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Some properties of the nilpotent elements of a residuated lattice are studied. The concept of cyclic
residuated lattices is introduced, and some related results are obtained. The relation between
finite cyclic residuated lattices and simple MV-algebras is obtained. Finally, the notion of nilpotent
elements is used to define the radical of a residuated lattice.

1. Introduction

Ward and Dilworth [1] introduced the concept of residuated lattices as generalization of ideal
lattices of rings. The residuated lattice plays the role of semantics for a multiple-valued logic
called residuated logic. Residuated logic is a generalization of intuitionistic logic. Therefore
it is weaker than classical logic. Important examples of residuated lattices related to logic are
Boolean algebras corresponding to basic logic, BL-algebras corresponding to Hajek’s basic
logic, and MV-algebras corresponding to Lukasiewicz many valued logic. The residuated
lattices have been widely studied (see [2–8]).

In this paper, we study the properties of nilpotent elements of residuated lattices. In
Section 2, we recall some definitions and theorems which will be needed in this paper. In
Section 3, we study the nilpotent elements of a residuated lattice and study its properties.
In Section 4, we define the notion of cyclic residuated lattice and we obtain some related
results. In particular, we will prove that a finite residuated lattice is cyclic if and only if it is a
simple MV-algebra. In Section 5, we investigate the relation between nilpotent elements and
the radical of a residuated lattice.

2. Preliminaries

In this section, we review some basic concepts and results which are needed in the later
sections.
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A residuated lattice is an algebraic structure (A,∧,∨, → , ∗, 0, 1) such that

(1) (A,∧,∨, 0, 1) is a bounded lattice with the least element 0 and the greatest element
1,

(2) (A, ∗, 1) is a commutative monoid where 1 is a unit element,

(3) x ∗ y ≤ z if and only if x ≤ y → z, for all x, y, z ∈ A.

We denote the residuated lattice (A,∧,∨, ∗, → , 0, 1) by A. We use the notation L(A) for the
bounded lattice (A,∧,∨, 0, 1).

Proposition 2.1 (see [5, 9]). Let A be a residuated lattice. Then one has the following properties: for
all x, y, z ∈ A,

(1) x ≤ y if and only if x → y = 1,

(2) 1 → x = x, x → 1 = 1,

(3) x ∗ y ≤ x, y, x ∗ (x → y) ≤ x ∧ y,

(4) x ∗ (y ∨ z) = (x ∗ y) ∨ (x ∗ z),
(5) x → (y → z) = (x ∗ y) → z,

(6) (x → y) ∗ (y → z) ≤ x → z,

(7) if x ≤ y, then z → x ≤ z → y and y → z ≤ x → z.

An MV-algebra is an algebra (A,⊕,¬, 0) with one binary operation ⊕, one unary
operation ¬, and one constant 0 such that (A,⊕, 0) is a commutative monoid and, for all
x, y ∈ A, ¬¬x = x, x ⊕ ¬0 = ¬0, ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x. If A is an MV-algebra, then the
binary operations ∗, ∧, ∨, → and the constant 1 are defined by the following relations: for all
x, y ∈ A, x ∗ y = ¬(¬x ⊕ ¬y), x ∧ y = (x ⊕ ¬y) ∗ y, x ∨ y = (x ∗ ¬y) ⊕ y, x → y = ¬x ⊕ y, 1 = ¬0.

Remark 2.2. A residuated lattice A is an MV-algebra if it satisfies the additional condition:
(x → y) → y = (y → x) → x, for any x, y ∈ A.

Definition 2.3. A nonempty subset F of A is called a filter of A if and only if it satisfies the
following conditions:

(i) for all x ∈ F and all y ∈ A, if x ≤ y then y ∈ F,

(ii) for all x, y ∈ F, x ∗ y ∈ F.

Let F be a filter of A. For all x, y ∈ A, we denote x ≡ y and say that x and y are
congruent if and only if x → y ∈ F and y → x ∈ F. ≡ is a congruence relation on A. The
quotient residuated lattice with respect to the congruence relation ≡ is denoted by A/F and
its elements are denoted by [x], for x ∈ A.

For all elements x of a residuated latticeA, define x0 = 1 and xn = xn−1 ∗x for all n ∈ ℵ.
The order of x ∈ A, in symbols ord(x), is the smallest positive integer n such that xn = 0. If
such n does not exist, we say x has infinite order.

Definition 2.4. The residuated lattice A is called simple if the only filters of A are {1} and A.

Proposition 2.5 (see [10]). A residuated lattice A is simple if and only if ord(a) < ∞, for every
a ∈ A such that a/= 1.
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A filterM ofA is called a maximal filter if and only if it is a maximal element of the set
of all proper filters ofA. The set of all maximal filters ofA is called themaximal spectrum ofA
and is denoted byMax(A). For anyX ⊆ A, we will denote SMax(X) = {M ∈ Max(A) | X/⊆M}.
For any x ∈ A, SMax({x}) will be denoted by SMax(x).

Proposition 2.6 (see [10]). Let A be a residuated lattice and M a proper filter of A. Then the
followings are equivalent:

(i) A/M is a simple residuated lattice,

(ii) M is a maximal filter,

(iii) for any x ∈ A, x /∈ M if and only if xn → 0 ∈ M, for some n ≥ 1.

Definition 2.7. A residuated lattice is said to be local if and only if it has exactly one maximal
filter.

Proposition 2.8 (see [10]). Any simple residuated lattice is local.

We denote by B(A) the Boolean center of A, that is the set of all complemented
elements of the lattice L(A). The complements of the elements in the Boolean center of a
residuated lattice are unique.

Theorem 2.9 (see [10]). If A is a local residuated lattice, then B(A) = {0, 1}.

3. Nilpotent Elements of Residuated Lattices

We recall that an element x ∈ A is called nilpotent if and only if ord(x) is finite. We denote by
N(A) the set of the nilpotent elements of A.

Example 3.1 (see [5]). Consider the residuated lattice Awith the universe {0, a, b, c, d, e, f, 1}.
Lattice ordering is such that 0 < d < c < b < a < 1, 0 < d < e < f < a < 1, and elements
from {b, c} and {e, f} are pairwise incomparable. The operations of ∗ and → are given by the
following:

∗ 0 a b c d e f 1

0 0 0 0 0 0 0 0 0
a 0 c c c 0 d d a
b 0 c c c 0 0 d b
c 0 c c c 0 0 0 c
d 0 0 0 0 0 0 0 d
e 0 d 0 0 0 d d e
f 0 d d 0 0 d d f
1 0 a b c d e f 1

−→ 0 a b c d e f 1

0 1 1 1 1 1 1 1 1
a d 1 a a f f f 1
b e 1 1 a f f f 1
c f 1 1 1 f f f 1
d a 1 1 1 1 1 1 1
e b 1 a a a 1 1 1
f c 1 a a a a 1 1
1 0 a b c d e f 1

(3.1)

Then ord(0) = 1, ord(d) = 2, ord(e) = ord(f) = 3, and ord(a) = ord(b) = ord(c) = ord(1) = ∞.
Hence N(A) = {0, d, e, f}.

Remark 3.2. Let A be a residuated lattice. Then x ∈ A has order n if and only if xn → 0 = 1,
for some n ∈ ℵ.
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Example 3.3. Let An+1 = {a0, . . . , an}, for n ∈ ℵ and ai ≤ ai+1 for all 0 ≤ i ≤ n. Also, we have
a0 = 0 and an = 1. Define

ai ∗ aj =

{
0 if i + j ≤ n,

ai+j−n if n < i + j,

ai −→ aj =

{
an−i+j if j < i,

1 if i ≤ j.

(3.2)

Then An+1 becomes a residuated lattice. Let 1/=ai ∈ An+1. Then there exists k ∈ ℵ such that
ki ≤ (k−1)n. We get that (ai)

k = ai∗(ai)
k−1 = ai∗a(k−1)i−(k−2)n = 0, because i+(k−1)i−(k−2)n =

ki − (k − 2)n ≤ n. Hence An+1 is a simple residuated lattice.

Theorem 3.4. N(A) is a lattice ideal of the residuated lattice A.

Proof. It is clear that 0 ∈ N(A). Suppose that x ≤ y and y ∈ N(A). There exists m ∈ ℵ such
that ym = 0. We have xm ≤ ym. Therefore x ∈ N(A).

Suppose that x, y ∈ N(A). Then there exists m,n ∈ ℵ such that xm = yn = 0. By
Proposition 2.1(4), we have

(
x ∨ y

)m+n = xm+n ∨
(
xm+n−1 ∗ y

)
∨ · · · ∨ (

xm ∗ yn) ∨ · · · ∨ ym+n = 0. (3.3)

Hence x ∨ y ∈ N(A), and then N(A) is a lattice ideal of L.

Remark 3.5. An element x of a residuated latticeA is nilpotent if and only if there is no proper
filter F of A such that x ∈ F.

Theorem 3.6. Let A be a residuated lattice and {Ai : i ∈ I} a family of residuated lattices. Then

(1) B(A) ∩N(A) = {0},

(2) N(Πi∈IAi) = Πi∈IN(Ai).

Proof. (1) Let x ∈ B(A) ∩N(A). Since x ∈ B(A), then x = x ∗ x. Hence we get that xn = x for
all n ∈ ℵ. Also, we have x ∈ N(A). So there exists m ∈ N(A) such that xm = 0. Therefore, we
obtain that x = 0.

(2) Suppose that x ∈ Πi∈IN(Ai). Then x = (x1, . . . , xn) where xi is nilpotent in Ai.
Thus, for each 1 ≤ i ≤ n, there exists mi such that (xi)

mi = 0. Put m = Max{mi : 1 ≤ i ≤ n}.
Then xm = 0, that is x ∈ N(Πi∈IAi). The proof of reverse inclusion is straightforward.

For a nonempty subset X ⊆ A, the smallest filter of A which contains X is said to be
the filter of A generated by X and will be denoted by 〈X〉. If X = {x} with x ∈ A, we denote
by 〈x〉 the filter generated by {x}. Also, we have 〈x〉 = {y ∈ A : y ≥ xn for some n ∈ ℵ}.

Theorem 3.7. Let x be an element of a residuated lattice A. Then x is nilpotent if and only if
A = 〈x〉.
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Proof. Let x be a finite order. Then there exists integer n > 0 such that xn = 0, that is 0 ∈ 〈x〉.
Therefore A = 〈x〉.

Conversely, if A = 〈x〉, then 0 ∈ 〈x〉. So there exists an integer n > 0 such that xn ≤ 0.
Hence x has finite order.

Theorem 3.8. Let x be an element of order n of a residuated latticeA. Then the elements x0 → 0 = 0,
xn → 0 = 1, xi → 0, i = 1, . . . , n − 1 of A are pairwise distinct.

Proof. Suppose that xi → 0 = xj → 0, for some 0 ≤ i < j ≤ n. Then 1 = xn → 0 =
(xj ∗ xn−j) → 0 = xn−j → (xj → 0) = xn−j → (xi → 0) = xn−j+i → 0. But n − j + i < n which
is a contradiction with the order of a. Hence xi → 0/=xj → 0.

4. Cyclic Residuated Lattices

The order of a residuated lattice A is the cardinality of A and denoted by O(A).

Definition 4.1. Let A be a finite residuated lattice. A is called cyclic, if there exists x ∈ A such
that ord(x) = O(A) − 1. x is called a generator of A.

Theorem 4.2. Let A be a cyclic residuated lattice of order n + 1. Then there exists an element x ∈ L
of order n such that A = {xi → 0 : 0 ≤ i ≤ n} where x0 → 0 = 0, xn → 0 = 1.

Proof. Since A is cyclic of order n + 1, then there exists an element x ∈ L of order n. By
Theorem 3.8, the elements x0 → 0 = 0, xn → 0 = 1 and xi → 0, i = 1, . . . , n − 1 of A are
pairwise distinct. Hence the cardinality of X = {xi → 0 : i = 0, . . . , n − 1} is n + 1. Since
O(A) = n + 1 and X ⊆ A, we get that A = {xi → 0 : i = 0, . . . , n}.

An element a of a residuated lattice A is called a coatom if it is maximal among
elements in L(A) − {1}.

Theorem 4.3. LetA be a cyclic residuated lattice of order n+1. ThenA is linearly ordered. Moreover
the generator of A is a unique coatom.

Proof. Since A is a cyclic residuated lattice of order n + 1, then there exists an element x ∈ A
such that A = {xi → 0 : i = 0, . . . , n} by Theorem 4.2. If 0 ≤ j ≤ i ≤ n, then xi ≤ xj . By
Proposition 2.1(7), xj → 0 ≤ xi → 0. Hence A is linearly ordered.

It is clear that xn−1 → 0 is a coatom of A. We will show that x = xn−1 → 0. Since
1/=x ∈ {xi → 0 : i = 0, . . . , n}, then there exists 0 ≤ i < n such that x = xi → 0. We have

xi+1 −→ 0 = x −→
(
xi −→ 0

)
= x −→ x = 1. (4.1)

Therefore xi+1 → 0 = 1. By definition order of x, we get that n ≤ i + 1. Hence n − 1 ≤ i.
Therefore x = xn−1 → 0.

In the following example, we will show that the converse of the above theorem may
not be true in general.
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Example 4.4. Consider the residuated latticeAwith the universe {0, a, b, c, 1}. Lattice ordering
is such that 0 < a < b < c < 1. The operations of ∗ and → are given by the following:

∗ 0 a b c 1

0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 0 0 b
c 0 0 0 a c
1 0 a b c 1

−→ 0 a b c 1

0 1 1 1 1 1
a c 1 1 1 1
b c c 1 1 1
c b c c 1 1
1 0 a b c 1

(4.2)

A is a finite linearly residuated lattice of order 5 but it is not cyclic because we have ord(0) = 1,
ord(a) = ord(b) = 2, ord(d) = 3, and ord(1) = ∞.

In the following theorems, we characterize cyclic residuated lattices.

Theorem 4.5. Let A be a cyclic residuated lattice of order n + 1. Then A is isomorphic to the simple
residuated lattice An+1 of Example 3.3.

Proof. By Theorems 4.2 and 4.3, there exists an element x ∈ A such that A = {xi → 0 : i =
0, . . . , n}, where x0 → 0 = 0 < x1 → 0 < · · · < xn−1 → 0 < xn → 0 = 1. We denote a0 = 0,
an = 1, and ai = xi → 0 for 1 ≤ i ≤ n − 1. By Theorem 4.3, x = an−1 is the generator of A and it
is a coatom. We will show that

ai −→ aj =

{
an−i+j if j < i,

1 if i ≤ j.
(4.3)

It is clear that ai → aj = 1, if i ≤ j. We will prove that ai → aj = an−i+j , if j < i. Suppose that
i = j + 1. Then

an−1 −→
(
ai −→ aj

)
= ai −→

(
an−1 −→ aj

)
= ai −→

(
x −→

(
xj −→ 0

))

= ai −→
(
xj+1 −→ 0

)
= aj+1 −→ aj+1 = 1.

(4.4)

Hence x = an−1 ≤ ai → aj ≤ 1. Since x is a coatom, then ai → aj = 1 or x = ai → aj . If
ai → aj = 1, then ai ≤ aj . Since j < i, then aj < ai which is a contradiction by Theorem 3.8.
Hence an−1 = x = ai → aj .

Now, suppose that i = j + k where k > 1. Since ai → aj ∈ A = {xi → 0 : i = 0, . . . , n},
then there exists 0 ≤ m ≤ n such that ai → aj = xm → 0. We have

xk−1 −→ (
ai −→ aj

)
= ai −→

(
xk−1 −→ aj

)
= ai −→

(
xk−1 −→

(
xj −→ 0

))

= ai −→
((

xk−1 ∗ xj
)
−→ 0

)
= ai −→

(
xj+k−1 −→ 0

)
= ai −→ ai−1 = x.

(4.5)
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Therefore x = xk−1 → (ai → aj) = xk−1 → (xm → 0) = xm+k−1 → 0. We get that 1 =
x → x = xm+k → 0. Thus, n ≤ m + k. On the other hand, since 1/=x = xn−1 → 0 and
xt → 0 = 1 for all t ≥ n, then m + k − 1 ≤ n − 1. Therefore m = n − k. We obtain that
ai → aj = xn−k → 0 = an−k = an−i+j .

Now, we will show that

ai ∗ aj =

{
0 if i + j ≤ n,

ai+j−n if n < i + j.
(4.6)

Suppose that i + j ≤ n. Then ai ≤ an−j . Since an−j = aj → a0, we get that ai ∗ aj ≤ a0 = 0. Thus
ai ∗ aj = 0.

Suppose that n < i + j. Since i ≤ n, we have i + j − n ≤ j. Therefore aj → ai+j−n = ai. We
get that ai ∗ aj ≤ ai+j−n. Let ai ∗ aj = at. Then t ≤ i + j − n. Consider the following cases.

(1) If j ≤ t < i + j − n, then 0 ≤ t − j < i − n ≤ 0 which is a contradiction.

(2) If i ≤ t < i + j − n, then 0 ≤ t − i < j − n ≤ 0 which is a contradiction.

(3) t ≤ i, j, then aj ≤ ai → at = an−i+t. We get that j ≤ n − i + t. Therefore j + i − n ≤ t
which is a contradiction.

We obtain that t = i + j − n.
Hence ai �→ xi is an isomorphism between A and An+1. Since An+1 is a simple

residuated lattice, then A is a simple residuated lattice.

Remark 4.6. Consider the residuated lattice An+1 in Example 3.3. Since (ai → aj) → aj =
(aj → ai) → ai for all 0 ≤ i, j ≤ n, then An+1 is an MV-algebra.

Corollary 4.7. Every cyclic residuated lattice is a finite simple MV-algebra.

Proof. It follows from Theorem 4.5 and Remark 4.6.

Corollary 4.8. Every cyclic residuated lattice A is local and B(A) = {0, 1}.

Proof. It follows from Theorem 4.5, Proposition 2.8, and Theorem 2.9.

Theorem 4.9. Every finite simple MV-algebra is a cyclic residuated lattice.

Proof. Any simple MV-algebra is isomorphic to a subalgebra of [0, 1], and also Ln = {0, 1/(n−
1), . . . , (n − 2)/(n − 1), 1}, (n ≥ 2) is the only subalgebra of [0, 1] with n elements [11]. Since
((n − 2)/(n − 1))n−1 = 0, then ord((n − 1)/(n − 2)) = O(Ln) − 1. Therefore it is cyclic.

Corollary 4.10. A finite residuated lattice is cyclic if and only if it is a simple MV-algebra.

Proof. It follows from Corollary 4.7 and Theorem 4.9.

Theorem 4.11. Every nonzero subalgebra of a cyclic residuated lattice is cyclic.

Proof. Suppose that S is a nonzero subalgebra of a cyclic residuated lattice A. Then A is a
simple MV-algebra and S is isomorphic to a subalgebra of [0, 1]. Moreover Ln = {0, 1/(n −
1), . . . , (n − 2)/(n − 1), 1}, (n ≥ 2) is the only subalgebra of [0, 1] with n elements. Hence S is
a simple MV-algebra. By Theorem 4.9, S is a cyclic MV-algebra.
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Theorem 4.12. Every finite MV-algebra is a direct product of cyclic residuated lattices.

Proof. Every finite MV-algebra is isomorphic to a finite direct product of finite subalgebras of
the standard MV-algebra [11]. Theorem 4.11 yields the theorem.

5. Semisimple Residuated Lattices

The intersection of the maximal filters of residuated lattice A is called the radical of A and
will be denoted by Rad(A).

Theorem 5.1. Let A be a residuated lattice. Then Rad(A) = {x ∈ A : xn → 0 ∈ N(A) for all
n ∈ ℵ}.

Proof. See [12].

Theorem 5.2. Let A be a residuated lattice. Then

(1) Rad(L(A)/N(A)) = Rad(L(A))/N(A),

(2) Max(L(A)) and Rad(L(A)/N(A)) are homomorphic topological spaces.

Proof. (1) It is easily seen that Max(L(A)/N(A)) = {M/N(A) : M ∈ Max(L(A))}, thus

Rad
(

L(A)
N(A)

)
=

⋂
M∈Max(L(A))

M

N
(A) =

⋂
M∈Max(L(A)) M

N(A)
= Rad

(L(A))
N(A)

. (5.1)

(2) Define ϕ : Max(L(A)) → Max(L(A)/N(A)), for all M ∈ Max(L(A)), ϕ(M) =
M/N(A). This function is well defined and surjective. For any M ∈ Max(L(A)) and any
x ∈ A, we have [x] ∈ M/N(A) if and only if x ∈ M. We get that ϕ is injective.

Now, we will prove that ϕ is continuous and open. Let x ∈ A. By using the above, we
get

SMax([x]) =
{
M

N
(A) : M ∈ Max(L(A)), [x] /∈ M

N(A)

}

=
{
M

N
(A) : M ∈ Max(A), x /∈ M

}

=
{
M

N
(A) : M ∈ SMax(x)

}

=
{
ϕ(M) : M ∈ SMax(x)

}
= ϕ(SMax(x)).

(5.2)

Thus ϕ is open. Since ϕ is injective and open, then ϕ−1(SMax([x])) = SMax(x). So ϕ is
continuous.

Definition 5.3. A residuated latticeA is called semisimple if the intersection of all congruences
of A is the congruence �A (where, for all x, y ∈ A, x�Ay if and only if x = y).
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Remark 5.4 (see [5]). A residuated lattice A is semisimple if and only if Rad(A) = {1}.

Lemma 5.5. Let A be a residuated lattice, x ∈ A, and F = {y ∈ A : y → x = x}. Then F is a filter
of A.

Proof. (1) Suppose that y1, y2 ∈ F. Then y1 → x = x = y2 → x. We have

y1 ∗ y2 −→ x = y1 −→
(
y2 −→ x

)
= y1 −→ x = x. (5.3)

Therefore y1 ∗ y2 ∈ F.
(2) Let y ≤ z, where y ∈ F and z ∈ A. We have y → x = x. Since y ≤ z, then

x ≤ z → x ≤ y → x = x. Therefore z → x = x and z ∈ F.
Hence F is a filter of A.

Theorem 5.6. Let A be a residuated lattice such that for all x ∈ A there exists n ∈ ℵ such that
(xn → 0) → x = x. Then A is semisimple.

Proof. We will show that Rad(A) = {1}. Suppose that x ∈ Rad(A). By Theorem 5.1, we have
that xn → 0 is nilpotent. By assumption, there exists n ∈ ℵ such that (xn → 0) → x = x. We
have xn → 0 ∈ F = {y ∈ A : y → x = x}. Since F is a filter of A by Lemma 5.5 and xn → 0 is
nilpotent, we get that 0 ∈ F. Thus 1 = 0 → x = x. We obtain that Rad(A) = {1} and then A is
semisimple by Remark 5.4.
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