LoUQuant(��) [LoUQuant(��)], the new topolog-
ical [fuzzy topological] theories generated by these powerset theories are topological
categories, resulting in new categories for doing topology and fuzzy topology. These
new categories for topology and fuzzy topology have an algebraic foundation when C ⊂
LoUQuant(�) ∩ LoUSQuant(��). “New” in the preceding statements is justified by
proof of nonredundancy at the end of this section.

Theorem 6.13. Let C ⊂ LoUQuant(�). Then T1(�) and T2(�) are algebraic theories in
Set×C. In each case, ( f ,φ) : (X ,L) → (Y ,M) lifts to T1(�)( f ,φ) : (LX ,L) → (MY ,M) and
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T2(� )( f ,φ) : (LX ,L) → (MY ,M), and

( f ,φ)→T1(�) =V
[
T1(�)( f ,φ)

]= 〈
φ�〉◦ f →L =V

[
T2(�)( f ,φ)

]= ( f ,φ)→T2(�), (6.45)

where T1(�) and T2(�) are the functors arising from T1(�) and T2(�), respectively
(Remark 3.2(3)).

The proof, analogous to that of Theorem 6.8, is omitted.

Definition 6.14 (right-adjoint forward/image operators). Let ( f ,φ) : (X ,L) → (Y ,M) ∈
Set×LoSQuant. Then ( f ,φ)→� : LX →MY is the mapping defined by

( f ,φ)→� = 〈
φ�〉◦ f →L , (6.46)

that is, for each a∈ LX , for each y ∈ Y ,

[
( f ,φ)→� (a)

]
(y) = φ�[( f →L (a)

)
(y)

]
. (6.47)

Lemma 6.15. If C ⊂ LoSQuant(�) and ( f ,φ) : (X ,L) → (Y ,M) ∈ Set×C, then ( f ,φ)→� :
LX →MY preserves arbitrary

∨
.

Proof. Since C ⊂ LoSQuant(�), φ� is in SQuant and hence preserves arbitrary joins; and
it follows that 〈φ�〉 preserves arbitrary joins. It is well known that the Zadeh forward
operator f →L preserves arbitrary joins. Hence ( f ,φ)→� is a composition of maps preserving
arbitrary joins, and so ( f ,φ)→� preserves arbitrary joins. �

Theorem 6.16. Let C ⊂ LoSQuant(�) and ( f ,φ) : (X ,L) → (Y ,M) ∈ Set×C.
(1) There exists a unique ( f ,φ)←� : LX ←MY such that

( f ,φ)→� � ( f ,φ)←� . (6.48)

(2) Further,

( f ,φ)←� = f ←L ◦ 〈φ��〉. (6.49)

(3) ( f ,φ)←� ∈ LoSQuant if and only if φ ∈ LoSQuant(��), and ( f ,φ)←� ∈ USQuant if
and only if φ ∈ LoUSQuant(��).

Proof. Because of Lemma 6.15, the unique existence of a right-adjoint of ( f ,φ)→� is an im-
mediate consequence of AFT Theorem 1.10, proving (1). As for (2), using Notation 1.11,
Definition 1.12, and Remark 1.13, we have

( f ,φ)←� = (
( f ,φ)→�

)� = [〈
φ�〉◦ f →L

]� = (
f →L
)� ◦ 〈φ�〉� = f ←L ◦ 〈φ��〉. (6.50)

As for (3), this follows from (2) and the properties of f ←L tabulated in Proposition 1.21.
�

Definition 6.17 (right-adjoint backward/preimage operators). Let ( f ,φ) : (X ,L) → (Y ,M)
∈ Set×LoSQuant. Then ( f ,φ)←� : LX ←MY is the mapping defined by

( f ,φ)←� = f ←L ◦ 〈φ��〉, (6.51)
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that is, for each b ∈MY ,

( f ,φ)←� (b) = φ�� ◦ b ◦ f . (6.52)

Definition 6.18 (right-adjoint variable-basis powerset theories in Set×C (cf. Example
3.23)). Let � ⊂ SQuant, put C = �op, and put K = Set×C. The right-adjoint (variable-
basis) powerset theory

P(�) ≡ (P,−→,←−) (6.53)

in Set×C is given by the following data: define P : |K| → |�| by

P(X ,L) = LX , (6.54)

and for ( f ,φ) : (X ,L) → (Y ,M), put

( f ,φ)→P(�) ≡ ( f ,φ)→� : P(X ,L) −→ P(Y ,M),

( f ,φ)←P(�) ≡ ( f ,φ)←� : P(X ,L) ←− P(Y ,M)
(6.55)

as given in Definitions 6.14 and 6.17, namely

( f ,φ)→� = 〈φ�〉 ◦ f →L , ( f ,φ)←� (b) = f ←L ◦ 〈φ��〉. (6.56)

Finally, given � ⊂ USQuant, put V : K → Set by V =Π1 (the first projection functor)—
V(X ,L) = X and V( f ,φ) = f , and for X ∈ |Set|, define η(X ,L) :V(X ,L) → P(X ,L) by

η(X ,L)(x) = χeL{x} (6.57)

as in Example 3.23; and in this case also write

P(�) ≡ (P,−→,←−,V ,η). (6.58)

Theorem 6.19 (properties of right-adjoint powerset theories). Let � ⊂ SQuant and C =
�op. The following hold:

(1) P(�) ≡ (P,→,←) is a balanced �-powerset theory in Set×C.
(2) If C ⊂ LoUSQuant(�), then P(�) ≡ (P,→,V ,η) is an adjunctive concrete

�-powerset theory in Set×C.
(3) If C ⊂ LoSQuant(��) [LoUSQuant(��)], then P(�) ≡ (P,←) is a q-topological

[topological] �-powerset theory in Set×C.
(4) If C ⊂ LoSQuant(��) [LoUSQuant(��)], then the q-topological [topological] the-

ory T(Set×C)P(�) of P(�) is topological over Set×C with respect to the usual forgetful
functor by Theorem 3.10.

(5) If C ⊂ LoOSQuant(��) [LoUOSQuant(��)], then the q-fuzzy [fuzzy] topologi-
cal theory TF(Set×C)P(�) of P(�) is topological over Set×C with respect to the usual
forgetful functor.

(6) If C ⊂ LoUQuant(�), then P(�) ≡ (P,→,V ,η) is algebraic, that is, algebraically
generated by each of T1(�) and T2(�).
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(7) If C ⊂ LoUQuant(�), then P(�) ≡ (P,→,←,V ,η) is algebraic, that is, algebraically
generated by each of T1(�) and T2(�).

(8) If C⊂LoSQuant(��)∩LoUQuant(�) [LoUSQuant(��)∩LoUQuant(�)], then
P(�) ≡ (P, →, ←, V , η) is an adjunctive, concrete, q-topological [topological]
�-powerset theory in Set×C which is algebraic; and if C ⊂ LoSQuant(��) ∩
LoSQuant(�) [LoUSQuant(��)∩LoSQuant(�)], then P(�) ≡ (P,→,←,V ,η) is
an adjunctive concrete q-topological [topological] �-powerset theory in Set×C which
need not be algebraic.

Proof. Ad(1) is immediate from Definition 6.18.
Ad(2) This is straightforward, needing the facts that f →L (χeL{x})=χeL{ f (x)} and 〈φ�〉(χeL{ f (x)})

= χeM{ f (x)}, the latter following from φ� ∈ USQuant.
Ad(3) We show that Definition 3.4 (QT) [resp. (T)] is satisfied. (QT1) [resp. (T1)]

follows from Theorem 6.16(3). For (T2), let ( f ,φ) : (X ,L) → (Y ,M), (g,ψ) : (Y ,M) →
(Z,N) in Set×C be given and let c ∈ NZ ; it is to be checked that [(g,ψ) ◦ ( f ,φ)]←� (c) =
[( f ,φ)←� ◦ (g,ψ)←� ](c). Repeatedly applying Definition 6.17 in conjunction with Remark
1.13 yields the following:

[
(g,ψ)◦ ( f ,φ)

]←
� (c) = (g ◦ f ,ψ ◦φ)←� (c) = (ψ ◦φ)�� ◦ c ◦ g ◦ f

= (
ψ� ◦φ�)� ◦ c ◦ g ◦ f = φ�� ◦ψ�� ◦ c ◦ g ◦ f

= φ�� ◦ (ψ�� ◦ c ◦ g)◦ f = φ�� ◦ ((g,ψ)←� (c)
)◦ f

= ( f ,φ)←�
(
(g,ψ)←� (c)

)= [
( f ,φ)←� ◦ (g,ψ)←�

]
(c).

(6.59)

And for (T3), we observe that

(
id(X ,L)

)←
P(�) =

(
id(X ,L)

)←
� = (

idX , idL
)←
� = (

idX
)←
L ◦ 〈 id��

L

〉

= idLX ◦ idLX = idLX = idP(X ,L) .
(6.60)

Ad(4) This is a consequence of (3) and Theorem 3.10.
Ad(5) This is a consequence of (3) and Theorem 3.11.
Ad(6) This is a corollary of (2) and Theorem 6.13.
Ad(7) This follows from (6) and Lemma 6.15 and Theorem 6.16.
Ad(8) The first statement is immediate since (3) and (7) force the satisfaction of

Definition 4.4(G4) in addition to (G1)–(G3); and the second statement follows from (2),
(3), and Lemma 6.1. �

Corollary 6.20 (cf. Corollary 6.9). The following are equivalent:
(1) P(�) is algebraically generated from the algebraic theory T1(�);
(2) C ⊂ LoUQuant(�);
(3) P(�) is algebraically generated from the algebraic theory T2(�).

Corollary 6.21. Corollary 6.20 implies Corollary 5.7.

The proof is à la the proof of Corollary 6.10.
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Remark 6.22 (relationships of right-adjoint (fuzzy) topology to algebraic theories). (1)
Theorem 6.19 and Corollary 6.20 show that two different algebraic theories in Set×C
can algebraically generate the same powerset theory in Set×C.

(2) All of the algebraic, powerset, topological, and fuzzy topological theories being ad-
dressed in Theorem 6.19 are nonempty in that all of the categories in question have both
nontrivial objects and nontrivial morphisms—this is a consequence of Example 1.17.
Further, all such theories are nonredundant compared with left-adjoint theories, that is,
cannot be recaptured using left-adjoint theories—see Definition 6.23 and Theorem 6.24.

(3) The powerset theories addressed do not all have an algebraic foundation in the
sense of being algebraically generated by T1(�) and T2(�). Hence, some right-adjoint
theories are algebraic while most are not, but they all have the same syntax. So T1(�) and
T2(�) provide an algebraic check that we have the correct syntax for the new powerset
theories created in this section (cf. Remark 6.12(1)).

(4) To continue the previous comment, some of the new topological powerset theories
created in this section have an algebraic foundation and most do not, and hence some of
the new (q-)topological and (q-)fuzzy topological theories created in this section have an
algebraic foundation in the sense of T1(�) and T2(�) and most do not. But the syntax
of all these topological categories is the same and ultimately is algebraically checked by
T1(�) and T2(�). This algebraic check assures us that in the new kinds of variable-basis
topology and fuzzy topology created in this section, the syntax (especially for the all-
important preimage operator) is correct.

(5) Whether the new categories T(Set×C)P(�) and TF(Set×C)P(�) for variable-basis (fuzzy)
topology constructed above are syntactically generated from within the context of alge-
braic theories, it is possible to give an external description of these new categories as well
as a more conventional notation. Since the examples of variable-basis categories for topol-
ogy and fuzzy topology given in Section 1.5 and Example 3.23 are shown in Section 6.2
to exemplify the left-adjoint categories T(Set×C)P(�) and TF(Set×C)P(�) for (fuzzy) topology,
we will modify for these comments the notation for these left-adjoint categories to be the
following: C-QTop(�), C-Top(�), C-QFTop(�), C-FTop(�). Thus we now give an anal-
ogous external description and conventional notation for T(Set×C)P(�) and TF(Set×C)P(�) as
follows:

(a) C-QTop(�), C-Top(�) are defined exactly as C-QTop(�), C-Top(�), respec-
tively, in Definition 1.24, but with this modification: ( f ,φ) : (X ,L) → (Y ,M)
is a morphism from (X ,L,τ) to (Y ,M,σ) if the condition for continuity in
Definition 1.24(2) is changed to read

τ ⊂ (
( f ,φ)←�

)→
(σ), (6.61)

namely for each v ∈ σ , ( f ,φ)←� (v) ≡ φ�� ◦ v ◦ f ∈ τ.

(b) C-QFTop(�), C-FTop(�) are defined exactly as C-QFTop(�), C-FTop(�), re-
spectively, in Definition 1.25, but with this modification: ( f ,φ) : (X ,L) → (Y ,
M) is a morphism from (X ,L,	) to (Y ,M,�) if the condition for continuity in
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Definition 1.25(2) is changed, in accordance with Definition 3.8(2), to read

	 ◦ ( f ,φ)←� ≥ φop ◦�, (6.62)

namely for each b ∈MY , 	( f ←L (〈φ��〉(b))) ≥ φop(�(b)).

The following definition and theorem resolve the question: to what extent are right-
adjoint theories redundant; namely, when are the powerset operators of a right-adjoint
variable-basis powerset theories already given by some left-adjoint variable-basis power-
set theory. More precisely, it suffices to have the following definition.

Definition 6.23 (criteria of redundancy of right-adjoint powerset theories). A right-
adjoint variable-basis powerset theory P(�) in Set×C is redundant if at least one of the
following statements holds:

(1) For each ( f ,φ)→� in P(�), ( f ,φ)←� � ( f ,φ)→� (i.e., the standard right-adjoint image
operator ( f ,φ)→� is the lower-left-adjoint image operator ( f ,φ)�→ of Example 3.23).

(2) For each ( f ,φ)→� in P(�), ( f ,φ)→� � ( f ,φ)←� (i.e., the standard right-adjoint image
operator ( f ,φ)→� is the standard left-adjoint image operator ( f ,φ)→� ).

Theorem 6.24. If C ⊂ LoSQuant, then P(�) is not redundant. In particular, for C ⊂
LoUQuant(�), the right-adjoint variable-basis powerset theories generated by T1(�) and
T2(�) are not redundant.

Proof. We must be able to deny each of Definition 6.23(1) and (2). The needed coun-
terexamples given below suffice for both claims of the theorem.

Denial of (1). Let f : X ≡ {x1,x2} → Y ≡ {y}, set L =M = I, and put φop = idL. Now
consider the L-subset a∈ LX given by a(x1) = 1/3, a(x2) = 2/3. Then

( f ,φ)←�
[
( f ,φ)→� (a)

](
x1
)= 〈

φop〉(〈φ�〉[( f →L (a)
)(
f
(
x1
))])

=
∨{

a(z) : z ∈ f ←{y}}

= a
(
x2
)= 2

3
> a

(
x1
)
.

(6.63)

Hence

( f ,φ)←�
[
( f ,φ)→�

(
f →L (a)

)]
� a, (6.64)

which implies

¬[( f ,φ)←� � ( f ,φ)→�
]
. (6.65)

Denial of (2). Let L, M, φ be as in Example 1.17(4), let f : X ≡ {x} → Y ≡ {y}, and let
d ∈ LX by d = b. Recall that

φ�(b) =⊥, (6.66)

and hence

φop(φ�(b)
)= φop(⊥) =⊥ < b. (6.67)
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Thus

( f ,φ)←�
[
( f ,φ)→� (d)

]
(x) = 〈

φop〉(〈φ�〉[( f →L (d)
)(
f (x)

)])= φop(φ�(b)
)
< b. (6.68)

It follows

¬[( f ,φ)→� � ( f ,φ)←�
]
. (6.69)

This concludes the proof of the theorem. �
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