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We introduce the notion of derivation for an MV-algebra and discuss some related properties.
Using the notion of an isotone derivation, we give some characterizations of a derivation of an
MV-algebra. Moreover, we define an additive derivation of an MV-algebra and investigate some
of its properties. Also, we prove that an additive derivation of a linearly orderedMV-algebral is an
isotone.

1. Introduction

In his classical paper [1], Chang invented the notion of MV-algebra in order to provide an
algebraic proof of the completeness theorem of infinite valued Lukasiewicz propositional
calculus. Recently, the algebraic theory of MV-algebras is intensively studied, see [2–5].

The notion of derivation, introduced from the analytic theory, is helpful to the research
of structure and property in algebraic system. Several authors [6–9] studied derivations in
rings and near rings. Jun and Xin [10] applied the notion of derivation in ring and near-ring
theory to BCI-algebras. In [11], Szász introduced the concept of derivation for lattices and
investigated some of its properties, for more details, the reader is referred to [9, 12–19].

In this paper, we apply the notion of derivation in ring and near-ring theory to MV-
algebras and investigate some of its properties. Using the notion of an isotone derivation,
we characterize a derivation of MV-algebra. We introduce a new concept, called an additive
derivation of MV-algebras, and then we investigate several properties. Finally, we prove that
an additive derivation of a linearly ordered MV-algebra is an isotone.

2. Preliminaries

Definition 2.1 (see [5]). AnMV-algebra is a structure (M,⊕, ∗, 0)where ⊕ is a binary operation,
∗ is a unary operation, and 0 is a constant such that the following axioms are satisfied for
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any a, b ∈ M:

(MV1) (M,⊕, 0) is a commutative monoid,

(MV2) (a∗)∗ = a,

(MV3) 0∗ ⊕ a = 0∗,

(MV4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

If we define the constant 1 = 0∗ and the auxiliary operations �,∨, and ∧ by

a � b = (a∗ ⊕ b∗)∗, a ∨ b = a ⊕ (b � a∗), a ∧ b = a � (b ⊕ a∗), (2.1)

then (M,�, 1) is a commutative monoid and the structure (M,∨,∧, 0, 1) is a bounded
distributive lattice. Also, we define the binary operation � by x � y = x � y∗. A subset X
of an MV-algebra M is called subalgebra of M if and only if X is closed under the MV-
operations defined in M. In any MV-algebras, one can define a partial order ≤ by putting
x ≤ y if and only if x ∧ y = x for each x, y ∈ M. If the order relation ≤, defined over
M, is total, then we say that M is linearly ordered. For an MV-algebra M, if we define
B(M) = {x ∈ M : x ⊕ x = x} = {x ∈ M : x � x = x}. Then, (B(M),⊕, ∗, 0) is both a
largest subalgebra of M and a Boolean algebra.

An MV-algebraM has the following properties for all x, y, z ∈ M

(1) x ⊕ 1 = 1,

(2) x ⊕ x∗ = 1,

(3) x � x∗ = 0,

(4) If x ⊕ y = 0, then x = y = 0,

(5) If x � y = 1, then x = y = 1,

(6) If x ≤ y, then x ∨ z ≤ y ∨ z and x ∧ z ≤ y ∧ z,

(7) If x ≤ y, then x ⊕ z ≤ y ⊕ z and x � z ≤ y � z,

(8) x ≤ y if and only if y∗ ≤ x∗,

(9) x ⊕ y = y if and only if x � y = x.

Theorem 2.2 (see [1]). The following conditions are equivalent for all x, y ∈ M

(i) x ≤ y,

(ii) y ⊕ x∗ = 1,

(iii) x � y∗ = 0.

Definition 2.3 (see [1]). LetM be an MV-algebra and I be a nonempty subset ofM. Then, we
say that I is an ideal if the following conditions are satisfied:

(i) 0 ∈ I,

(ii) x, y ∈ I imply x ⊕ y ∈ I,

(iii) x ∈ I and y ≤ x imply y ∈ I.

Proposition 2.4 (see [1]). LetM be a linearly ordered MV-algebra, then x⊕y = x⊕z and x⊕z/= 1
implies that y = z.
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Table 1

⊕ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

Table 2

∗ 0 a b 1
1 b a 0

3. Derivations of MV-Algebras

Definition 3.1. Let M be an MV-algebra, and let d : M → M be a function. We call d a
derivation of M, if it satisfies the following condition for all x, y ∈ M

d
(
x � y

)
=
(
dx � y

) ⊕ (
x � dy

)
. (3.1)

We often abbreviate d(x) to dx.

Example 3.2. LetM = {0, a, b, 1}. Consider Tables 1 and 2 .
Then (M,⊕, ∗, 0) is an MV-algebra. Define a map d : M → M by

dx =

⎧
⎨

⎩

0 if x = 0, a, 1,

a if x = b.
(3.2)

Since d(a�b) = 0 and (da�b)⊕(a�db) = (0�b)⊕(a�a) = 0⊕a = a, d is not derivation.

Example 3.3. LetM = {0, x1, x2, x3, x4, 1}. Consider Tables 3 and 4 .
Then, (M,⊕, ∗, 0) is an MV-algebra. Define a map d : M → M by

dx =

⎧
⎨

⎩

0 if x = 0, x1, x3,

x2 if x = x2, x4, 1.
(3.3)

Then, it is easily checked that d is a derivation of M.

Proposition 3.4. LetM be an MV-algebra, and let d be a derivation on M. Then, the following hold
for every x ∈ M:

(i) d0 = 0,

(ii) dx � x∗ = x � dx∗ = 0,

(iii) dx = dx ⊕ (x � d1),

(iv) dx ≤ x,

(v) If I is an ideal of an MV-algebra M, then d(I) ⊆ I.
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Table 3

⊕ 0 x1 x2 x3 x4 1
0 0 x1 x2 x3 x4 1
x1 x1 x3 x4 x3 1 1
x2 x2 x4 x2 1 x4 1
x3 x3 x3 1 x3 1 1
x4 x4 1 x4 1 1 1
1 1 1 1 1 1 1

Table 4

∗ 0 x1 x2 x3 x4 1
1 x4 x3 x2 x1 0

Proof. (i) d0 = d(x � 0) = (dx � 0) ⊕ (x � d0) = x � d0.
Putting x = 0, we get d0 = 0.

(ii) Let x ∈ M, then

0 = d0 = d(x � x∗) = (dx � x∗) ⊕ (x � dx∗), (3.4)

and so (ii) follows from (4).

(iii) It is clear.

(iv) Let x ∈ M, from (ii), we have

1 = 0∗ = (dx � x∗)∗ = (dx)∗ ⊕ x, (3.5)

from Theorem 2.2 we get dx ≤ x.

(v) Let y ∈ d(I), then y = d(x) for some x ∈ I. Since y = d(x) ≤ x ∈ I, thus y ∈ I and
so d(I) ⊆ I.

Proposition 3.5. Let d be a derivation of an MV-algebra M, and let x, y ∈ M. If x ≤ y. Then, the
following hold:

(i) d(x � y∗) = 0,

(ii) dy∗ ≤ x∗,

(iii) dx � dy∗ = 0.

Proof. (i) Let x ≤ y, then Theorem 2.2 implies that x � y∗ = 0, and so d(x � y∗) = d0 = 0.

(ii) From (i), we get

0 = d
(
x � y∗) =

(
dx � y∗) ⊕ (

x � dy∗), (3.6)

and by (4), we have x � dy∗ = 0. Therefore, dy∗ ≤ x∗.
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(iii) If x ≤ y, then dx ≤ y, thus dx � dy∗ ≤ y � dy∗, also dy∗ ≤ y∗, and so y � dy∗ ≤
y � y∗ = 0. Hence, dx � dy∗ = 0.

Proposition 3.6. LetM be anMV-algebra, and let d be a derivation onM. Then, the following hold:

(i) dx � dx∗ = 0,

(ii) dx∗ = (dx)∗ if and only if d is the identity on M.

Proof. (i) It follows directly from Proposition 3.5(iii).

(ii) It is sufficient to show that if dx∗ = (dx)∗, then d is the identity onM.

Assume that dx∗ = (dx), from Proposition 3.4(ii), we have x�(dx)∗ = 0, which implies
that x ≤ dx. Therefore, dx = x.

Definition 3.7. LetM be an MV-algebra and d be a derivation onM. If x ≤ y implies dx ≤ dy
for all x, y ∈ M, d is called an isotone derivation.

Example 3.8. Let M be an MV-algebra as in Example 3.3. It is easily checked that d is an
isotone derivation of M.

Proposition 3.9. LetM be anMV-algebra, and let d be aderivation ofM. If dx∗ = dx for all x ∈ M,
then the following hold:

(i) d1 = 0,

(ii) dx � dx = 0,

(iii) If d is an isotone derivation ofM, then d is zero.

Proof. (i) It follows by putting x = 0.

(ii) It follows from Proposition 3.6(i).

(iii) Since d is an isotone, hence dx ≤ d1 for all x ∈ M. By (i), we have dx ≤ 0, and so d
is zero.

Definition 3.10. LetM be an MV-algebra, and let d be a derivation onM. If d(x⊕y) = dx⊕dy
for all x, y ∈ M, d is called an additive derivation.

Example 3.11. Let M be an MV-algebra as in Example 3.3. It is easily checked that d is an
additive derivation ofM.

Theorem 3.12. Let M be an MV-algebra, and let d be a nonzero additive derivation of M. Then,
d(B(M)) ⊆ B(M).

Proof. Let y ∈ d(B(M)), thus y = d(x) for some x ∈ B(M). Then,

y ⊕ y = dx ⊕ dx = d(x ⊕ x) = dx = y. (3.7)

Therefore y ∈ B(M), this complete the proof.

Theorem 3.13. Let d be an additive derivation of a linearly orderedMV-algebra M. Then, either d = 0
or d1 = 1.
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Proof. Let d be an additive derivation of a linearly ordered MV-algebraM. Hence,

d1 = d(x ⊕ x∗) = dx ⊕ dx∗, (3.8)

also,

d1 = d(x ⊕ 1) = dx ⊕ d1, (3.9)

for all x ∈ M. If d1/= 1, then Proposition 2.4 implies that dx∗ = d1. Putting x = 1, we get that
d1 = 0. Therefore,

0 = d1 = dx ⊕ d1 = dx, (3.10)

for all x ∈ M, and so d is zero.

Proposition 3.14. LetM be a linearly ordered MV-algebra, and let d1, d2 additive derivations ofM.
Define d1d2(x) = d1(d2x) for all x ∈ M. If d1d2 = 0, then d1 = 0 or d2 = 0.

Proof. Let d1d2 = 0, x ∈ M, and suppose that d2 /= 0. Then,

0 = d1d2x = d1(d2x ⊕ (x � d21)) = d1d2x ⊕ d1x = d1x, (3.11)

thus d1 = 0. Similarly, we can prove that d2 = 0.

Proposition 3.15. LetM be a linearly ordered MV-algebra, and let d be a nonzero additive derivation
of M. Then,

d(x � x) = x ⊕ x, ∀ x ∈ M. (3.12)

Proof. From Proposition 3.4(iii) and Theorem 3.13, we get that dx = dx ⊕ x; applying (9), we
have dx � x = x. Thus,

d(x ⊕ x) = (dx � x) ⊕ (dx � x)

= x ⊕ x.
(3.13)

Theorem 3.16. Every nonzero additive derivation of a linearly ordered MV-algebra M is an isotone
derivation.

Proof. Assume that d is an additive derivation of M, and x, y ∈ M. If x ≤ y, then x∗ ⊕ y = 1,
hence

1 = d1 = d
(
x∗ ⊕ y

)
= dx∗ ⊕ dy, (3.14)

and so, (dy)∗ ≤ dx∗, from (8), we have (dx∗)∗ ≤ dy. Otherwise, dx∗ ≤ x∗, again by (8)
x ≤ (dx∗)∗. Since dx ≤ x, we get dx ≤ dy.
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Theorem 3.17. Let M be a linearly ordered MV-algebra, and let d be a nonzero additive deriviation
of M. Then, d−1(0) = {x ∈ M | dx = 0} is an ideal ofM.

Proof. From Proposition 3.4(i), we get that 0 ∈ d−1(0). Let x, y ∈ d−1(0); this implies that
d(x ⊕ y) = 0. And so x ⊕ y ∈ d−1(0).

Now, let x ∈ d−1(0) and y ≤ x. Using Theorem 3.16, we have that dy ≤ dx, and so
dy = 0.
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1985), vol. 137 of North-Holland Mathematical Studies, pp. 31–35, North-Holland, Amsterdam, The
Netherlands, 1987.

[8] K. Kaya, “Prime rings with -derivations,” Hacettepe Bulletin of Natural Sciences and Engineering, vol.
16-17, pp. 63–71, 1988.

[9] E. C. Posner, “Derivations in prime rings,” Proceedings of the American Mathematical Society, vol. 8, pp.
1093–1100, 1957.

[10] Y. B. Jun and X. L. Xin, “On derivations of BCI-algebras,” Information Sciences, vol. 159, no. 3-4, pp.
167–176, 2004.

[11] G. Szász, “Derivations of lattices,” Acta Scientiarum Mathematicarum, vol. 37, pp. 149–154, 1975.
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