SOME RESULTS ON [n,m]-PARACOMPACT AND [n,m]-COMPACT SPACES

HASAN Z. HDEIB

Department of Mathematics Faculty of Science Jordan University Amman, JORDAN YUSUF ÜNLÜ

Cukurova Univesitesi Matematik Bolumu P K. 171 Adana, TURKEY

(Received February 9, 1988 and in revised form March 20, 1996)

ABSTRACT. Let n and m be infinite cardinals with $n \le m$ and n be a regular cardinal. We prove certain implications of [n, m]-strongly paracompact, [n, m]-paracompact and [n, m]-metacompact spaces Let X be $[n, \infty]$ -compact and Y be a [n, m]-paracompact (resp. $[n, \infty]$ -paracompact), P_n -space (resp. wP_n -space). If $m = \sum_{k < n} m^k$ we prove that $X \times Y$ is [n, m]-paracompact (resp. $[n, \infty]$ -paracompact)

KEY WORDS AND PHRASES: Strongly paracompact and metacompact spaces. 1990 AMS SUBJECT CLASSIFICATION CODES: Primary 54D20.

1. INTRODUCTION

Throughout this paper m and n will denote infinite cardinals with $n \leq m$ and n will be a regular cardinal. A space X is called [n, m]-compact (see Alexandroff [1]) if every open cover α of X with $|\alpha| \leq m$ has a subcover of cardinality < n. For a set A, we denote by |A|, the cardinality of A. A family α of subsets of X is a *locally-n* (*point-n*) family (Mansfield [2]) if for every $x \in X$, there is an open neighborhood of x in X which meets < n members of α (resp x belongs to < n members of α) An open refinement of a cover α of a space X is an open cover β such that each member of β is contained in some member of α . A space X is [n, m]-paracompact (resp. [n, m]-metacompact) if every open cover α of X with $|\alpha| \leq m$ has a locally-n (resp. point-n) open refinement. X is [n, m]-strongly paracompact if every open cover of X with $|\alpha| \leq m$, has an open refinement β such that for each $B \in \beta$,

 $|\{C \in \beta : C \cap B \neq \phi\}| < n.$

Originally, Singal and Singal introduced the concept of (m, k)-paracompactness in [3]. Our notation is slightly different than theirs. However, we note that a space X is (m, k)-paracompact, as defined in [3], if and only if X is $[k^+, m]$ -paracompact. A space X is $[n, \infty]$ -compact (resp. $[n, \infty]$ -paracompact, $[n, \infty]$ -metacompact, $[n, \infty]$ -strongly paracompact) if X is [n, m]-compact (resp. [n, m]-paracompact, [n, m]-metacompact, [n, m]-strongly paracompact for each cardinal $m \ge n$). A space X is a P_n -space [4] if for every family α of open subsets of X with $|\alpha| < n$, $\cap \alpha$ is open in X. We observe that the class of P_{ω_0} -spaces is the class of all topological spaces, where ω_0 denotes the first infinite cardinal number Also we observe that if P is any of "compact", "paracompact", or "metacompact", then the class of $[\omega_0, \infty] - P$ spaces is the same as the class of P spaces in the ordinary sense. Morita [5] studied *m*-paracompact spaces. A space X is *m*-paracompact if and only if X is $[\omega_0, m]$ paracompact. Morita proved that if Y is an *m*-paracompact space and X is a compact space, then $X \times Y$ is *m*-paracompact. In case $m = \sum_{k < n} m^k$, we generalize Morita's result by showing that if X is an $[n, \infty]$ -compact space and Y is [n, m]-paracompact, P_n -space, then $X \times Y$ is [n, m]-paracompact. We note that for $n = \omega_0$ this result implies Morita's result. A subset W of a topological space Y is called *n*-open (Hdeib [6]) if for each $y \in W$ there exists an open set V in Y such that $y \in V$ and $|V \setminus W| < n$. A subset F of Y is called *n*-closed if $Y \setminus F$ is *n*-open. A space Y is called a *weak* P_n -space [6] or wP_n -space if $\cap \alpha$ is *n*-open for every family α of open subsets of Y with $|\alpha| < n$. We prove that if X is a $[n, \infty]$ -compact space and Y is an $[n, \infty]$ -paracompact, wP_n -space, then $X \times Y$ is $[n, \infty]$ paracompact. This result is a variation of our generalization of Morita's result.

It is well known (Dungundji [7]) that if a space X is locally compact and Hausdorff, then X is paracompact if and only if X is a disjoint topological sum of σ -compact spaces. We prove that if $n > \omega_0$, then a locally $[n, \infty]$ -compact, regular space X is $[n, \infty]$ -paracompact if and only if X is a disjoint topological sum of $[n, \infty]$ -compact spaces. A space X is, by definition, locally $[n, \infty]$ -compact if for each point $x \in X$ and an open neighborhood G of x, there exists an $[n, \infty]$ -compact neighborhood H of x such that $H \subseteq G$.

In this paper we also prove certain implications concerning [n, m]-paracompact, metacompact, strongly paracompact spaces.

For a space X, the density d(X) of X is defined as the smallest cardinal number that is the cardinal number of a dense subset of X. For terminology not defined here see Engelking [8].

2. [n, m]-PARACOMPACT SPACES

It is clear that each [n, m]-strongly paracompact space is [n, m]-paracompact which in turn is [n, m]-metacompact. However, in general, the converses of these implications do not hold.

The following two theorems are interesting in this respect.

THEOREM 2.1. Let γ be an open cover of a space X such that $|\gamma| \leq m$ and d(A) < n for each $A \in \gamma$. Then X is [n, m]-strongly paracompact if and only if X is [n, m]-metacompact.

PROOF. We only need to prove "if" part. Let X be [n, m]-metacompact. Let α be an open cover of X with $|\alpha| \leq m$. Let $\beta = \{A \cap W : A \in \gamma \text{ and } W \in \alpha\}$. Then $|\beta| \leq m$, β is an open refinement of α and d(B) < n for each $B \in \beta$. Since X is [n, m]-metacompact, then there exists a point-n open refinement λ of β . Each $L \in \lambda$ is contained in some $B_L \in \beta$. Since L is open and $d(B_L) < n$, then d(L) < n. Let $L \in \lambda$ and D be a dense set in L such that |D| < n. Let $\Delta = \{A \in \lambda : A \cap L \neq \phi\}$. Since D is dense in L, then $A \in \Delta$ if and only if $A \cap D \neq \phi$. Thus $\Delta = \{A \in \lambda : A \cap D \neq \phi\}$. For $d \in D$ let us set $\Delta_d = \{K \in \lambda : d \in K\}$. Then $|\Delta_d| < n$ since λ is point-n. Hence

$$|\triangle| \le \sum_{d \in D} |\triangle_d| < n.$$

Since |D| < n and n is a regular cardinal, it follows that X is [n, m]-strongly paracompact.

COROLLARY 2.1 (Traylor [9]). Let X be a regular space with an open cover γ such that $d(G) \leq \omega_0$ for all $G \in \gamma$. Then X is strongly paracompact if and only if X is metalindelöf.

PROOF. The proof follows from Theorem 2.1 and Theorem 3, page 229 in [8].

THEOREM 2.3. Let X be a locally $[n, \infty]$ -compact space. Then X is $[n, \infty]$ -paracompact if and only if X is $[n, \infty]$ -strongly paracompact.

PROOF. We only need to prove "only if" part. Let X be $[n, \infty]$ -paracompact. Let α be an open cover of X. Since X is locally $[n, \infty]$ -compact then there exists a cover σ of X such that

- (i) σ refines α
- (ii) $\beta = \{ \text{int } H : H \in \sigma \}$ is a cover of X,

(iii) if $H \in \sigma$, then H is $[n, \infty]$ -compact

Since X is $[n, \infty]$ -paracompact, then β has a locally-n open refinement γ Now, let $G \in \gamma$ and

$$\triangle = \{ L \in \gamma : G \cap L \neq \phi \}$$

Since γ refines β , then $G \subseteq \operatorname{int} H \subseteq H$ for some $H \in \sigma$ For each $x \in H$, there is an open set W_x containing x such that W_x meets < n members of γ We have

$$H = \cup \{W_x \cap H : x \in H\}$$

Since H is $[n, \infty]$ -compact, then there exists a subset T of H such that |T| < n and

 $H = \cup \{ W_x \cap H : x \in T \}.$

For $x \in T$. Let us set

$$\triangle_x = \{ L \in \gamma : W_x \cap L \neq \phi \}$$

We see that

$$riangle \subseteq \{ riangle_x: x \in T\}$$

Hence

$$|\triangle| \leq \sum_{x \in T} |\triangle_x| < n.$$

Since |T| < n, $|\triangle_x| < n$ for each $x \in T$ and n is a regular cardinal.

COROLLARY 2.4. Let X be a regular, locally Lindelöf space. Then X is strongly paracompact if and only if X is paralindelöf

PROOF. The proof follows from Theorem 2.3 and Theorem 3, page 229 in [8].

It is well known in [7] that if X is a locally compact Hausdorff space, then X is paracompact if and only if X is a disjoint topological sum of σ -compact spaces. It is natural to ask when X is a locally $[n, \infty]$ -compact, $[n, \infty]$ -paracompact space, whether X is a disjoint topological sum of σ - $[n, \infty]$ compact spaces. The result above is the answer to the case when $n = \omega_0$ and X is Hausdorff. So we are only interested in the case when $n > \omega_0$. The following theorem provides the answer to this question

THEOREM 2.5. Let $n > \omega_0$ and X be a locally $[n, \infty]$ -compact regular space. Then X is $[n, \infty]$ -paracompact if and only if X is a disjoint topological sum of $[n, \infty]$ -compact spaces

PROOF. It is obvious that if X is a disjoint topological sum of $[n, \infty]$ -compact spaces, then X is $[n, \infty]$ -paracompact. Thus let us assume that X is $[n, \infty]$ -paracompact. Let

$$\alpha = \{U : U \subseteq X \text{ and } U \text{ is } [n, \infty]\text{-compact}\}.$$

Then $\beta = \{ \text{int } U : U \in \alpha \}$ is an open cover of X since X is locally $[n, \infty]$ -compact Since X is regular, then there is an open cover γ of X such that $\overline{\gamma} = \{c \ell G : G \in \gamma\}$ refines β . Since X is a locally $[n, \infty]$ compact, $[n, \infty]$ -paracompact space, then by Theorem 2.3, X is $[n, \infty]$ -strongly paracompact Hence there exists an open refinement σ of γ such that for each $L \in \sigma$ the set $\Delta_L = \{H \in \sigma : L \cap H \neq \phi\}$ has cardinality n. For a positive integer t, a chain of length t in σ is a sequence $L_1, ..., L_t$ in σ such that $L_t \cap L_{t+1} \neq \phi$ for $1 \leq i \leq t-1$. If t = 1 we simply require $L_1 \neq \phi$. For $x, y \in X$ we define $x \sim y$ if there is a chain $L_1, ..., L_t$ in σ such that $x \in L_1$ and $y \in L_t$. Clearly " \sim " is an equivalence relation since σ is an open cover of X. Let R be an equivalence class and $a \in R$. If $y \in R$, then there is a chain $L_1, ..., L_t$ in σ such that $a \in L_1$ and $y \in L_t$. Clearly each point in L_t is equivalent to a with respect to " \sim ", hence $L_t \subseteq R$. So R is open. Let $z \in c\ell R$. There exists $L \in \sigma$ such that $z \in L$ Since $z \in c\ell R$, then $L \cap R \neq \phi$ Thus if $w \in L \cap R$, then $z \sim w$, i.e., $z \in R$. This shows that R is also closed Let $a \in L$ and $L \in \sigma$. We know that $L \subseteq R$ For a positive integer t, let

$$\mu_t = \{H \in \gamma : \text{ there is a chain } L_1, ..., L_t \text{ in } \sigma \text{ such that } L = L_1 \text{ and } L_t = H\}.$$

Clearly $\mu_1 = \{L\}$. Thus $|\mu_1| < n$. Assume that $|\mu_t| < n$. If $K \in \mu_{t+1}$, then there is a chain $L_1, L_2, ..., L_t, L_{t+1}$ in σ such that $L = L_1$ and $K = L_{t+1}$. Then $L_t \in \mu_t$. Thus

$$\mu_{t+1} \subseteq \bigcup \{ \triangle_H : H \in \mu_t \}.$$

Hence

$$|\mu_{t+1}| \leq \sum_{H \in \mu_t} |\triangle_H| < n,$$

since $|\mu_t| < n$ and n is a regular cardinal. This inductive argument shows that $|\mu_t| < n$ for all $t \ge 1$ We show that $R = \bigcup \{R_i : i \ge 1\}$ where $R_t = \bigcup \{c\ell H : H \in \mu_t\}$. If $H \in \mu_t$, then by the definition of " ~ " we get $H \subseteq R$ Since R is closed, then $c\ell H \subseteq R$. So $R \supseteq \bigcup_t R_t$ Conversely let $y \in R$ Then there is a chain $L_1, ..., L_t$ in σ such that $a \in L_1$ and $y \in L_t$. Since $a \in L_1 \cap L$, then $L, L_1, ..., L_t$ is a chain in σ Thus $L_t \in \mu_{t+1}$; and consequently $y \in \cup R_t$. This proves the result

Now, if $H \in \sigma$, then $H \subseteq c\ell E \subseteq U$ for some $G \in \gamma$ and $U \in \alpha$. Thus $c\ell G$ and consequently $c\ell H$ is $[n, \infty]$ -compact. Since $|\mu_t| < n$ when t is a positive integer, then R_t is also $[n, \infty]$ -compact. Since $n > \omega_0$, then $R = \bigcup R_t$ is also $[n, \infty]$ -compact. This proves the theorem since X is the disjoint topological sum of the equivalence classes of " \sim ".

3. PRODUCT THEOREMS

In this section we prove theorems concerning [n, m]-paracompact of a product space $X \times Y$ Our first theorem is a generalization of a result by Morita [5] which states that if X is a compact space and Y is an m-paracompact space, then $X \times Y$ is an m-paracompact space.

THEOREM 3.1. Let the cardinal m satisfy $m = \Sigma\{m^k : k \text{ is a cardinal and } k < n\}$ Let X be an $[n, \infty]$ -compact space and Y be an [n, m]-paracompact P_n -space. Then $X \times Y$ is [n, m]-paracompact

PROOF. Let α be an open cover of $X \times Y$ with $|\alpha| \leq m$. For each subset β of α with $|\beta| < n$, let $W_{\beta} = \{y \in Y : X \times \{y\} \subseteq \cup \beta\}$. Let $\beta \subseteq \alpha$ and $|\beta| < n$. Then W_{β} is open in X For let $y \in W_{\beta}$. Then $X \times \{y\}$ is contained in $G = \cup \beta$. For each $x \in X$, there exists a basic open set $B_x \times C_x$ in $X \times Y$ such that $(x, y) \in B_x \times C_x \subseteq G$. Now $\{B_x : x \in X\}$ is an open cover of X. Thus there is a subcover $\{B_x : x \in S\}$ where |S| < n. $C = \cap \{C_x : x \in S\}$ is open in Y, since Y is a P_n -space and $y \in G$ Moreover, $X \times C \subset \cup \{B_x \times C : x \in S\} \subseteq G$. It follows that $y \in C \subseteq W_{\beta}$. So W_{β} is open Let us set

$$\Lambda = \{ W_{\beta} : \beta \subseteq \alpha \text{ and } |\beta| < n \}.$$

Let $y \in Y$. For each $x \in X$, there exists $A_x \in \alpha$ such that $(x, y) \in A_x$. There is a basic open set $D_x \times E_x$ in $X \times Y$ such that $(x, y) \in D_x \times E_x \subseteq A_x$. Now, $\{D_x : x \in X\}$ is an open cover of X. Thus it has a subcover $\{D_x : x \in T\}$ such that |T| < n.

Let $\beta = \{A_x : x \in T\}$. Then $|\beta| < n$ and $X \times \{y\} \subseteq \bigcup_{x \in T} D_x \times \{y\} \subseteq \cup \beta$. Thus $y \in W_\beta$ This shows that Λ is an open cover of Y. Further notice that

$$|\Lambda| \le \sum_{k < n} m^k = m.$$

Thus there exists a locally-*n* open refinement μ of Λ since *Y* is [n, m]-paracompact. For each $M \in \mu$ we pick $\beta_M \subseteq \alpha$ such that $|\beta_M| < n$ and $M \subseteq W_{\beta_M}$. For $A \in \beta_M$ we define $G(M, A) = (X \times M) \cap A$ Let $\rho = \{G(M, A) : M \in \mu, A \in \beta_M\}$ If $(x, y) \in X \times Y$, then $y \in M \subseteq W_{\beta_M}$ for some $M \in \mu$ Since $y \in W_{\beta_M}$, then $X \times \{y\} \subseteq \cup \beta_M$. Thus $(x, y) \in A$ for some $A \in \beta_M$ Hence $(x, y) \in G(M, A)$ This shows that ρ is an open cover of $X \times Y$ Clearly ρ refines α Let $(x, y) \in X \times Y$ There exists an open set N in Y such that $y \in N$ and N meets < n members of μ . Let $\mu' = \{M \in \mu : N \cap M \neq \phi\}$ Thus we have $|\mu'| < n$. If $M \notin \mu'$, then $(X \times N) \cap G(M, A) = \phi$ for all $A \in \beta_M$ Thus the open neighborhood $X \times N$ of (x, y) can only meet those G(M, A) with $M \in \mu'$ and $A \in \beta_M$ The cardinality of such G(M, A)'s is at most $\sum_{M \in \mu'} |\beta_M|$ which is less than n since $|\mu'| < n$, $|\beta_M| < n$ for each $M \in \mu'$ and n is a regular cardinal Hence ρ is a locally-n family

In Theorem 3.1 if we assume the stronger condition that Y is $[n, \infty]$ -paracompact then we can show that $X \times Y$ is $[n, \infty]$ -paracompact if we only assume that y is a wP_n -space Before we prove this result we first prove two theorems which are interesting in their own rights

Let A and B be topological spaces and $f: A \to B$ be a function f is called *n*-closed if for every closed subset F of A, f(F) is an n-closed subset of B.

THEOREM 3.2. Let X be an $[n, \infty]$ -compact space and Y be a wP_n -space. Then the projection mapping $P: X \times Y \to Y$ is an n-closed map

PROOF. Let F be closed in $X \times Y$ and y be in $U = Y \setminus P(F)$ Then $(x, y) \notin F$ for each $x \in X$ Hence there are open sets U_x in X and V_x in Y, for each $x \in X$, such that $(x, y) \in U_x \times V_x$ and $F \cap (U_x \times V_x) = \phi$. $\alpha = \{U_x : x \in X\}$ is an open cover of X Since X is $[n, \infty]$ -compact, then there exists a subset T of X such that |T| < n and $\beta = \{U_x : x \in T\}$ covers X. $W = \cap \{V_x : x \in T\}$ is n-open in Y since Y is a wP_n -space and $y \in W$ Hence there exists an open set V in Y such that $y \in V$ and $|V \setminus W| < n$. Now, we have $X \times W \cap F = \phi$ Hence $W \subseteq U$. Thus $|V \setminus U| < n$. It follows that U is n-open. Thus P is n-closed.

THEOREM 3.3. Let $f: Z \to Y$ be a continuous, *n*-closed mapping such that $f^{-1}(y)$ is $[n, \infty]$ compact for such $y \in Y$. If Y is $[n, \infty]$ -paracompact (resp. $[n, \infty]$ -compact) then Z is also $[n, \infty]$ paracompact (resp. $[n, \infty]$ -compact).

PROOF. We will only prove the case when Y is $[n, \infty]$ -paracompact. The $[n, \infty]$ -compact case can be proved similarly.

Let α be an open cover of X For each $y \in Y$ let α_y be a subcollection of α such that $|\alpha_y| < n$ and $f^{-1}(y) \subseteq \bigcup \alpha_y$. Such a subcollection exists since $f^{-1}(y)$ is $[n, \infty]$ -compact. For $y \in Y$, let $G_y = \bigcup \alpha_y$, and $W_y = Y \setminus f(X \setminus G_y)$. Then $y \in W_y$ and W_y is n-open since f is an n-closed map Thus for each $y \in Y$, there is an open set V_y in Y such that $y \in V_y$ and $|V_y \setminus W_y| < n$. $\gamma = \{V_y : y \in Y\}$ is an open cover of Y and Y is $[n, \infty]$ -paracompact. Hence there exists a locally-n open refinement $\{T_i : i \in I\}$ of γ . For each $i \in I$, pick $y_i \in Y$ such that $T_i \subseteq V_y$. For $y \in Y$ let

$$\beta_y = \alpha_y \cup (\cup (\alpha_t : t \in V_y \setminus W_y)).$$

Then

$$|\beta_{v}| \leq |\alpha_{v}| + \Sigma\{|\alpha_{t}| : t \in V_{v} \setminus W_{v}\} < n,$$

since n is a regular cardinal. Moreover $f^{-1}(T_i) \subseteq \bigcup \beta_{y_i}$ since $T_i \subseteq V_{y_i}$. Let

$$\sigma = \left\{ H \cap f^{-1}(T_i) : H \in \beta_{u_i}, i \in I \right\}.$$

Then clearly σ is an open refinement of α . Let $x \in X$ and y = f(x). There is an open set N in Y and a subset J of I such that |J| < n, $y \in N$ and $N \cap T_i = \phi$ for all $i \in I \setminus J$. Let $M = f^{-1}(N)$ and $\Lambda = \{H \cap f^{-1}(T_i) : H \in \beta_{y_i}, i \in J\}$. Then $x \in M$ and $|\Lambda| \le \sum_{i \in J} |\beta_{y_i}| < n$ since n is a regular cardinal Moreover, if $L \in \sigma \setminus \Lambda$, then $L \cap M = \sigma$. Hence σ is a locally-n family. **THEOREM 3.4.** Let X be an $[n, \infty]$ -compact space and Y be an $[n, \infty]$ -paracompact (resp $[n, \infty]$ -compact) wP_n -space, then $X \times Y$ is $[n, \infty]$ -paracompact (resp $[n, \infty]$ -compact)

ACKNOWLEDGMENT. This work was partially supported by Yarmouk University

REFERENCES

- [1] ALEXANDROFF, P., Some recent results in the theory of topological spaces obtained within the last twenty years, *Russian Math. Surveys* 15 (1960), 23-83.
- [2] MANSFIELD, M.J., Some generalizations of full normality, Trans. Amer. Math. Soc. 86 (1957), 489-505.
- [3] SINGAL, M and SINGAL, A., On (m,n)-paracompact spaces, Annalles de la Soc. sc. Bruxelles 83 II (1969), 215-228
- [4] COMFORT, W.W. and NEGREPONTIS, S., The Theory of Ultrafilters, Springer Verlag, New York, 1974
- [5] MORITA, K., Paracompactness and product spaces, Fund. Math. 50 (1961), 223-236
- [6] HDEIB, H., Ph.D. Thesis, State University of New York at Buffalo, 1979
- [7] DUGUNDJI, J., Topology, Allyn and Bacon Inc., Boston, 1966.
- [8] ENELKING, R., Outline of General Topology, North Holl and Amsterdam, 1979.
- [9] TRAYLOR, D.R., Concerning metrizability of pointwise paracompact Moore spaces, Canada J. Math. 16 (1964), 407-411.