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We consider meromorphic starlike univalent functions that are also bi-starlike and find Faber polynomial coefficient estimates for
these types of functions. A function is said to be bi-starlike if both the function and its inverse are starlike univalent.
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In general (also see Bouali [3, page 52])
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The coefficients of 𝑔−1, the inverse map of 𝑔 are given by
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and𝑉
𝑗
with 5 ≤ 𝑗 ≤ 𝑛 is a homogeneous polynomial of degree
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where 𝐾
𝑗
for 5 ≤ 𝑗 ≤ 𝑛 is a homogeneous polynomial of

degree 𝑗 in the variables 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛−1
.

The Faber polynomials introduced by Faber [4] play an
important role in various areas of mathematical sciences,
especially in geometric function theory (e.g., see Gong [5]
and Schiffer [6]). The recent interest in the calculus of the
Faber polynomials, especially when it involves the function
ℎ = 𝑔

−1, the inverse map of 𝑔 (see [2, page 186]) beautifully
fits the case for the meromorphic bi-univalent functions.

The function 𝑔 is said to be meromorphic bi-univalent
in Δ if both 𝑔 and its inverse ℎ = 𝑔

−1 are meromorphic
univalent in Δ. By the same token, the function 𝑔 is said to
be meromorphic bi-starlike of order 𝛼 : (0 ≤ 𝛼 < 1) in Δ if
both 𝑔 and its inverse map ℎ = 𝑔

−1 are meromorphic starlike
of order 𝛼 : (0 ≤ 𝛼 < 1) in Δ, that is,

Re(
𝑧𝑔
󸀠
(𝑧)
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) > 𝛼 (𝑧 ∈ Δ) ,

Re(𝑤ℎ
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(𝑤)

ℎ (𝑤)
) > 𝛼 (𝑤 ∈ Δ) .

(10)

Estimates on the coefficients of meromorphic univalent
functions were widely investigated in the literature. For
example, Schiffer [6] obtained the estimate |𝑏

2
| ≤ 2/3 for

meromorphic univalent functions 𝑔 with 𝑏
0
= 0 and Duren

([7] or [8, Theorem 4.9, page 139]) proved that if 𝑏
1

=

𝑏
2

= ⋅ ⋅ ⋅ = 𝑏
𝑘

= 0 for 1 ≤ 𝑘 < (1/2)𝑛 then |𝑏
𝑛
| ≤

2/(𝑛 + 1). He then proved that this bound also holds for
meromorphic starlike univalent functions 𝑔 of order zero
(Duren [8, Theorem 4.8, page 137]). So far, the latest known
results are given by the following two articles. Kapoor and
Mishra [9] found sharp bounds for the coefficients of starlike
univalent functions of order 𝛼; 0 ≤ 𝛼 < 1 in Δ and for its
inverse functions they obtained the bound 2(1 − 𝛼)/(𝑛 + 1)

when ((𝑛 − 1)/𝑛) ≤ 𝛼 < 1. More recently, Srivastava et al.
[10] found sharp bounds for the coefficients of starlike
univalent functions of order 𝛼, 0 ≤ 𝛼 < 1, having 𝑚-
fold gaps in their series representation in Δ and also for
their inverse functions. The above two articles settled the
coefficient bounds for starlike functions and their inverses but
they have not considered the bi-starlike case. The problem
arises when the bi-univalency condition is imposed on the
meromorphic functions 𝑔. The bi-univalency requirement
makes the task of finding bounds for the coefficients of 𝑔 and
its inverse map ℎ = 𝑔

−1 more involved. In this paper, for the
first time, we use the Faber polynomial expansions to study
the coefficients of meromorphic bi-starlike functions. As a
result, we are able to prove.
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Note that, according to the Caratheodory lemma (see Duren
[8, page 41]), |𝑐
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the other hand, comparing the corresponding coefficients of
the functions 𝑔 and ℎ = 𝑔
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Relaxing the coefficient restrictions imposed on Theorem 1,
we can prove the following.
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Remark 3. For the estimates of the first two coefficients of
certain subclasses of analytic and bi-univalent functions, also
see recent publications by Srivastava et al. [11] and Frasin and
Aouf [12].
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