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ABSTRACT. A study is made of partial differential equations with piecewise constant arguments.

’Boundary value problems for three types of equations are discussed delayed; alternately of advanced and

retarded type; and most importantly, an equation of neutral type (that is, including the derivative at

different values oftime t).
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1. INTRODUCTION
Functional differential equations (FDE) with delay provide a mathematical model for a physical or

biological system in which the rate of change of the system depends upon its past history. The theory of

FDE with continuous arguments is well developed and has numerous applications in natural and

engineering sciences. This paper continues our earlier work in an attempt to extend this theory to

differential equations with discontinuous argument deviations. In articles [1-5], ordinary differential

equations with arguments having intervals of constancy have been studied. Such equations represent a

hybrid of continuous and discrete dynamical systems and combine properties of both differential and

difference equations. They include as particular cases loaded and impulsive equations, hence their

importance in control theory and in certain biomedical models Continuity of a solution at a point joining

any two consecutive intervals implies recursion relations for the values of the solution at such points.

Therefore, differential equations with piecewise continuous argument (EPCA) are intrinsically closer to

difference rather than to differential equations. In [6] boundary value problems for some linear EPCA in

partial derivatives were considered and the behavior of their solutions studied. The results were also

extended to equations with positive definite operators in Hilbert spaces. In [7] initial value problems were

studied for EPCA in partial derivatives. A class of loaded equations that arise in solving certain inverse

problems was explored within the general framework of differential equations with piecewise continuous

delay The purpose ofthe present note is to investigate the asymptotic behavior ofthe solutions, especially

their oscillatory properties, of a boundary value problem for some EPCA of parabolic type. For a rather

comprehensive addition to the growing body of literature on EPCA the reader is referred to [8].
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2. A COMPARISON OF TWO EPCA
The equation

ut(z,t) a2u=(z,t) bu(z,t) (2.1)

describes heat flow in a rod with both diffusion a2uzz along the rod and heat loss (or gain) across the

lateral sides of the rod. Measuring the lateral heat change at discrete moments of time leads to the

equation with piecewise continuous delay

ut(z,t) a2u(x,t) bu(z, [t]), (2 2)

which was investigated in [6]. Here [- designates the greatest integer function and (x, t) E [0, 1] x [0, oo)
The problem posed in [6] for Eq. (2.2) consists ofthe boundary conditions

(0. t) 0. ,(. t) 0 (2 3)

and the initial condition

and the solution is sought in the form

(, o) uo(z), (2 4)

u(z, t) X(z)T(t). (2,5)

Then separation of variables leads to the BVP

X’ +A2X O,

with the orthonormal set of solutions

X(O) X(1) O, (2.6)

X(z) V sin(zrjz) (2.7)

on [0, 1], and to the equation

r(t) a27r2j2T:(t) bT:([t]). (2.8)

Let T(t) denote a solution of (2.8) on the inteal n <_ t < n + 1, where n is a nonnegative integer

Then

T:(t) a2r2j2T.j(t) bT.j(n), (2.9)

and the general solution ofthis equation is

T(t) C.e--We put here t n and get

that is,

where

At n + 1 we have

b

a27r2.7. T,j(n). (2.10)

T(t) G(t- ,)T,(,). (2.11)

T,,(n + 1) G(1)T,3(n)

E(t) _oe, b ( _o,,).a271.2.f
(2.12)
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and since

T,a(n + 1) T,+,,a(n + 1),

then

T+,a(n + 1) Ea(1)Ta(n)

and

Ts(n E(1)Toa(O). (2 13)

Therefore,

and

To(t) Ea(t n)E;(1)To,(O)

u,,(x,t) Z E’(1)Ta(O)Ea (t n)sin(rrjx),
3=1

(2 14)

(2 15)

where un(x,t) designates the solution of BVP (2.2), (2.3), (2.4) in [0,1] x [n,n + 1]. Putting 0,
n 0 gives

uo(x) T0a(0)V sin(Trjx)
=1

To,(O) V/ uo(x)sinQrjx)dx.

and

Along with Eq. (2.2), we study the equation

([1u, (z, t) a u= (z, t) bu z, t + - (2 16)

under conditions (2.3), (2 4)
DEFINITION. A function u(x,t) is said to be a solution of the above BVP if it satisfies the

conditions (i) u(x, t) is continuous in G [0,1] [0, oo); (ii) ut and u exist and are continuous in G,
with the possible exception of the points (x, n + ), where one-sided derivatives exist (n 0,1, 2, ...);
(ii) u(x,t) satisfies Eq. (2.16)in G, with the possible exception of the points (x, n + 1/2), and conditions

(2.3), (2.4).
Again, the solution is sought in form (2.5), and separation of variables generates the eigenfunctions

(2.7) and leads to the EPCA

T’(t) a27r2j2T(t) bT ( [t+l ) (2 17)
\L .j/

Eq. (2.17) is of considerable imerest, since the argument deviation

1
(t) t- t+

changes the sign in each interval (n , n+), with integer n. Indeed, r(t) < 0 for n < < n and

r(t) > 0 for n < t < n + , which means that Eq. (2.17) is alternately of advanced and retarded type.

Assume that T(t) is a solution of (2.17) on the interval [n- 1/2,n + ]. Then Eq. (2.17) changes to

(2 9), with the solution (2.11). At t n + 1/2 we have
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and since

then

Tn+l,,(:) Ea(;- rz- 1)Tn+l,2(r/, + 1),

(1) ()T,., n+- E Tr+.a(n + 1).

Furthermore, continuity ofthe solution T(t) implies

and therefore

whence

From here,

and

Ea(l/2)Tn/l’a(n+l) Ea(- 1/2)T,a(n).

1
(2 18)

where E(t) is defined by (2.12).
TItEOREM 2.1. For

(2.21)

the solution (2.15) ofEq. (2.2) tends to zero as oo, uniformly with respect to z

PROOF. From (2.15) it follows that the assertion is true if IE(1)I < 1. Solving the inequalities

1 < e_,,, b ( a,,)a27r3,2
1 e- < 1

for b proves the proposition. Furthermore, u(x, t) approaches zero with an exponential rate

TIIEOREM :L2. For

b > -a27r2 (2.22)

the solution (2.20) ofEq. (2.16) tends to zero as t oo, uniformly with respect to x.

PROOF. From (2.20) we see that the assertion is valid iflEj(/2)E( /2) < , where E(t)is
given by (2.12). Considering the case Ea( 1/2) > 0 gives

b > 2#ae’ / (e’ 1), (2.23)

1
T,.,a(t) Ea( n)E’ ( )E’ ( -) Toa(O). (2.19)

The solution un(z,t) of BVP (2.17), (2.3), (2.4) in the region [0, 1] x [n- ,n+1/2] is given by the

formula

u(x,t) Z v/E; E; To,(O)&(t- n)sin(rjx), (2.20)
3=1
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with the notation

i/A2 a2 71_2 j2/2. (2 24)

From E2(1/2 < E2( 1/2) we obtain the inequality

b > 2#2 (225)

which is stronger than (2 23), and so (2 23) should be omitted Furthermore, E2(1/2 > E2( 1/2)
implies that

b > -21.z2(em + e-m)/(em + e-m -2),

and since this inequality is weaker than (2.25) it may be disregarded
E 1/2) < 0 is equivalent to

b < 2#jeu’/(eu’ 1),

On the other hand, the case

(2.26)

and the inequality Ea (1/2) > E 1/2) leads to

b < 2#.

The latter inequality may be ignored because it is weaker than (2.26) From E(1/2) < E( 1/2) it

f611ows that

b < 2#,(em + e-u,)/(eu, + e-u, 2).

The latter inequality should be omitted since (2.26) is more stringent. On the other hand, (2.26) cannot

hold true for all values of j, and we must retain only (2.25). This inequality is valid for all j if (2.22) takes

place. Comparing inequalities (2.21) and (2.22) shows that the stability interval for Eq. (2.17) is larger
than the stability imerval for Eq. (2.8).

TEIEOREM 2:.3. Each solution ofEq. (2.8) has a zero in the interval In, n + 1] if

The same is true for Eq (2.17) if

and

PROOF. From Eq. (2.13) we have

(, + ) 7/()T0(0)

T,,,(n)T,,,(n + 1)= g2n+l (1)T.(O).

Hence,

T,v(n)T,,,(n + 1) < 0 if E(1) < 0.

The latter inequality is equivalent to

b >a27r2j2/(ear’-1),
which holds true for all 3 under condition (2 27).
inequality

On the other hand, (2.28) is derived by examining the

E(ll2)E(- 1/2) < 0.
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Inequalities (2.27) and (2 28) represent sufficient conditions of oscillation for Eqs (2 8) and (2 17), for all
values ofj simultaneously

THEOREM 2.4. Each solution of Eq. (2.8) is nonoscillatory, for all j, if b < 0 For any b > 0 and
sufficiently large j, the functions T(t) are oscillatory.

PROOF. The inequality E(1) > 0 is equivalent to

b < aTrgjg-/(e’_ l)
and holds true for all j only if b < 0 Since its fight-hand side tends to zero as j , the above
inequality breaks down for b > 0 and all sufficiently large j. Therefore, in this case the solutions T(t) of
(2 8) oscillate, in sharp comrast to the functions T(t) in the Fourier expansion for the solution of the
equation u ag-u bu without time delay.

TItEOREM 2.5. Each solution ofEq. (2.17) is nonoscillatory, for all j, if

-aTr/(e’’/-l) <b<0. (2.29)

For any b > 0 and sufficiently large j, the functions T(t) are oscillatory Furthermore, if

then the functions T (t), Tnm (t) oscillate.

PROOF. From the inequalities E( 1/2) > 0 and E(1/2) > 0 it follows that

2#e/(e’ 1) < b < 2#/(e, 1),

where # is given by (2.24). The lett ofthese inequalities holds tree for all j if

b > -a27r/(e’’/- 1),
and the fight one is satisfied for all j if b < 0. The inequalities E(- 1/2) < 0 and E(1/2) < 0 are

contradictory. On the other hand, the right side ofthe inequality

b < 2#/(e’ 1)

tends to zero as j -- o% and therefore the inequality breaks down for any given b > 0 and all sufficiently
large j. Moreover, the left side ofthe inequality

-2#je/(e’ 1) < b

monotonically decreases to oo as j oo. Hence, if this inequality fails for j m, the same is tree also
forj < m.

TEIEOREM 2.6. If, for some integer m _> 1,

b= a2Tr2m2(e’’m’+ 1)/(e’’m’ 1), (2.30)

then the solution Tin(t) of Eq. (2.8) is a periodic function with period 2. The same is true for the solution

ofEq (2.17) if

b 2/, (e + e-u /(2 e" e-’" ), (2.3 l)

where #, is given in (2.24).
PROOF. Since the initial value problem for Eq. (2.8) has a unique solution on each unit interval with

imegral endpoints, we have only to show that

T(n + 2) T,(,), , 0, ,2,

Consider solution (2.14) for j m on the intervals [n, n + 1] and In + 2, n + 3], that is,
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and

T(t) E.(t- n)E(1)To.(O),

Try(t) Em(t- - 2)E,/ (1)To(0),

n<t<n+l

n+2<t<n+3.

Therefore,

whence

At t n+, Eq (3.3) gives

interval n < t < n + 1 is

Then the series

and conditions (2.3) and (2.4). This equation is of neutral type since it includes the derivative ut at

different values of t.

Let un(x,t) be the solution of the given problem on the interval n < t < n + 1. Then un(x,t)
satisfies the equation

Ou(z,t) a +b (z,n+at Oz (3 2)

with boundary conditions (2.3) and the initial condition

,(:,,+) ,(:),

where u(z) is yet unknown. The solution of (3.2) is sought in form (2.5), and separation of variables

generates BVP (2.6) with eigenfunctions (2.7) and the ODE

T’, ,=aT,(t) + T’,(,+),

un(x,t) E X3(x)Tn(t) (3 4)
3=1

represents a formal solution of problem (3.2), (2.3). Turning to Eq. (3.3), its general solution on the

A 7rj. (3.3)

b +m,(t) c.,-’,(’-") + T,;,(, ).

2
+

a ,
T,(n),T,.,,(n )=b-1

b
Tna(n).T(t) CeV,(’-)+ bZ 1

Since hypothesis (2 30) implies E,(1) 1, then T, (n + 2) T,(n), which proves the theorem

for Eq (2.8) The proof for Eq (2 17) is analogous Condition (2.31) is equivalent to

Em(1/2) E,( 1/2) It remains to note that the value orb in (2.30) is positive, and the value orb

in (2.31) is negative.

3. A PARABOLIC EPCA OF NEUTRAL TYPE
Consider the boundary value problem (BVP) consisting ofthe equation

ut(x, t) a2uzz(x, t) + but(x, [t]) (3 1)

At n and n + 2 these formulas respectively yield

Tin(n) E,(1)T0m(0) and Tm(n + 2) E,+2(1)T0(0).
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At n, we have

that is,

and

Denote

At n + 1, we have

1
C,,

1 b T,(n)

l (b e-d’(t-’))T,.u(n)T’v(t) b- 1

F3(t) b- 1
(3.5)

T,.u(n / 1)= F3(1)T,(n

and since, by hypothesis (i) ofthe above definition,

T,,3(n + 1) Tn+lj(n + 1),

then

and

T,.,+,a(n + 1) Fa(1)T,2(n)

Ta(n) Ff’ (1)Toa(0). (3 6)

Consequently,

T,.,(t) Fj(t- n)Fj(1)To.(O)

and

(3 7)

u,(x,t) E VF;(1)Ta(O)Fa(t -n)sin(rjx). (3.8)

The following theorems illustrate the far more complicated solution tructure of Eq. (3.1) comparing
with the diffusion equation without time delay.

TREOREM 3.1. For b > 1, each function T,(t) is monotone unbounded as
PROOF. If b > 1, then (3.5) implies that F:(t)> 1, for all t > 0. Hence, F"(1) grows

exponentially as t + oo, and the prooffollows from (3.7).
TI]EOREM 3.2. For

(1 + e-Lx) < b < 1, (3.9)
2

each function T,, (t) is unbounded and oscillating.
PROOF. From inequalities (3.9) it follows that F3(1) < 1, and therefore FJt] (1) is unbounded and

has a zero in each unit interval with integer endpoints.
"rl]EOREM 3.3. For b < 0, each function T,(t) monotonically tends to zero as

PROOF. The inequalities

0 < F(1) < 1 (3 10)

imply that solution (3.7) is asymptotically stable and nonoscillatory. From (3 10) it follows that
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Clearly the right-hand side of (3 11) vanishes as j oo, and therefore the condition b < 0 is necessary
and sufficient for all Tn3(t) to approach zero monotonically.

TItEOREM 3.4. If

1a2A >In2 and e-’2x <b< , (3 12)

then every solution (3 7) tends to zero and oscillates as t + oo

PROOF. From the inequalities

-1<F3(1 <0, (3 3)

which imply asymptotic stability and oscillatory behavior of solution (3 7), it follows that

e-’’-a,<b< l+e-

These inequalities hold true for all j simultaneously with (3.12)
TtlEOREM 3.5. For any coefficient b that satisfies the inequalities

1
-<b<l,
2

there exist infinitely many solutions T,3 (t) which are unbounded and oscillating.
PROOF. For b < 1, the inequality F(1) < 1 which implies unboundedness and oscillation of

T3(t), is equivalent to

Clearly the fight-hand side approaches 1/2 as j oo.

THEOREM 3.6. Ifb < e-ax, then the solutions T1 (t), T,(t) ofEq. (3.3) monotonically tend to

zero as -+ + oo.
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