ASYMPTOTIC BEHAVIOR OF ALMOST-ORBITS OF REVERSIBLE SEMIGROUPS OF NON-LIPSCHITZIAN MAPPINGS IN BANACH SPACES

JONG SOO JUNG

Department of Mathematics Dong-A University Pusan 607-714, KOREA E-mail address jungjs@seunghak donga ac kr

JONG YEOUL PARK

Department of Mathematics Pusan National University Pusan 609-735, KOREA

JONG SEO PARK Department of Mathematics Graduate School, Dong-A University Pusan 607-714, KOREA

(Received February 15, 1994 and in revised form October 25, 1995)

ABSTRACT. Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm, G a right reversible semitopological semigroup, and $S = \{S(t) : t \in G\}$ a continuous representation of G as mappings of asymptotically nonexpansive type of C into itself The weak convergence of an almost-orbit $\{u(t) : t \in G\}$ of $S = \{S(t) : t \in G\}$ on C is established. Furthermore, it is shown that if P is the metric projection of E onto set F(S) of all common fixed points of $S = \{S(t) : t \in G\}$, then the strong limit of the net $\{Pu(t) : t \in G\}$ exists.

KEY WORDS AND PHRASES: Almost-orbit, fixed point, reversible semitopological semigroup, semigroup of asymptotically nonexpansive type, uniformly convex Banach space **1991 AMS SUBJECT CLASSIFICATION CODES:** 47H20, 47H10, 47H09

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Banach space E and let $S = \{S(t) : t \ge 0\}$ be a family of mappings from C into itself such that S(0) = I, S(t+s) = S(t)S(s) for all $t, s \in [0, \infty)$ and S(t)x is continuous in $t \in [0, \infty)$ for each $x \in C$. S is said to be

(a) nonexpansive semigroup on C if $||S(t)x - S(t)y|| \le ||x - y||$ for all $x, y \in C$ and $t \ge 0$,

(b) asymptotically nonexpansive semigroup on C [1] if there is a function k $[0, \infty) \rightarrow [0, \infty)$ with $\limsup_{t\to\infty} k(t) \le 1$ such that $||S(t)x - S(t)y|| \le k(t)||x - y||$ for all $x, y \in C$ and $t \ge 0$,

(c) semigroup of asymptotically nonexpansive type on C [1] if for each $x \in C$,

$$\limsup_{t\to\infty}\left\{\sup_{y\in C}\left[\|S(t)x-S(t)y\|-\|x-y\|\right]\right\}\leq 0;$$

see [2] for mappings of asymptotically nonexpansive type. It is easily seen that (a) \Rightarrow (b) \Rightarrow (c) and that both the inclusions are proper (cf. [1, p. 112]).

In [3], Myadera and Kobayashi introduced the notion of almost-orbits of nonexpansive semigroups on C and provided the weak and strong almost convergences of such an almost-orbit in a uniformly convex Banach space; see also [4] for almost-orbits of nonexpansive mappings. Recently, Tan and Xu [5] extended this notion to semigroups of asymptotic nonexpansive type in Hilbert spaces The case of general commutative nonexpansive semigroups in uniformly convex Banach spaces was studied by Takahashi and Park [11]. Oka [6] gave the results for the case of commutative asymptotically nonexpansive semigroups in uniformly convex Banach spaces. In particular, Takahashi and Zhang [7] established the convergences of almost-orbits of noncommutative asymptotically nonexpansive semigroups in the same Banach spaces, see [8] for the case of Hilbert spaces

The purpose of this paper is to generalize their results to the case of noncommutative semigroups of asymptotically nonexpansive type Section 2 is a preliminary part In Section 3, we prove several lemmas which are crucial for our discussion. Main results are given in Section 4 First, we establish the weak convergence (Theorem 1) of an almost-orbit $\{u(t) : t \in G\}$ of a semigroup $S = \{S(t) : t \in G\}$ of asymptotically nonexpansive type on C in a uniformly convex Banach space with a Fréchet differentiable norm, where G is a right reversible semitopological semigroup. Next, we show that if P is the metric projection of E onto set F(S) of all common fixed points of $S = \{S(t) : t \in G\}$, then the strong limit of the net $\{Pu(t) : t \in G\}$ exists (Theorem 2). Our proofs employ the methods of Hirano and Takahashi [9], Ishihara and Takahashi [10], Takahashi and park [11], and Takahashi and Zhang [7,8] The results are generalizations of the corresponding results in [5], [7], [8], [11], [12] and [13].

2. PRELIMINARIES

Let E be a real Banach space and let E^* be its dual. The value of $f \in E^*$ at $x \in E$ will be denoted by (x, f) With each $x \in E$, we associate the set

$$J(x) = \left\{ f \in E^* : (x, f) = ||x||^2 = ||f||^2 \right\}$$

Using the Hahn-Banach theorem, it is readily verified that $J(x) \neq \emptyset$ The multivalued mapping $J: E \to E^*$ is called the duality mapping of E. Let $U = \{x \in E : ||x|| = 1\}$ be the unit sphere of E Then a Banach space E is said to be smooth provided the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$
(2 1)

exists for each $x, y \in U$. In this case, the norm of E is said to be Gâteaux differentiable. It is said to be Fréchet differentiable if for each $x \in U$, the limit (2.1) is attained uniformly for $y \in U$. It is also known that if E is smooth, then the duality mapping J is single valued. It is easy to see that the norm of E is Fréchet differentiable if and only if for any bounded set $B \subset E$ and any $x \in E$, $\lim_{t\to 0} (2t)^{-1} (||x + ty||^2 - ||x||^2) = (y, J(x))$ uniformly in $y \in E$; see [14].

A Banach space E is called uniformly convex if the modulus of convexity

$$\delta(\epsilon) = \inf\left\{1 - \frac{1}{2} \|x + y\| : \|x\|, \|y\| \le 1, \|x - y\| \ge \epsilon\right\}$$

is positive in its domain of definition $\{\epsilon : 0 < \epsilon \leq 2\}$. For the properties of $\delta(\epsilon)$, see [15].

For a subset D of E, \overline{D} denotes the closure of E, coD the convex hull of D, and \overline{coD} the closed convex hull of E, respectively.

Let G be a semitopological semigroup, i.e., G is a semigroup with a Hausdorff topology such that for each $a \in G$ the mappings $g \to a \cdot g$ and $g \to g \cdot a$ from G to G are continuous. G is said to be right reversible if any two closed left ideals of G have nonempty intersection. If G is right reversible, (G, \leq) is a directed system when the binary relation " \leq " on G is defined by $a \leq b$ if and only if $\{a\} \cup \overline{Ga} \supseteq \{b\} \cup \overline{Gb}$.

Let C be a nonempty closed convex subset of a Banach space E and let G be a semitopological semigroup. A family $S = \{S(t) : t \in G\}$ of mappings from C into itself is said to be a (continuous) representation of G on C if S satisfies the following:

- (i) S(ts)x = S(t)S(s)x for all $t, s \in G$ and $x \in C$
- (ii) for every $x \in C$, the mappings $s \to S(s)x$ from G into C is continuous.

DEFINITION 1. A representation $S = \{S(t) : t \in G\}$ of G on C is said to be a semigroup of asymptotically nonexpansive type on C if for each $x \in C$,

$$\inf_{s \in G} \sup_{s \preceq t} \sup_{y \in C} (\|S(t)x - S(t)y\| - \|x - y\|) \le 0.$$
(2 2)

Let G be right reversible and let $S = \{S(t) : t \in G\}$ be a representation of G on C A function $u : G \to C$ is called an almost-orbit of $S = \{S(t) : t \in G\}$ if

$$\lim_{s \in G} \left(\sup_{t \in G} \|u(ts) - S(t)u(s)\| \right) = 0.$$
(2.3)

 $\omega(u)$ denotes the set of all weak limit points of subnets of the net $\{u(t) : t \in G\}$, and $F(S) = \bigcap_{t \in G} F(S(t))$ the set of all common fixed points of mappings $S(t), t \in G$ in C

3. LEMMAS

In this section, we prove several lemmas which are crucial in convergence of almost-orbits.

LEMMA 1. Let C be a nonempty closed convex subset of a uniformly convex Banach space E and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type of a right reversible semitopological semigroup G on C. Then F(S) is a closed and convex subset of C.

PROOF. The closedness of F(S) is obvious. To show convexity, it is sufficient to show that $z = \frac{x+y}{2} \in F(S)$ for all $x, y \in F(S)$. Let $x, y \in F(S), x \neq y$ If $\lim_{t \in G} S(t)z = z$, then for any $s \in G$,

$$S(s)z = \lim_{t \in G} S(s)S(t)z = \lim_{t \in G} S(st)z = \lim_{t \in G} S(t)z = z,$$

i.e., $z \in F(S)$. Hence it suffices to prove that $\lim_{t \in G} S(t)z = z$. If not, there exists $\epsilon > 0$ such that for any $t \in G$, there is $t' \in G$ with $t' \succeq t$ and

$$4\|S(t')z - z\| = \|2(S(t')z - x) - 2(y - S(t')z)\| \ge \epsilon.$$

Choose d > 0 so small that

$$(R+d)\left(1-\delta\left(\frac{\epsilon}{R+d}\right)\right) < R$$

where R = ||x - y|| > 0 and δ is the modulus of convexity of E Since $S = \{S(t) : t \in G\}$ is asymptotically nonexpansive type on C, there is $t_0 \in G$ such that

$$\sup_{t_0 \preceq t} \sup_{w \in C} (\|S(t)z - S(t)w\| - \|z - w\|) \leq \frac{a}{2}.$$

Put $u = 2(S(t'_0)z - x)$, $v = 2(y - S(t'_0)z)$. Then $||u - v|| = 4||S(t'_0)z - z|| \ge \epsilon$. Furthermore, since $t_0 \le t'_0$, we have

$$\begin{split} \|u\| &= 2\|S(t'_0)z - x\| \\ &= 2(\|S(t'_0)z - S(t'_0)x\| - \|z - x\|) + 2\|z - x\| \\ &\leq 2 \sup_{t_0 \leq t} \sup_{w \in C} (\|S(t)z - S(t)w\| - \|z - w\|) + \|x - y\| < R + d \end{split}$$

and

$$\begin{split} \|v\| &= 2\|y - S(t'_0)z\| \\ &= 2(\|S(t'_0)z - S(t'_0)y\| - \|z - y\|) + 2\|z - y\| \\ &\leq 2 \sup_{t_0 \preceq t} \sup_{w \in C} (\|S(t)z - S(t)w\| - \|z - w\|) + \|x - y\| < R + d. \end{split}$$

So we have

$$\left\|\frac{u+v}{2}\right\| \leq (R+d)\left(1-\delta\left(\frac{\epsilon}{R+d}\right)\right),$$

and hence

$$\|x-y\| = \left\|\frac{u+v}{2}\right\| \le (R+d)\left(1-\delta\left(\frac{\epsilon}{R-d}\right)\right) < R = \|x-y\|.$$

This is a contraction. Therefore, $\lim_{t\in G} S(t)z = z$, which completes the proof

LEMMA 2. Let C be a nonempty closed convex subset of Banach space E Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on C. If $\{u(t) : t \in G\}$ and $\{v(t) : t \in G\}$ are almost-orbits of $S = \{S(t) : t \in G\}$, then $\lim_{t \in G} ||u(t) - v(t)||$ exists. In particular, for every $z \in F(S)$, $\lim_{t \in G} ||u(t) - z||$ exists

PROOF. Put

$$\phi(s) = \sup_{t \in G} \|u(ts) - S(t)u(s)\|, \quad \psi(s) = \sup_{t \in G} \|v(ts) - S(t)v(s)\|$$

for $s \in G$ Then $\lim_{s \in G} \phi(s) = \lim_{s \in G} \psi(s) = 0$. Let $\epsilon > 0$. Since $S = \{S(t) : t \in G\}$ is of asymptotically nonexpansive type on C, there exists $t_0 \in G$ such that

$$\sup_{t_0 \preceq t} \sup_{w \in C} \left(\|S(t)u(s) - S(t)w\| - \|u(s) - w\| \right) < \epsilon$$

for all $s \in G$. On the other hand, since, for any $s, t \in G$,

$$\begin{aligned} \|u(ts) - v(ts)\| &\leq \phi(s) + \psi(s) + (\|S(t)u(s) - S(t)v(s)\| - \|u(s) - v(s)\|) + \|u(s) - v(s)\|\\ &\leq \phi(s) + \psi(s) + \sup_{w \in C} (\|S(t)u(s) - S(t)w\| - \|u(s) - w\|) + \|u(s) - v(s)\|, \end{aligned}$$

we have

$$\inf_{t \in G} \sup_{t \preceq \tau} \|u(\tau) - v(\tau)\| \leq \phi(s) + \psi(s) + \sup_{t_0 \preceq t} \sup_{w \in C} (\|S(t)u(s) - S(t)w\| - \|u(s) - w\|) + \|u(s) - v(s)\| \\ \leq \phi(s) + \psi(s) + \epsilon + \|u(s) - v(s)\|,$$

and then $\inf_{t\in G} \sup_{t\leq \tau} ||u(\tau) - v(\tau)|| \leq \sup_{t\in G} \inf_{t\leq s} ||u(s) - v(s)||$ Thus $\lim_{t\in G} ||u(t) - v(t)||$ exists. Let $z \in F(S)$ and put v(t) = z. Then v(t) is an almost-orbit and hence $\lim_{t\in G} ||u(t) - z||$ exists

LEMMA 3. Let C be a nonempty closed convex subset of Banach space E. Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on C. Let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$ If $F(S) \neq \emptyset$, then there exists $t_0 \in G$ such that $\{u(t) : t \succeq t_0\}$ is bounded.

PROOF. Let $z \in F(S)$. Then, since $\lim_{t \in G} ||u(t) - z||$ exists by Lemma 2, there is $t_0 \in G$ such that $\{||u(t) - z|| : t \succeq t_0\}$ is bounded. Hence $\{u(t) : \succeq t_0\}$ is bounded.

LEMMA 4. Let C be a nonempty closed convex subset of a uniformly convex Banach space E Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on C. Let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$ Suppose that $F(S) \neq \emptyset$. Let $y \in F(S)$ and $0 < \alpha \le \beta < 1$. Then for any $\epsilon > 0$, there is $t_0 \in G$ such that

$$\|S(t)(\lambda u(s) + (1-\lambda)y) - (\lambda S(t)u(s) + (1-\lambda)y)\| < \epsilon$$

for all $t, s \succeq t_0$ and $\lambda \in [\alpha, \beta]$.

PROOF. By Lemma 2, $\lim_{t\in G} ||u(t) - y||$ exists. Let $\epsilon > 0$ and

$$r = \lim_{t \in G} \|u(t) - y\|$$

If r = 0, since $S = \{S(t) : t \in G\}$ is of asymptotically nonexpansive type on C, there exists $t_0 \in G$ such that

$$\sup_{t_0 \leq t} \sup_{w \in C} \left(\|S(t)(\lambda u(s) + (1-\lambda)y) - S(t)w\| - \|\lambda u(s) + (1-\lambda)y - w\| \right) < \frac{\epsilon}{2},$$

$$\|u(t)-y\|<\frac{\epsilon}{4}$$

and

for $t \succeq t_0$, $0 < \lambda < 1$ and $s \in G$. Hence for $s, t \succeq t_0$, $0 < \lambda < 1$ and $s \in G$,

$$\begin{split} \|S(t)(\lambda u(s) + (1-\lambda)y) - (\lambda S(t)u(s) + (1-\lambda)y)\| \\ &\leq \lambda \|S(t)(\lambda u(s) + (1-\lambda)y) - S(t)u(s)\| + (1-\lambda)\|S(t)(\lambda u(s) + (1-\lambda)y) - y\| \\ &\leq \lambda \left(\sup_{t_0 \preceq t} \sup_{w \in C} (\|S(t)(\lambda u(s) + (1-\lambda)y) - S(t)w\| - \|\lambda u(s) + (1-\lambda)y - w\|) \right) \\ &\quad + \lambda \|\lambda u(s) + (1-\lambda)y - u(s)\| + (1-\lambda) \left(\sup_{t_0 \preceq t} \sup_{w \in C} (\|S(t)(\lambda u(s) + (1-\lambda)y) - S(t)w\| - \|\lambda u(s) + (1-\lambda)y - w\|) \right) + (1-\lambda)\|\lambda u(s) + (1-\lambda)y - y\| \\ &< \lambda \frac{\epsilon}{2} + (1-\lambda)\frac{\epsilon}{2} + 2\lambda(1-\lambda)\|u(s) - y\| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} (\lambda(1-\lambda)) < \epsilon. \end{split}$$

Now, let r > 0. Then we can choose d > 0 so small that

$$(r+d)\left(1-c\delta\left(\frac{\epsilon}{r+d}\right)\right) = r_0 < r,$$

where δ is the modulus of convexity of E and

$$c = \min\{2\lambda(1-\lambda) : \alpha \leq \lambda \leq \beta\}$$

Let a > 0 with $2a + r_0 < r$. Then there is $t_0 \in G$ such that

$$r-a < ||u(s) - y|| \le r + rac{d}{2}$$
 for $s \succeq t_0$,
 $||S(s)u(t) - u(st)|| < a$ for $t \succeq t_0$ and $s \in G$,

$$\sup_{t_0 \preceq t} \sup_{w \in C} \left(\|S(t)z - S(t)w\| - \|z - w\| \right) < \frac{1}{4} d \quad \text{for} \quad z \in C,$$

and

$$\sup_{t_0 \leq t} \sup_{w \in C} (\|S(t)u(s) - S(t)w\| - \|u(s) - w\|) < \frac{c}{4} d \quad \text{for} \quad s \in G$$

Suppose that $||S(t)(\lambda u(s) + (1 - \lambda)y) - (\lambda S(t)u(s) + (1 - \lambda)y)|| \ge \epsilon$ for some $s, t \ge t_0$ and $\lambda \in [\alpha, \beta]$ Put $z = \lambda u(s) + (1 - \lambda)y$, $u = (1 - \lambda)(S(t)z - y)$ and $v = \lambda(S(t)u(s) - S(t)z)$ Then we have

$$\begin{split} \|u\| &= (1-\lambda)(\|S(t)z - S(t)y\| - \|z - y\|) + (1-\lambda)\|z - y\| \\ &\leq (1-\lambda) \sup_{t_0 \preceq t} \sup_{w \in C} (\|S(t)z - S(t)w\| - \|z - w\|) + (1-\lambda)\|\lambda u(s) + (1-\lambda)y - y\| \\ &< (1-\lambda) \frac{c}{4} d + \lambda(1-\lambda)\|u(s) - y\| \\ &\leq \lambda(1-\lambda) \left((1-\lambda) \frac{d}{2} + r + \frac{d}{2} \right) < \lambda(1-\lambda)(r+d) \end{split}$$

and

$$\begin{split} \|v\| &= \lambda (\|S(t)u(s) - S(t)z\| - \|u(s) - z\|) + \lambda \|u(s) - z\| \\ &\leq \lambda \sup_{t_0 \preceq t} \sup_{w \in C} (\|S(t)u(s) - S(t)w\| - \|u(s) - w\|) + \lambda (1 - \lambda) \|u(s) - y\| \\ &< \lambda \frac{c}{4} d + \lambda (1 - \lambda) \left(r + \frac{d}{2}\right) \\ &\leq \lambda (1 - \lambda) \left(\lambda \frac{d}{2} + r + \frac{d}{2}\right) < \lambda (1 - \lambda) (r + d). \end{split}$$

We also have that

$$\|u-v\| = \|S(t)z - (\lambda S(t)u(s) + (1-\lambda)y)\| \ge \epsilon$$

56

and

$$\begin{split} \lambda u + (1-\lambda)v &= \lambda(1-\lambda)(S(t)z-y) + (1-\lambda)\lambda(S(t)u(s)-S(t)z) \\ &= \lambda(1-\lambda)(S(t)u(s)-y). \end{split}$$

By the Lemma in [16], we have

$$\begin{split} \lambda(1-\lambda) \|S(t)u(s) - y\| &= \|\lambda u + (1-\lambda)v\| \\ &\leq \lambda(1-\lambda)(r+d) \bigg(1 - 2\lambda(1-\lambda)\delta\bigg(\frac{\epsilon}{r+d}\bigg) \bigg) \\ &\leq \lambda(1-\lambda)(r+d) \bigg(1 - c\delta\bigg(\frac{\epsilon}{r+d}\bigg) \bigg) = \lambda(1-\lambda)r_0 \end{split}$$

and hence $||S(t)u(s) - y|| \le r_0$ This implies that

$$||u(ts) - y|| \le ||u(ts) - S(t)u(s)|| + ||S(t)u(s) - y|| < a + r_0 < r - a$$

This contradicts the fact ||u(s) - y|| > r - a for $s \succeq t_0$. The proof is complete

LEMMA 5. Let C be a nonempty closed convex subset of a uniformly convex Banach space E Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on C. Let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$. Suppose that $F(S) \neq \emptyset$. Then $\lim_{t \in G} ||\lambda u(t) + (1 - \lambda)x - y||$ exists for every $x, y \in F(S)$

PROOF. Let $\lambda \in (0, 1)$ and $x, y \in F(S)$. By (2.2), (2.3), and Lemma 4, for any $\epsilon > 0$, there exists $t_0 \in G$ such that

$$\begin{split} \|S(t)(\lambda u(s) + (1-\lambda)x) - (\lambda S(t)u(s) + (1-\lambda)x)\| &\leq \frac{\epsilon}{3} \quad \text{for} \quad t, s \succeq t_0, \\ \sup_{t \in G} \|u(ts) - S(t)u(s)\| &< \frac{\epsilon}{3} \quad \text{for} \quad s \succeq t_0, \\ \sup_{t_0 \preceq t} \sup_{w \in C} \left(\|S(t)(\lambda u(s) + (1-\lambda)x) - S(t)w\| - \|\lambda u(s) + (1-\lambda)x - w\|\right) &< \frac{\epsilon}{3} \quad \text{for} \quad s \in G. \end{split}$$

Since

$$\begin{split} \|\lambda u(ts) + (1-\lambda)x - y\| \\ &\leq \lambda \|u(ts) - S(t)u(s)\| + \|\lambda S(t)u(s) + (1-\lambda)x - S(t)(\lambda u(s) + (1-\lambda)x)\| \\ &+ \sup_{w \in C} (\|S(t)(\lambda u(s) + (1-\lambda)x) - S(t)w\| - \|\lambda u(s) + (1-\lambda)x - w\|) \\ &+ \|\lambda u(s) + (1-\lambda)x - y\| \\ &< \epsilon + \|\lambda u(s) + (1-\lambda)x - y\| \end{split}$$

for all $t, s \in G$, we have

$$\inf_{t \in G} \sup_{t \preceq \tau} \|\lambda u(\tau) + (1-\lambda)x - y\| \leq \sup_{t_0 \preceq t} \|\lambda (u(ts) + (1-\lambda)x - y\| \\ \leq \epsilon + \|\lambda u(s) + (1-\lambda)x - y\|$$

for all $s \succeq t_0$, and then

$$\inf_{t \in G} \sup_{t \preceq \tau} \|\lambda u(\tau) + (1-\lambda)x - y\| \leq \sup_{t \in G} \inf_{t \preceq s} \|\lambda u(s) + (1-\lambda)x - y\|.$$

Thus $\lim_{t\in G} \|\lambda u(t) + (1-\lambda)x - y\|$ exists.

LEMMA 6. Let C be a nonempty closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm. Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on C. Let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$. Then

$$F(\mathcal{S})\cap igcap_{s\in G} \overline{co}\left\{u(t):t\succeq s
ight\}$$

is at most a singleton.

PROOF. Note that $\bigcap_{s \in G} \overline{co} \{u(t) : t \succeq s\} = \overline{co} \omega(u)$, see [17] Let $x, y \in F(S)$ Since E has a Fréchet differentiable norm, there exists an increasing function $\gamma : R^+ \to R^+$ such that $\gamma(t)/t \to 0$ as $t \to 0^+$, and

$$\begin{split} \frac{1}{2} \left\| x - y \right\|^2 + (h, J(x - y)) &\leq \frac{1}{2} \left\| x - y + h \right\|^2 \\ &\leq \frac{1}{2} \left\| x - y \right\|^2 + (h, J(x - y)) + \gamma(\|h\|) \end{split}$$

for all $h \in E$. Take $h = \lambda(u(t) - x)$ Then

$$\begin{split} \frac{1}{2} \|x - y\|^2 + \lambda(u(t) - x, J(x - y)) &\leq \frac{1}{2} \|\lambda u(t) + (1 - \lambda)x - y\|^2 \\ &\leq \frac{1}{2} \|x - y\|^2 + \lambda(u(t) - x, J(x - y)) + \gamma(\lambda \|u(t) - x\|). \end{split}$$

Using Lemma 5, we have

$$\begin{split} \frac{1}{2} \left\| x - y \right\|^2 + \lambda &\inf_{t \in G} \sup_{t \preceq \tau} \left(u(\tau) - x, J(x - y) \right) \\ &\leq \frac{1}{2} \lim_{t \in G} \left\| \lambda u(t) + (1 - \lambda)x - y \right\|^2 \\ &\leq \frac{1}{2} \left\| x - y \right\|^2 + \lambda \sup_{t \in G} \inf_{t \preceq \tau} \left(u(\tau) - x, J(x - y) \right) + \gamma(\lambda M), \end{split}$$

where $\sup_{t\in G} ||u(t) - x|| = M$. Dividing by λ and letting $\lambda \to 0^+$, we have $\lim_{t\in G} (u(t), J(x - y)) = r$ exists. Of course r = (v, J(x - y)) for all $v \in \omega(u)$ and hence for all $v \in \overline{co} \ \omega(u)$ Therefore (v - w, J(x - y)) = 0 for all $v, w \in \overline{co} \ \omega(u)$, and it readily follows that $F(S) \cap \bigcap_{s \in G} \{u(t) : t \succeq s\} = F(S) \cap \overline{co} \ \omega(u)$ is at most a singleton.

4. MAIN RESULTS

In this section, we study the convergence of an almost-orbit $\{u(t) : t \in G\}$ of $S = \{S(t) : t \in G\}$

THEOREM 1. Let *E* be a uniformly convex Banach space with a Fréchet differentiable norm and let *C* be a nonempty closed convex subset of *E* Let *F* be a subset of *C* and let *G* be a right reversible semitopological semigroup. Let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on *C* and let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$. Assume that

(a) $F \subset F(\mathcal{S})$.

Assume also that

(b) if a subnet $\{u(t_{\alpha})\}$ of the net $\{u(t) : t \in G\}$ converges weakly to z, then $z \in F$. Then either (i) $F = \emptyset$ and $||u(t)|| \to \infty$ or (ii) $F \neq \emptyset$ and the net $\{u(t) : t \in G\}$ converges weakly to some $z \in F(S)$.

PROOF. Suppose that some subnet $\{u(t_{\alpha})\}$ of $\{u(t) : t \in G\}$ is bounded. Since E is reflexive, a subnet of $\{u(t_{\alpha})\}$ must converge weakly to an element $z \in E$, which is in F by (b). Thus $F = \emptyset$ implies $||u(t)|| = \infty$.

If, on the other hand, $F \neq \emptyset$, then by Lemma 3, $\{u(t) : t \in G\}$ is bounded. So $\{u(t) : t \in G\}$ must contain a subnet $\{u(t_{\alpha})\}$ which converges to some $z \in F$ by (b) Since $F \subset F(S)$ and $z \in \overline{co}$ $\omega(u) = \bigcap_{s \in G} \overline{co} \{u(t) : t \in G\}$, we have

$$z\in F\cap \bigcap_{s\in G} \overline{co}\,\{u(t):t\succeq s\}\subset F(\mathcal{S})\cap \bigcap_{s\in G} \overline{co}\,\{u(t):t\succeq s\}.$$

Therefore it follows from Lemma 6 that $\{u(t) : t \in G\}$ converges weakly to $z \in F(S)$.

As a direct consequence, we have the following corollary, which is a generalization of a result in [5], [7], [8], [11], [12] and [13]

COROLLARY 1. Let E be a uniformly convex Banach space with a Fréchet differentiable norm and let C be a nonempty closed convex subset of E. Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on CSuppose that $F(S) \neq \emptyset$ and let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$ If $\omega(u) \subset F(S)$, then the net $\{u(t) : t \in G\}$ converges weakly to some $z \in F(S)$

PROOF. The result follows by putting $F = \omega(u)$ in Theorem 1

The following theorem is also a generalization of [7, Theorem 4]

THEOREM 2. Let C be a nonempty closed convex subset of a uniformly convex Banach space E Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on C Suppose that $F(S) \neq \emptyset$ and let $\{u(t) : t \in G\}$ be an almostorbit of $S = \{S(t) : t \in G\}$ Let P denote the metric projection of E onto F(S) Then the strong limit of the net $\{Pu(t) : t \in G\}$ exists and $\lim_{t \in G} Pu(t) = z_0$, where z_0 is a unique element of F(S) such that

$$\lim_{t\in G} \|u(t)-z_0\|=\min\left\{\lim_{t\in G} \|u(t)-z\|: z\in F(\mathcal{S})\right\}.$$

PROOF. Since $F(S) \neq \emptyset$, we know that $\{u(t) : t \in G\}$ is bounded and $\lim_{t \in G} ||u(t) - z|| = g(z)$ exists for each $z \in F(S)$. Let $R = \inf\{g(z) : z \in F(S)\}$ and $M = \{u \in F(S) : g(u) = R\}$ Then, since g(z) is convex and continuous on F(S) and $g(z) \to \infty$ as $||z|| \to \infty$, M is a nonempty closed convex bounded subset of F(S). Fix $z_0 \in M$ with $g(z_0) = R$. Since P is the metric projection of E onto F(S), we have $||u(t) - Pu(t)|| \le ||u(t) - y||$ for all $t \in G$ and $y \in F(S)$, and hence

$$\inf_{t\in G} \sup_{t\preceq s} \|u(s) - Pu(s)\| \leq R.$$

Suppose that $\inf_{t \in G} \sup_{t \leq s} ||u(s) - Pu(s)|| < R$. Then we may choose $\epsilon > 0$ and $t_0 \in G$ such that

$$\begin{aligned} \|u(s) - Pu(s)\| &\leq R - \epsilon \\ \sup_{t_0 \preceq t} \sup_{w \in C} \left(\|S(t)u(s) - S(t)w\| - \|u(t) - w\| \right) < \frac{\epsilon}{4} \end{aligned}$$

and

$$\sup_{t\in G}\|u(ts)-S(t)u(s)\|<\frac{\epsilon}{4}$$

for all $s \succeq t_0$. Since

$$\begin{split} \|u(ts) - Pu(s)\| &\leq \|u(ts) - S(t)u(s)\| + \|S(t)u(s) - S(t)Pu(s)\| \\ &- \|u(s) - Pu(s)\| + \|u(s) - Pu(s)\| \\ &\leq \phi(s) + \sup_{w \in C} \left(\|S(t)u(s) - S(t)w\| - \|u(s) - w\| \right) + \|u(s) - Pu(s)\| \end{split}$$

for all s, $t \in G$ and $\lim_{s \in G} \phi(s) = 0$, where $\phi(s) = \sup_{t \in G} ||u(ts) - S(t)u(s)||$, we have

$$\|u(ts) - Pu(s)\| < \frac{\epsilon}{4} + \frac{\epsilon}{4} + r - \epsilon = R - \frac{\epsilon}{2}$$

for $s \succeq t_0$ and all $t \in G$. Therefore, we obtain

$$\lim_{t\in G} \|u(t) - Pu(s)\| = \inf_{t\in g} \sup_{t \leq \tau} \|u(\tau) - Pu(s)\| \leq R - \frac{\epsilon}{2} < R.$$

This is a contradiction. So we conclude that

$$\inf_{t\in G} \sup_{t\neq s} \|u(s) - Pu(s)\| = R.$$

Now we claim that $\lim_{t\in G} Pu(t) = z_0$. If not, then there exists $\epsilon > 0$ such that for any $t \in G$, $||Pu(t') - z_0|| \ge \epsilon$ for some $t' \succeq t$. Choose a > 0 so small that

$$(R+a)\left(1-\delta\left(\frac{\epsilon}{R+a}\right)\right)=R_1< R,$$

where δ is the modulus of convexity of the norm of E We have $||u(t') - Pu(t')|| \le R + a$ and $||u(t') - z_0|| \le R + a$ for large enough t'. Therefore

$$\left\|u(t') - \frac{Pu(t') + z_0}{2}\right\| \le (R+a)\left(1 - \delta\left(\frac{\epsilon}{R+a}\right)\right) = R_1.$$

Since, by Lemma 1, the point $w_{t'} = \frac{Pu(t')+z_0}{2}$ belongs to F(S), as in the above,

$$\|u(tt') - w_{t'}\| \le \phi(t') + \sup_{w \in C} \left(\|S(t)u(t') - S(t)w\| - \|u(t') - w\| \right) + \|u(t') - w_{t'}\|$$

Since $\lim_{s\in G} \phi(s) = 0$, there is $t' \in G$ such that

$$\phi(t') < \frac{R-R_1}{4}$$

and

$$\sup_{t' \preceq t} \sup_{w \in C} \left(\|S(t)u(t') - S(t)w\| - \|u(t') - w\| \right) < \frac{R - R_1}{4},$$

and hence

$$\lim_{t\in G} \|u(t) - w_{t'}\| = \inf_{\tau\in G} \sup_{t\leq \tau} \|u(\tau) - w_{t'}\| < \frac{R-R_1}{2} + R_1 = \frac{R+R_1}{2} < R.$$

This contradicts the fact $R = \inf \{g(z) : z \in F(S)\}$ Thus we have $\lim_{t \in G} Pu(t) = z_0$ Consequently, it follows that the element $z_0 \in F(S)$ with $g(z_0) = \min \{g(z) : z \in F(S)\}$ is unique. The proof is complete

By Corollary 1 and Theorem 2, we have the following, which is an improvement of [8, Theorem 3] and [5, Theorem 3.3].

COROLLARY 2. Let C be a nonempty closed convex subset of a real Hilbert space H Let G be a right reversible semitopological semigroup and $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on C. Suppose that $F(S) \neq \emptyset$. Let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$. Then $\{u(t) : t \in G\}$ converges weakly to some $z \in C$ if and only if u(ht) - u(t)converges weakly to 0 for all $h \in G$. In this case, $z \in F(S)$ and $\lim_{t \in G} Pu(t) = z$

PROOF. We need only prove the "if" part. By Corollary 1, it suffices to show that $\omega(u) \subset F(S)$ Let $\{u(t_{\alpha})\}$ be a subnet of $\{u(t) : t \in G\}$ converging weakly to $y \in C$ Given $\epsilon > 0$ Since S is of asymptotically nonexpansive type and $\{u(t_{\alpha})\}$ is bounded, there exists $t_0 \in G$ such that for any α ,

$$\sup_{t_0 \preceq t} \sup_{w \in C} (\|S(t)u(t_{\alpha}) - S(t)w\| - \|u(t_{\alpha}) - w\|) < \epsilon$$

So we have, for $t \succeq t_0$ and any α ,

$$\begin{split} \|S(t)u(t_{\alpha}) - S(t)y\|^{2} &- \|u(t_{\alpha}) - y\|^{2} \\ &= (\|S(t)u(t_{\alpha}) - S(t)y\| - \|u(t_{\alpha}) - y\|)(\|S(t)u(t_{\alpha}) - S(t)y\| + \|u(t_{\alpha}) - y\|) \\ &\leq \sup_{t_{0} \leq t} \sup_{w \in C} (\|S(t)u(t_{\alpha}) - S(t)w\| - \|u(t_{\alpha}) - w\|) \Big(\sup_{t_{0} \leq t} \sup_{w \in C} (\|S(t)u(t_{\alpha}) - S(t)w\| \\ &- \|u(t_{\alpha}) - w\|) + 2\|u(t_{\alpha}) - y\| \Big) \end{split}$$

$$<\epsilon(\epsilon+2M),$$

where $M = \sup_{\alpha} \|u(t_{\alpha}) - y\|$. Let $u \in F(S)$ and $\epsilon' = \epsilon(\epsilon + 2M)$. Then we have, for $t \succeq t_0$ and all α ,

$$\begin{aligned} -\epsilon' &< \left\| u(t_{\alpha}) - y^2 \right\| - \left\| - S(t)u(t_{\alpha})y \right\|^2 \\ &= \left\| u(t_{\alpha}) - u \right\|^2 + 2(u(t_{\alpha}) - u, u - y) + \left\| u - y \right\|^2 \\ &- \left\| S(t)u(t_{\alpha}) - u \right\|^2 - 2(S(t)u(t_{\alpha}) - u, u - S(t)y) - \left\| u - S(t)y \right\|^2 \\ &= \left\| u(t_{\alpha}) - u \right\|^2 - \left\| S(t)u(t_{\alpha}) - u \right\|^2 + \left\| u - y \right\|^2 - \left\| u - S(t)y \right\|^2 \\ &+ 2(u(t_{\alpha}) - u, S(t)y - y) + 2(u(t_{\alpha}) - S(t)u(t_{\alpha}), u - S(t)y). \end{aligned}$$

Since $\{u(t) : t \in G\}$ is an almost-orbit of $S = \{S(t) : t \in G\}$ and u(hs) - u(s) converges weakly to 0 for all $h \in G$, it follows that

$$\lim_{\alpha} ||S(t)u(t_{\alpha}) - u||^{2} = \lim_{\alpha} ||u(tt_{\alpha}) - u||^{2} = \lim_{\alpha} ||u(t_{\alpha}) - u||^{2}$$

$$(t_{\alpha}) - S(t)u(t_{\alpha}) = u(t_{\alpha}) - u(tt_{\alpha}) \rightarrow 0$$
 weakly

Thus we have

$$-\epsilon' \leq 2(y-u,S(t)y-y) + ||y-u||^2 - ||u-S(t)y||^2 = -||y-S(t)y||^2$$

for $t \succeq t_0$, and hence $\limsup_{t \in G} ||S(t)y - y|| \le \epsilon'$. Since ϵ' is arbitrary, we have $\lim_{t \in G} S(t)y = y$ Now, for $s \in G$,

$$S(s)y = \lim_{t \in G} S(s)S(t)y = \lim_{t \in G} S(st)y = \lim_{t \in G} S(t)y = y$$

ie, $y \in F(S)$ and hence $\omega(u) \subset F(S)$ By Corollary 1, the net $\{u(t) : t \in G\}$ converges weakly to some $z \in F(S)$ On the other hand, since P is the metric projection of H onto F(S), we know that

$$(u(t) - Pu(t), Pu(t) - y) \geq 0$$

for all $y \in F(S)$. So, if $Pu(t) \to u$ by Theorem 2, we have $(z - u, u - y) \ge 0$ for all $y \in F(S)$ Putting z = y, we obtain $-||z - u||^2 \ge 0$ and hence z = u.

As a direct consequence, we have the following

u

COROLLARY 3. Let C be a nonempty closed convex subset of a real Hilbert space H Let G be a right reversible semitopological semigroup and let $S = \{S(t) : t \in G\}$ be a semigroup of asymptotically nonexpansive type on C. Suppose that $F(S) \neq \emptyset$ Let $\{u(t) : t \in G\}$ be an almost-orbit of $S = \{S(t) : t \in G\}$. If $\lim_{t \in G} ||u(ht) - u(t)|| = 0$ for all $h \in G$, then the net $\{u(t) : t \in G\}$ converges weakly to some $z \in F(S)$.

REFERENCES

- KIRK, W.A. and TORREJÓN, R., Asymptotically nonexpansive semigroups in Banach spaces, Nonlinear Analysis TMA 3 (1979), 111-121.
- [2] KIRK, W.A., Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, *Israel J. Math.* 17 (1974), 339-346.
- [3] MIYADERA, I. and KOBAYASHI, K., On the asymptotic behavior of almost-orbits of nonlinear contraction semigroups in Banach spaces, *Nonlinear Analysis TMA*, 6 (1982), 349-365
- [4] BRUCK, R.E., A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, *Israel J. Math.* 32 (1979), 107-116.
- [5] TAN, K.K. and XU, H.K., Asymptotic behavior of almost-orbits of nonlinear semigroups of non-Lipschitzian mappings in Hilbert spaces, Proc. Amer. Math. Soc. 117 (1993), 385-393.
- [6] OKA, H., Nonlinear ergodic theorem for commutative semigroups of asymptotically nonexpansive mappings, *Nonlinear TMA* 18 (1992), 619-635.
- [7] TAKAHASHI, W. and ZHANG, PEI-JUN, Asymptotic behavior of almost-orbits of semigroups of Lipschitzian mappings in Banach spaces, Kodai Math. J. 11 (1988), 129-140.
- [8] TAKAHASHI, W. and ZHANG, PEI-JUN, Asymptotic behavior of almost-orbits of reversible semigroups of Lipschitzian mappings, J. Math. Anal. Appl. 142 (1989), 242-249.
- [9] HIRANO, N. and TAKAHASHI, W., Nonlinear ergodic theorems for an amenable semigroup of nonexpansive mappings in a Banach space, *Pacific J. Math.* **112** (1984), 333-346
- [10] ISHIHARA, H. and TAKAHASHI, W., A nonlinear ergodic theorem for a reversible semigroup of Lipschitzian mappings in a Hilbert space, *Proc. Amer. Math. Soc.* **104** (1988), 431-436
- [11] TAKAHASHI, W. and PARK, J.Y., On the asymptotic behavior of almost-orbits of commutative semigroups in Banach spaces, *Nonlinear and Convex Analysis*, Marcel Dekker, Inc., New York and Basel (1987), 271-293.
- [12] KIUCHI, H. and TAKAHASHI, W., Asymptotic behavior of asymptotically nonexpansive families in Banach spaces, Math. Japonica 38 (1993), 627-632.
- [13] LAU, A.T. and TAKAHASHI, W., Weak convergence and non-linear ergodic theorems for reversible semigroup of nonexpansive mappings, *Pacific J. Math.* 126 (1987), 277-294
- [14] DIESTEL, J., Geometry of Banach spaces, selected topics, Lecture Notes in Mathematics, 485, Springer-Verlag, Berlin-Heidelberg, New York, 1975.
- [15] GOEBEL, K. and REICH, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
- [16] GROETSH, C.W., A note on segmenting Mann iterates, J. Math. Anal. Appl. 40 (1972), 369-372
- [17] BRUCK, R.E., On the almost-convergence of iterates of nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set, *Israel J. Math.* 29 (1978), 1-16.

60 and