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This paper investigates a class of delay differential systems with feedback control. Sufficient
conditions are obtained for the existence and uniqueness of the positive periodic solution by
utilizing some results from the mixed monotone operator theory. Meanwhile, the dependence of
the positive periodic solution on the parameter λ is also studied. Finally, an example together with
numerical simulations is worked out to illustrate the main results.

1. Introduction

As is known to all, the periodic environment changes and the unpredictable forces play
an important role in many biological and ecological systems. Therefore, several different
periodic models with feedback control have been studied by many authors (see [1–10] and
references therein). For instance, Gopalsamy and Weng [2] introduced a feedback control
variable into the delayed logistic model and discussed the asymptotic behavior of solutions in
logistic models with feedback control. Li and Wang [5] investigated the existence and global
attractivity of positive periodic solutions for a delay differential systemwith feedback control.
The method they used involved Krasnoselskii’s fixed point theorem and estimates of uniform
upper and lower bounds of solutions. In a recent work [3], Guo considered the existence
of nontrivial periodic solutions for a kind of nonlinear functional differential system with
feedback control. By using Leray-Schauder nonlinear alternative, the author obtained several
sufficient conditions for the existence of nontrivial solutions. A class of impulsive functional
equations with feedback control was studied by Guo and Liu [4], and they presented
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the existence results of three positive periodic solutions by using Leggett-Williams fixed point
theorem.

However, as we know, there are few results on the uniqueness and parameter depen-
dence of the positive periodic solution for delay differential systems with feedback control.
Motivated by this fact, this paper is devoted to investigating the uniqueness and parameter
dependence of the positive periodic solution for the following nonlinear nonautonomous
delay differential system with feedback control:

dx

dt
= −b(t)x(t) + λf(t, x(t − τ(t)), u(t − δ(t))), t ∈ R,

du

dt
= −η(t)u(t) + a(t)x(t − σ(t)),

(1.1)

where λ > 0 is a parameter, f(t, x1, x2) ∈ C(R×(0,+∞)×(0,+∞) → (0,+∞)), τ(t), δ(t), σ(t) ∈
C(R,R), and η(t), a(t), b(t) ∈ C(R, (0,+∞)). All functions are ω-periodic in t and ω > 0 is a
constant.

The main features here are as follows. On one hand, by utilizing the mixed monotone
operator theory, the existence and uniqueness of the positive periodic solution of the delay
differential system (1.1) are studied in this work. As is known to us, there are few papers to
investigate this topic. On the other hand, the dependence of the positive periodic solution on
the parameter λ is studied, and some interesting results are obtained.

The rest of this paper is organized as follows. Section 2 presents the existence and
uniqueness result of the system (1.1) together with the dependence of the positive periodic
solution on the parameter λ. In Section 3, an illustrative example is worked out to support
the main results of this work.

2. Main Results

For convenience, let us first list some conditions.

(H1) f(t, x1, x2) ∈ C(R × (0,+∞) × (0,+∞), (0,+∞)) is nondecreasing in x1 and
nonincreasing in x2.

(H2) There exists an α ∈ (0, 1) such that

f
(
t, kx1, k

−1x2

)
≥ kαf(t, x1, x2), ∀k ∈ (0, 1), t ∈ R, x1, x2 ∈ (0,+∞). (2.1)

Let Cω = {x ∈ C(R,R) : x(t) = x(t + ω), t ∈ R}. Then, Cω is a Banach space with norm
‖x‖ = maxt∈[0, ω]|x(t)|. In this paper, we will study the system (1.1) in Cω.

Denote

g(t, s) =
exp
{∫s

t η(r)dr
}

exp
{∫ω

0 η(r)dr
} − 1

, (2.2)

G(t, s) =
exp
{∫s

t b(r)dr
}

exp
{∫ω

0 b(r)dr
} − 1

. (2.3)
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Lemma 2.1 (see [5]). Consider p ≤ G(t, s) ≤ q, where

p =
exp
{− ∫ω0 b(r)dr

}

exp
{∫ω

0 b(r)dr
} − 1

, q =
exp
{∫ω

0 b(r)dr
}

exp
{∫ω

0 b(r)dr
} − 1

. (2.4)

Now, we convert the system (1.1) into an operator equation. Define operators Φ and
Ψλ as follows:

Φx(t) =
∫ t+ω

t

g(t, s)a(s)x(s − σ(s))ds, ∀x ∈ Cω,

Ψλ

(
x, y
)
(t) = λ

∫ t+ω

t

G(t, s)f
(
s, x(s − τ(s)), Φy(s − δ(s))

)
ds, ∀x, y ∈ Cω,

(2.5)

where g(t, s) and G(t, s) are given in (2.2) and (2.3), respectively.
For the sake of using a fixed point theorem on mixed monotone operators, choose a

fixed constant e > 0. Then, for each λ > 0, we can choose a proper number Cλ > 1 such that

Cλ ≥ max

⎧
⎨
⎩

(
λq
∫ω
0 f(s, e,Φ(e))ds

e

)1/1−α
,

(
e

λp
∫ω
0 f(s, e,Φ(e))ds

)1/1−α⎫⎬
⎭, (2.6)

where Φ(·) is given in (2.5). Let

Pe(λ) =
{
x ∈ Cω : C−1

λ e ≤ x(t) ≤ Cλe on [0, ω]
}
. (2.7)

Lemma 2.2. For any λ > 0, x ∈ Pe(λ) is a ω-periodic solution of the system (1.1) if and only if
x ∈ Pe(λ) is a fixed point of the operator equation

x(t) = Ψλ(x, x)(t), (2.8)

where Ψλ(·, ·) is given in (2.5).

Proof. The proof of this lemma is similar to Theorem 2.1 in [5], and thus we omit it.

Next, we recall some results from the monotone operator theory. The following results
are well known (see [11–13], for details).

Definition 2.3 (see [12]). Assume that T(x, y) : Pe(λ)×Pe(λ) → Pe(λ). Then, T is called mixed
monotone if T is nondecreasing in x and nonincreasing in y; that is, for x1, x2, y1, y2 ∈ Pe(λ),
we have

x1 ≤ x2, y1 ≥ y2 =⇒ T
(
x1, y1

) ≤ T
(
x2, y2

)
. (2.9)
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Lemma 2.4 (see [12]). Assume that T(x, y) : Pe(λ)×Pe(λ) → Pe(λ) is a mixed monotone operator
and there exists α ∈ (0, 1) such that

T
(
kx, k−1y

)
≥ kαT

(
x, y
)
, for x, y ∈ Pe(λ), k ∈ (0, 1). (2.10)

Then, T has a unique fixed point in Pe(λ).

Lemma 2.5. Suppose that (H1) and (H2) hold. Then, Ψλ : Pe(λ) × Pe(λ) → Pe(λ), where Pe(λ) is
given in (2.7).

Proof. For any x, y ∈ Pe(λ), we have

C−1
λ e ≤ x(t) ≤ Cλe, C−1

λ e ≤ y(t) ≤ Cλe, t ∈ [0, ω]. (2.11)

This together with (H1), (H2), (2.4), and (2.6) implies that

Ψλ

(
x, y
)
(t) = λ

∫ t+ω

t

G(t, s)f
(
s, x(s − τ(s)), Φy(s − δ(s))

)
ds

≤ λq

∫ω

0
f
(
s, Cλe, C

−1
λ Φ(e)

)
ds ≤ λqCα

λ

∫ω

0
f(s, e,Φ(e))ds ≤ Cλe,

Ψλ

(
x, y
)
(t) = λ

∫ t+ω

t

G(t, s)f
(
s, x(s − τ(s)), Φy(s − δ(s))

)
ds

≥ λp

∫ω

0
f
(
s, C−1

λ e, CλΦ(e)
)
ds ≥ λpC−α

λ

∫ω

0
f(s, e,Φ(e))ds ≥ C−1

λ e.

(2.12)

Therefore, Ψλ : Pe(λ) × Pe(λ) → Pe(λ).

Lemma 2.6. Assume that (H1) and (H2) hold. Then, Ψλ is a mixed monotone operator and

Ψλ

(
kx, k−1y

)
≥ kαΨλ

(
x, y
)
, for x, y ∈ Pe(λ), k ∈ (0, 1). (2.13)

Proof. For any x1, y1, x2, y2 ∈ Pe(λ)with x1 ≤ x2, y1 ≥ y2, it is easy to see from (H1) that

Ψλ

(
x1, y1

)
(t) −Ψλ

(
x2, y2

)
(t)

= λ

∫ t+ω

t

G(t, s)
[
f
(
s, x1(s − τ(s)),Φy1(s − δ(s))

)

− f
(
s, x2(s − τ(s)),Φy2(s − δ(s))

)]
ds ≤ 0.

(2.14)

Hence, Ψλ is a mixed monotone operator.
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In addition, for any x, y ∈ Pe(λ) and k ∈ (0, 1), (H2) shows that

Ψλ

(
kx, k−1y

)
= λ

∫ t+ω

t

G(t, s)f
(
s, kx(s − τ(s)),Φk−1y(s − δ(s))

)
ds

≥ kαλ

∫ t+ω

t

G(t, s)f
(
s, x(s − τ(s)),Φy(s − δ(s))

)
ds

= kαΨλ

(
x, y
)
.

(2.15)

To sum up, the proof of this lemma is completed.

Finally, we present the main results of this paper.

Theorem 2.7. Suppose that (H1) and (H2) hold. Then, for any λ > 0, the system (1.1) has a unique
positive ω-periodic solution xλ(t) ∈ Pe(λ).

Proof. It is easy to see from Lemmas 2.5 and 2.6 that for any λ > 0,Ψλ : Pe(λ)×Pe(λ) → Pe(λ)
is a mixed monotone operator and

Ψλ

(
kx, k−1y

)
≥ kαΨλ

(
x, y
)
, forx, y ∈ Pe(λ), k ∈ (0, 1). (2.16)

Consequently, Lemmas 2.2 and 2.4 imply that the conclusion holds true.

Theorem 2.8. Assume that (H1) and (H2) hold. In addition, suppose that α ∈ (0, 1/2). Then,
the unique positive ω-periodic solution of the system (1.1), denoted by xλ(t), satisfies the following
properties:

(i) xλ(t) is strictly increasing in λ; that is, if λ1 > λ2 > 0, then xλ1(t) > xλ2(t), t ∈ R;

(ii) limλ→ 0+‖xλ‖ = 0, and limλ→∞‖xλ‖ = ∞;

(iii) xλ(t) is continuous in λ; that is, if λ → λ0 > 0, then ‖xλ − xλ0‖ → 0.

Proof. Suppose that λ1 > λ2 > 0. Let

D =
{
γ > 0 : γ−1

(
λ1λ

−1
2

)1/1−α
xλ2(t) ≥ xλ1(t) ≥ γ

(
λ1λ

−1
2

)1−2α/1−α
xλ2(t) on R

}
. (2.17)

Since e > 0, we have xλ1(t) > 0 and xλ2(t) > 0 for t ∈ R. Thus

γ∗ := min
{(

λ−11 λ2
)1−2α/1−α

min
t∈R

xλ1(t)
xλ2(t)

,
(
λ1λ

−1
2

)1/1−α
min
t∈R

xλ2(t)
xλ1(t)

}
> 0. (2.18)

Obviously, for any γ satisfying 0 < γ < γ∗, γ ∈ D. Hence, D/= ∅.
Define γ = supD. Then

γ−1
(
λ1λ

−1
2

)1/1−α
xλ2(t) ≥ xλ1(t) ≥ γ

(
λ1λ

−1
2

)1−2α/1−α
xλ2(t), t ∈ R. (2.19)
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Now let us show that γ ≥ 1. In fact, if 0 < γ < 1, then (H1) and (H2) imply that

λ1f(t, xλ1(t − τ(t)),Φxλ1(t − δ(t)))

≥ λ1f

(
t, γ
(
λ1λ

−1
2

)1−2α/1−α
xλ2(t − τ(t)), γ−1

(
λ1λ

−1
2

)1/1−α
Φxλ2(t − δ(t))

)

≥ λ1f

(
t, γxλ2(t − τ(t)), γ−1

(
λ1λ

−1
2

)1/1−α
Φxλ2(t − δ(t))

)

≥ γαλ1f

(
t, xλ2(t − τ(t)),

(
λ1λ

−1
2

)1/1−α
Φxλ2(t − δ(t))

)

≥ γαλ1f

(
t,
(
λ1λ

−1
2

)−1/1−α
xλ2(t − τ(t)),

(
λ1λ

−1
2

)1/1−α
Φxλ2(t − δ(t))

)

≥ γαλ1
(
λ1λ

−1
2

)−α/1−α
f(t, xλ2(t − τ(t)),Φxλ2(t − δ(t)))

= γα
(
λ1λ

−1
2

)1−2α/1−α
λ2f(t, xλ2(t − τ(t)),Φxλ2(t − δ(t))),

λ2f(t, xλ2(t − τ(t)),Φxλ2(t − δ(t)))

≥ λ2f

(
t, γ
(
λ1λ

−1
2

)−1/1−α
xλ1(t − τ(t)), γ−1

(
λ1λ

−1
2

)−1−2α/1−α
Φxλ1(t − δ(t))

)

≥ λ2f

(
t, γ
(
λ1λ

−1
2

)−1/1−α
xλ1(t − τ(t)), γ−1Φxλ1(t − δ(t))

)

≥ γαλ2f

(
t,
(
λ1λ

−1
2

)−1/1−α
xλ1(t − τ(t)),Φxλ1(t − δ(t))

)

≥ γαλ2f

(
t,
(
λ1λ

−1
2

)−1/1−α
xλ1(t − τ(t)),

(
λ1λ

−1
2

)1/1−α
Φxλ1(t − δ(t))

)

≥ γαλ2
(
λ1λ

−1
2

)−α/1−α
f(t, xλ1(t − τ(t)),Φxλ1(t − δ(t)))

= γα
(
λ1λ

−1
2

)−1/1−α
λ1f(t, xλ1(t − τ(t)),Φxλ1(t − δ(t))).

(2.20)

Therefore,

xλ1(t) = Ψλ1(xλ1 , xλ1)(t) ≥ γα
(
λ1λ

−1
2

)1−2α/1−α
xλ2(t),

xλ2(t) = Ψλ2(xλ2 , xλ2)(t) ≥ γα
(
λ1λ

−1
2

)−1/1−α
xλ1(t).

(2.21)

From (2.21), we have

γ−α
(
λ1λ

−1
2

)1/1−α
xλ2(t) ≥ xλ1(t) ≥ γα

(
λ1λ

−1
2

)1−2α/1−α
xλ2(t), t ∈ R. (2.22)
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Noticing that 0 < γ < 1 and α ∈ (0, 1), one can see γα > γ , a contradiction with the definition
of γ . Thus, γ ≥ 1 and

xλ1(t) ≥ γ
(
λ1λ

−1
2

)1−2α/1−α
xλ2(t) ≥

(
λ1λ

−1
2

)1−2α/1−α
xλ2(t) > xλ2(t), t ∈ R. (2.23)

Thus, Conclusion (i) holds.
Next, let us prove Conclusion (ii).
In (2.23), let λ1 be fixed and λ = λ2; then

xλ(t) ≤
(
λλ−11

)1−2α/1−α
xλ1(t), t ∈ R. (2.24)

Thus ‖xλ‖ ≤ (λλ−11 )1−2α/1−α‖xλ1‖, which means ‖xλ‖ → 0 as λ → 0.
Similarly, let λ2 be fixed and λ = λ1; then

xλ(t) ≥
(
λλ−12

)1−2α/1−α
xλ2(t), t ∈ R. (2.25)

Therefore, ‖xλ‖ ≥ (λλ−12 )
1−2α/1−α‖xλ2‖, which implies that ‖xλ‖ → ∞ as λ → ∞.

Finally, we prove Conclusion (iii).
For any fixed λ0 > 0, let λ > λ0. Set λ1 = λ0 in (2.24); then

xλ(t) ≤
(
λλ−10

)1−2α/1−α
xλ0(t), t ∈ R, (2.26)

which means

‖xλ − xλ0‖ ≤
((

λλ−10
)1−2α/1−α − 1

)
‖xλ0‖. (2.27)

As a result, ‖xλ −xλ0‖ → 0 as λ → λ+0 . Similarly, we can show that ‖xλ −xλ0‖ → 0 as λ → λ0.
To sum up, the proof of this theorem is completed.

3. An Illustrative Example

In this section, we give an illustrative example to show how to use our new results.

Example 3.1. Consider the following nonlinear nonautonomous delay differential system
with feedback control:

dx

dt
= −(2 + cos t)x(t) + λf(t, x(t − τ(t)), u(t − δ(t))), t ∈ R,

du

dt
= −(3 + sin t)u(t) + 3x(t − σ(t)),

(3.1)
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Figure 1: t − x, t − u and x − u graphs of Example 3.1 with λ = 2.

where λ > 0 is a parameter, τ(t), δ(t), σ(t) ∈ C(R,R) are 2π-periodic in t, and

f(t, x1, x2) = (2 + sin t) 3
√
x1 +

1
3
√
x2

. (3.2)

It is easy to see that f(t, x1, x2) ∈ C(R× (0,+∞)× (0,+∞) → (0,+∞)) is 2π-periodic in
t. η(t) = 3 + sin t, a(t) = 3, b(t) = 2 + cos t ∈ C(R, (0,+∞)) are 2π-periodic in t.

Since

∂f(t, x1, x2)
∂x1

=
2 + sin t

3x2/3
1

> 0, ∀t ∈ R, x1, x2 ∈ (0,+∞),

∂f(t, x1, x2)
∂x2

= − 1

3x4/3
2

< 0, ∀t ∈ R, x1, x2 ∈ (0,+∞),

(3.3)

we conclude that (H1) is satisfied.
Now, we check (H2). As a matter of fact, for all t ∈ R, x1, x2 ∈ (0,+∞), we have

f
(
t, kx1, k

−1x2

)
= 3
√
k

[
(2 + sin t) 3

√
x1 +

1
3
√
x2

]
≥ 3
√
kf(t, x1, x2), (3.4)

therefore, (H2) holds.
Hence, Theorem 2.7 shows that for any λ > 0, the system (3.1) has a unique positive

2π-periodic solution.
Let us set λ = 2, τ(t) = 1, δ(t) = 0.1, σ(t) = 2; then, the unique positive 2π-periodic

solution of the system (3.1) can be shown in Figure 1.
Next, to illustrate Theorem 2.8, we set λ = 2, 2.1, 2.2, 2.3, 2.4, and 2.5, respectively,

and let τ(t) = 1, δ(t) = 0.1, σ(t) = 2; then the unique positive 2π-periodic solutions of
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Figure 2: The graphs of xλ with different λ.

the system (3.1) with these different λ can be shown in Figure 2. From this figure, one can
easily see that xλ(t) is strictly increasing in λ.
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