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In this paper we construct the new analogues of Genocchi the numbers and polynomials. We also
observe the behavior of complex roots of the q-Genocchi polynomials Gn,q(x), using numerical
investigation. By means of numerical experiments, we demonstrate a remarkably regular structure
of the complex roots of the q-Genocchi polynomials Gn,q(x). Finally, we give a table for the
solutions of the q-Genocchi polynomials Gn,q(x).

1. Introduction

Many mathematicians have the studied Bernoulli numbers and polynomials, the Euler
numbers and polynomials, and the Genocchi numbers and the Genocchi polynomials. The
Bernoulli numbers and polynomials, the Euler numbers and polynomials, and the Genocchi
polynomials posses many interesting properties and arising in many areas of mathematics
and physics (see [1–12]). We introduce the new analogs of the Genocchi numbers and
polynomials. In the 21st century, the computing environment would make more and more
rapid progress. Using computer, a realistic study for new analogs of Genocchi numbers
and polynomials is very interesting. It is the aim of this paper to observe an interesting
phenomenon of “scattering” of the zeros of q-Genocchi polynomials Gn,q(x). The outline
of this paper is as follows. In Section 2, we study the q-Genocchi polynomials Gn,q(x).
In Section 3, we describe the beautiful zeros of q-Genocchi polynomials Gn,q(x) using a
numerical investigation. Also we display distribution and structure of the zeros of the
q-Genocchi polynomials Gn,q(x) by using computer. By using the results of our paper,
the readers can observe the regular behaviour of the roots of q-Genocchi polynomials
Gn,q(x). Finally, we carried out computer experiments that demonstrate a remarkably regular
structure of the complex roots of q-Genocchi polynomials Gn,q(x). Throughout this paper we
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use the following notations. By Zp we denote the ring of p-adic rational integers, Q denotes
the field of rational numbers, Qp denotes the field of p-adic rational numbers, C denotes the
complex number field, and Cp denotes the completion of algebraic closure of Qp. Let νp be
the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one talks of q-
extension, q is considered in many ways such as an indeterminate, a complex number q ∈ C,
or p-adic number q ∈ Cp. If q ∈ C, one normally assumes that |q| < 1. If q ∈ Cp, we normally
assume that |q − 1|p < p−1/(p−1) so that qx = exp(x log q) for |x|p ≤ 1 :

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

. (1.1)

Compare [1, 2, 4, 10, 11, 13–16]. Hence, limq→ 1[x] = x for any x with |x|p ≤ 1 in the present
p-adic case. Let d be a fixed integer and let p be a fixed prime number. For any positive integer
N, we set

X = lim
←
N

(
Z

dpNZ

)
, X∗ =

⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
, a + dpNZp =

{
x ∈ X | x ≡ a

(
moddpN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . For any positive integer N,

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

(1.3)

is known to be a distribution on X, cf. [1, 2, 4, 5, 9, 10, 13]. We say that g is a uniformly
differentiable function at a point a ∈ Zp and denote this property by g ∈ UD(Zp), if the
difference quotients Fg(x, y) = f(x) − f(y)/(x − y) have a limit l = g ′(a) as (x, y) → (a, a).
For

g ∈ UD
(
Zp

)
=
{
g | g : Zp −→ Cp is uniformly differentiable function

}
, (1.4)

the q-deformed bosonic p-adic integral of the function g is defined by Kim:

Iq
(
g
)
=
∫

Zp

g(x)dμq(x) = lim
N→∞

1
[
pN

]
q

∑

0≤x<pN
g(x)qx. (1.5)

Note that

qIq
(
f1
)
= Iq

(
f
)
+
(
q − 1)f(0) + q − 1

log q
f ′(0), (1.6)
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where f1(x) = f(x + 1), f ′(0) = df(0)/dx. Now, the fermionic p-adic invariant q-integral on
Zp is defined as

I−q
(
g
)
=
∫

Zp

g(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

∑

0≤x<pN
g(x)

(−q)x. (1.7)

If we take g1(x) = g(x + 1) in (1.7), then we easily see that

qI−q
(
g1
)
+ I−q

(
g
)
= [2]qg(0). (1.8)

From (1.8), we obtain

qnI−q
(
gn

)
+ (−1)n−1I−q

(
g
)
= [2]q

n−1∑

l=0

(−1)n−1−lg(l), (1.9)

where gn(x) = g(x + n). First, we introduce the Genocchi numbers and the Genocchi
polynomials. The Genocchi numbers Gn are defined by the generating function:

F(t) =
2t

et + 1
=
∞∑

n=0

Gn
tn

n!
, (|t| < π). (1.10)

Compare [4, 9–11, 17], where we use the technique method notation by replacing Gn by
Gn(n ≥ 0) symbolically. We consider the Genocchi polynomials Gn(x) as follows:

F(x, t) =
2t

et + 1
ext =

∞∑

n=0

Gn(x)
tn

n!
. (1.11)

Note that Gn(x) =
∑n

k=0(
n
k )Gkx

n−k. In the special case x = 0, we define Gn(0) = Gn.

2. An Analogue of the Genocchi Numbers and Polynomials

The versions of q-Genocchi numbers and polynomials, which were derived from different
considerations and different formulas, were defined by Kim [13, 14]. Kim [14] treated
analogue of the Genocchi numbers, which is called q-analogue of the Genocchi numbers.
Kim defined the q-extension of the Genocchi numbers and polynomials as follows:

Fq(t) =
∞∑

n=0

cn,q
tn

n!
= et/(1−q)

∞∑

n=0

(2n + 1)
[2n + 1]q

[n]q

(
1

q − 1
)n−1 tn

n!
,

Fq(x, t) =
∞∑

n=0

cn,q(x)
tn

n!
= et/(1−q)

∞∑

n=0

(2n + 1)
[2n + 1]q

[n]q

(
1

q − 1
)n−1

qnx
tn

n!
.

(2.1)
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In [14], Kim introduced the q-analogue of the Genocchi polynomials as follows:

Gq(x, t) = [2]qt
∞∑

n=0
(−1)nqn+xe[n+x]qt =

∞∑

n=0

Gn,q(x)
tn

n!
. (2.2)

We now consider another construction q-Genocchi numbers and polynomials. In (1.8), if we
take g(x) = ext, then one has

(
log q + t

)
∫

Zp

extdμ−q(x) =
[2]q

(
log q + t

)

qet + 1
. (2.3)

Let us define the q-Genocchi numbers and polynomials as follows:

(
log q + t

)
∫

Zp

eytdμ−q
(
y
)
=
∞∑

n=0

Gn,q
tn

n!
, (2.4)

(
log q + t

)
∫

Zp

e(x+y)tdμ−q
(
y
)
=
∞∑

n=0

Gn,q(x)
tn

n!
. (2.5)

Note that Gn,q(0) = Gn,q, limq→ 1Gn,q = Gn, where Gn are the nth Genocchi numbers. By (2.4)
and (2.5), we obtain the following Witt’s formula.

Theorem 2.1. For q ∈ Cp with |1 − q|p ≤ p−1/(p−1), we have

n

∫

Zp

xn−1dμ−q(x) + log q
∫

Zp

xndμ−q(x) = Gn,q,

n

∫

Zp

(
x + y

)n−1
dμ−q

(
y
)
+ log q

∫

Zp

(
x + y

)n
dμ−q

(
y
)
= Gn,q(x).

(2.6)

By the above theorem, easily see that

Gn,q(x) =
n∑

k=0

(
n
k

)
xn−kGk,q. (2.7)

Let q be a complex number with |q| < 1. By the meaning of (1.10) and (1.11), let us define the
q-Genocchi numbers Gn,q and polynomials Gn,q(x) as follows:

Fq(t) =
[2]q

(
log q + t

)

qet + 1
=
∞∑

n=0

Gn,q
tn

n!
,

Fq(x, t) =
[2]q

(
log q + t

)

qet + 1
ext =

∞∑

n=0

Gn,q(x)
tn

n!
.

(2.8)
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For q-Euler numbers, Kim constructed q-Euler numbers which can be uniquely determined
by

q
(
qEq + 1

)n + En,q =

{
[2]q, if n = 0,
0, if n > 0,

(2.9)

with the usual convention of symbolically replacing En
q by En,q, where En,q denotes the q-Euler

numbers. For q-Genocchi numbers, we have the following theorem.

Theorem 2.2. q-Genocchi numbers Gn,q are defined inductively by

G0,q =
[2]q log q

1 + q
, q

(
Gq + 1

)n +Gn,q =

{
[2]q, if n = 1,
0, if n > 1,

(2.10)

with the usual convention about replacing (Gq)
n by Gn,q in the binomial expansion.

Proof. From (2.4), we obtain

[2]q
(
log q + t

)

qet + 1
=
∞∑

n=0

Gn,q
tn

n!
=
∞∑

n=0

(
Gq

)n tn

n!
= eGqt, (2.11)

which yields

[2]q
(
log q + t

)
=
(
qet + 1

)
eGqt = qe(Gq+1)t + eGqt. (2.12)

Using the Taylor expansion of exponential function, we have

[2]q log q + [2]qt =
∞∑

n=0

{
q
(
Gq + 1

)n +
(
Gq

)n} tn

n!

= q
(
Gq + 1

)0 +
(
Gq

)0 + q
(
Gq + 1

)1 +
(
Gq

)1

+
∞∑

n=2

{
q
(
Gq + 1

)n +
(
Gq

)n} tn

n!
.

(2.13)

The result follows by comparing the coefficients.
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Figure 1: Curves of Gn,q.

Here is the list of the first q-Genocchi numbers Gn,q:

G0,q = log q,

G1,q = −
−1 − q + q log q

(
1 + q

) ,

G2,q =
q
(−2 − 2q − log q + q log q

)

(
1 + q

)2 ,

G3,q = −
q
(
3 − 3q2 + log q − 4q log q + q2 log q

)

(
1 + q

)3 ,

...

(2.14)

We display the shapes of the q-Genocchi numbers Gn,q. For n = 1, . . . , 10, we can draw a
curve ofGn,q, 1/10 ≤ q ≤ 9/10, respectively. This shows the ten curves combined into one. We
display the shape of Gn,q : (Figure 1).

Because

∂

∂x
Fq(t, x) = tFq(t, x) =

∞∑

n=0

d

dx
Gn,q(x)

tn

n!
, (2.15)
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it follows the important relation

d

dx
Gn,q(x) = nGn−1,q(x). (2.16)

Here is the list of the first the q-Genocchi polynomials Gn,q(x):

G0,q(x) = log q,

G1,q(x) =

(
1 + q − q log q + x log q + qx log q

)

(
1 + q

) ,

...

(2.17)

Since

∞∑

l=0

Gl,q

(
x + y

) tl

l!
=

[2]q log q + [2]qt

qet + 1
e(x+y)t

=
∞∑

n=0

Gn,q(x)
tn

n!

∞∑

m=0

ym tm

m!

=
∞∑

l=0

(
l∑

n=0

Gn,q(x)
tn

n!
yl−n tl−n

(l − n)!

)

=
∞∑

l=0

(
l∑

n=0

(
l
n

)
Gn,q(x)yl−n

)
tl

l!
,

(2.18)

we have the following theorem.

Theorem 2.3. q-Genocchi polynomials Gn,q(x) satisfy the following relation:

Gl,q

(
x + y

)
=

l∑

n=0

(
l
n

)
Gn,q(x)yl−n. (2.19)
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It is easy to see that

∞∑

n=0

Gn,q(x)
tn

n!
=

[2]q log q + [2]qt

qet + 1
ext

=
[2]q

m[2]qm

m−1∑

a=0
(−1)aqa

[2]qm log qm + [2]qmmt

qmemt + 1
e(a/m+x/m)(mt)

=
[2]q

m[2]qm

m−1∑

a=0
(−1)aqa

∞∑

n=0

Gn,qm

(
a + x

m

)
(mt)n

n!

=
∞∑

n=0

(

mn−1 [2]q
[2]qm

m−1∑

a=0
(−1)aqaGn,qm

(
a + x

m

))
tn

n!
.

(2.20)

Hence we have the following theorem.

Theorem 2.4. For any positive integerm(=odd), one obtains

Gn,q(x) = mn−1 [2]q
[2]qm

m−1∑

i=0
(−1)iqiGn,qm

(
i + x

m

)
, for n ≥ 0. (2.21)

3. Distribution and Structure of the Zeros

In this section, we investigate the zeros of the q-Genocchi polynomials Gn,q(x) by using
computer. We display the shapes of the q-Genocchi polynomials Gn,q(x). For n = 1, . . . , 10,
we can draw a curve of Gn,q(x),−2 ≤ x ≤ 2, respectively. This shows the ten curves combined
into one. We display the shape of Gn,q(x) (Figures 2, 3, 4, and 5).

We plot the zeros of Gn,q(x), x ∈ C for n = 10, 20, 25, 30, q = 1/3 (Figures 6, 7, 8, and 9).
Next, we plot the zeros of Gn,q(x), x ∈ C for n = 30, q = 1/2, 1/3, 1/4, 1/5. (Figures 10,

11, 12, and 13).
In Figures 6, 7, 8, 9, 10, 11, 12, and 13, Gn,q(x), x ∈ C, has Im(x) = 0 reflection

symmetry. This translates to the following open problem: prove or disprove: Gn,q(x), x ∈ C,
has Im(x) = 0 reflection symmetry. Our numerical results for numbers of real and complex
zeros of Gn,q(x), q = 1/2, 1/3, are displayed in Table 1.

Figure 15 shows the distribution of real zeros of Gn,q(x) for 1 ≤ n ≤ 20.
In Figure 15(a), we choose q = 1/10. In Figure 15(b), we choose q = 3/10. In Figure

15(c), we choose q = 5/10. In Figure 15(d), we choose q = 6/10.
We calculated an approximate solution satisfying Gn,q(x), q = 1/2, 1/3, x ∈ R. The

results are given in Tables 2 and 3.
The plot above shows Gn,q(x) for real 1/10 ≤ q ≤ 9/10 and −3 ≤ x ≤ 3, with the zero

contour indicated in black (Figure 16). In Figure 16(a), we choose n = 2. In Figure 16(b), we
choose n = 3. In Figure 16(c), we choose n = 4. In Figure 16(d), we choose n = 5.

We will consider the more general open problem. In general, how many roots does
Gn,q(x) have? Prove or disprove: Gn,q(x) has n distinct solutions. Find the numbers of
complex zeros CGn,q(x) of Gn,q(x), Im(x)/= 0. Prove or give a counterexample: Conjecture: since
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Figure 6: Zero of G10,1/3(x).
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Figure 7: Zero of G20,1/3(x).
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Figure 8: Zero of G25,1/3(x).
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Figure 9: Zero of G30,1/3(x).
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Figure 10: Zero of G30,1/2(x).
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Figure 11: Zero of G30,1/3(x).
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Figure 12: Zero of G30,1/4(x).
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Figure 13: Zero of G30,1/5(x).
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Figure 14: Stacks of zeros Gn,1/3(x) for 1 ≤ n ≤ 30.
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Figure 15: Plot of real zeros of Gn,q(x) for 1 ≤ n ≤ 20.
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Table 1: Numbers of real and complex zeros of Gn,q(x).

Degree n q = 1/2 q = 1/3
Real zeros Complex zeros Real zeros Complex zeros

1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 4 0 4 0
5 3 2 3 2
6 4 2 4 2
7 5 2 5 2
8 4 4 6 2
9 5 4 5 4
10 4 6 4 6

Table 2: Approximate solutions of Gn,1/2(x) = 0, x ∈ R.

Degree n x

1 1.7760
2 0.2583, 3.294
3 −0.1698, 0.7313, 4.767
4 −0.4188, 0.1527, 1.145, 6.225
5 0.5848, 1.492, 7.677
6 0.01656, 1.017, 1.772, 9.126
7 −0.5269, 0.4468, 1.452, 1.974, 10.573
8 −0.8536, −0.1221, 0.8779, 12.019
9 −0.969, −0.707, 0.3088, 1.309, 13.46
10 −0.2604, 0.7396, 1.738, 14.91

Table 3: Approximate solutions of Gn,1/3(x) = 0, x ∈ R.

Degree n x

1 1.1602
2 0.1523, 2.168
3 −0.2107, 0.5657, 3.126
4 −0.3621, −0.02976, 0.9703, 4.062
5 0.3561, 1.333, 4.989
6 −0.2472, 0.7504, 1.652, 5.910
7 −0.6547, 0.1435, 1.144, 1.923, 6.828
8 −0.798, −0.4682, 0.5362, 1.540, 2.139, 7.744
9 −0.07080, 0.9292, 1.98, 2.25, 8.659
10 −0.673, 0.3221, 1.322, 9.573

n is the degree of the polynomial Gn,q(x), the number of real zeros RGn,q(x) lying on the real
plane Im(x) = 0 is then RGn,q(x) = n−CGn,q(x), where CGn,q(x) denotes complex zeros. See Table 1
for tabulated values of RGn,q(x) and CGn,q(x). Find the equation of envelope curves bounding
the real zeros lying on the plane and the equation of a trajectory curve running through the
complex zeros on any one of the arcs. For n = 1, . . . , 10, we can draw a plot of the Gn,q(x),
respectively. This shows the ten curves combined into one. These figures givemathematicians
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Figure 16: Zero contour of Gn,q(x).

an unbounded capacity to create visual mathematical investigations of the behavior of the
Gn,q(x) and roots of the Gn,q(x) (Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16).
Moreover, it is possible to create new mathematical ideas and analyze them in ways that
generally are not possible by hand. The author has no doubt that investigation along this
line will lead to a new approach employing numerical method in the field of research of the
q-Genocchi polynomials Gn,q(x) to appear in mathematics and physics. For related topics the
interested reader is referred to [15–19].
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