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ABSTRACT. Chung type strong laws of large numbers are obtained for arrays of rowwise

independent random variables under various moment conditions. An interesting application of

these results is the consistency of the bootstrap mean and variance.
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1. INTRODUCTION
Let {X n 1,2, ...} be a sequence of independent and identically distributed (i.i.d.)

random variables (r.v.’s). The Marcinkiewicz-Zygmund [1] strong law of large numbers (SLLN)
provides that

and

nl/= (X,.-EX,)--O a.s. for <a< 2 (1.1)

nZ/=X,--O a.s. for 0<c< (1.2)

if and only if EIXII < o. The case a i is due to Kolmogorov [2]. If the sequence {X}
is independent (but not necessarily identically distributed), Chung’s [3] SLLN yields (1.1) with

a 1 if (t) is a positive, even, continuous function such that either

()

and

hold, or,

E2(X,)(n) < o (1.4)

(,) t,) It, T o,Itl
and $ as (1.5)
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EX, 0 and (1.4) hold. Hu, Moricz and Taylor [4] considered SLLN’s for arrays {X,,} of i.i.d.

r.v.’s, and in particular, they showed that, for _< a < 2,

1 E(X,., EX,,) 0 a.s. if and only if EIX11 [2a <

In Section 2, SLLN’s for triangular arrays {X,} of rowwise independent (but neither necessarily

identically distributed nor independent between rows) r.v.’s are established under conditions

similar to those of Chung. In Section 3, these results are related to verifying consistency of the

bootstrap mean and bootstrap variance.

2. STRONG LAWS OF LARGE NUMBERS
In this section let {X, 1 _< _< n, n _> 1} be a triangular array of rowwise independent

random variables. Let {a,} be a sequence of positive real numbers such that a,+ > a, and

lim a oc Let (t) be a positive, even function such that q,(Itl) is an increasing function of

It[ and ltlp+l is a decreasing function of Itl respectively, that is,

W(Itl) W(Itl)
itl T and itl+i I as ItlT (2.)

for some nonnegative integer p. Conditions (2.2) (2.4) are given as

EX,. =0, (2.2)

E o(X’’) (2.3)

where k is a positive integer. Condition (2.3) is a necessary condition for the SLLN (Condition
(2.5) below) to hold in some sense (s Chung [3]). Different SLLN’s are obtNned for p 2,

p 1, d p 0, and are explicitly stated in Theorem 2.1, 2.2 and 2.3.

Threm 2.1. Let {X,. 1 n,n 1} be an array of rowwise independent rdom

variables and let (t) satisfy (2.1) for some integer p 2. Then Conditions (2.2), (2.3), and

(2.4) imply
1--x0a"=

a.s. (2.5)

Proof. Let Y XiI[lx.l,,,} and Z X,I[ix,,.>,l where I[.] is the indicator function.

Since

EO(X,) < (.)

by Markov’s inequality and Condition (2.3) Thus by (2.6), the two sequences } and

{ } are equivalent. Next, note that EX, 0 implies that
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since ,(Itl) is an increasing function of It[ and Condition (2.3) holds. Therefore from the above

equivalence and (2.7), proving (2.5) is equivalent to showing

as oo. To prove (2.8), first define

Wn Yn EYn for all n and i.
an an

It is easy to see that W,,. is bounded by 2 and that for _< u < v,

E(W) <- 2ElYn---!la 2E[’’" (2.9)

Next, similar to the technique in Pruitt [5] express

E W E W,
:I k ,...,k2,k =i

where’the sum is extended over all 2pk-tuples (kl, k2pk) with k i, 2, n for each j. There

is no contribution to the sum on the right so long there is a j with k # k for Ml # j since

Wn are independent and EWn 0. For each n, the general term to be considered then will

have

qlof the k’s f, qof k’s f

rlofthe k’s 1, rofk’s

where q, and r have the following relation:

2<q,<p, p<r and -’q,+-’r.7=2pk. (2.10)
=I --I

Clearly 0 _< rn _< pk. Then from (2.9),

Combining all possible terms yields

EWe; < 2q" E[ Y=_A [2

EW,: < 2’E Y’_A’ Iv+.an

C -]* Sql q,,,;rl ........
ql ,q,t ;rl

.7--

say,

where * is extended over all m-tuples (ql, ...,q,) and/-tuples (rl, ...,r) such that condition

(2.10) holds (the case rn 0 or 0 may occur) while E:** is extended over all (m + l)-
tuples (1,-.-,n; r/l, r/l) of different integers between 1 and n and C is a constant which is
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independent of n, for example, we may take C (2pk)!. Two cases are distinguished according
tol=0andl> 1.

Case 0: Note rn _> 2k. Thus, for n large,

by (2.6) and the fact El Y"’ 12 < 1.

Case > 1: From (2.10) and (2.11), for large n,

by the fact that El Y--l2a,, < 1 and that is an decreasing function of Itl.
Therefore, from Conditions (2.3) and (2.4),

Finally, by Markov’s inequality (2.8) is obtained, and the proof of Theorem 2.1 is completed.

If an n2/p and (t) [tiP(log+ It[) x+ for some 2 < p < 4, and 6 > 0, then

sup EIX,,IP(log+ IX,l) x+a S M (2.12)

for some M > 0, implies Condition (2.3) holds and Condition (2.4) holds for 2k > _---. Thus,
the following corollary for Theorem 2.1 is established.

Corollary. Let {Xn, 1 _< < n; n _> 1} be an array of rowwise independent random

variables. Then (2.2) and (2.12) imply that

n2/p Z Xnt O.
z’-I

Theorem 2.2. Let {X,, 1 _< _< n, n _> 1} be an array of rowwise independent random
variables, and let p(t) satisfy (2.1) for p 1. Then Conditions (2.2) and (2.3) imply (2.5).
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Proof. Condition (2.3) holding for {X,,.} and p 1 implies that Condition (2.3) holds for

{Y,,} and p 1. Since IY,,I _< a., Condition (2.4) for {Y,.,} follows and, the proof of Theorem
2.2 follows from the proof of Theorem 2.1.

When Condition (2.1) holds for p 0, Conditions (2.2) and (2.4) are no longer needed.

Theorem 2.3. Let {X,, 1 _< _< n, n > 1} be an array of rowwise independent random

variables and let (t) satisfy (2.1) for p 0. Then Condition (2.3) implies (2.5).
(Y,,,) > q(a,) Hence, forProof. If Condition (2.3) holds for p 0, then [Y,,[ < a, implies IY,.,I a..

arbitrary > 0,

__i _i E, Y.,.
< _1

and the proof follows from (2.3).
To close this section, an example is given to show that Condition (2.4) is a necessary condition

for the SLLN. For each R, let {X, 1 < < n} be independent, identically distributed normal

random variables with mean zero and variance n. For (t) 6 and a, n,

and

But, X,, has the standard normal distribution for each n, and hence can not converge to

zero.

3. CONVERGENCE OF THE BOOTSTRAP MEAN AND VARIANCE
In this section the strong consistency of bootstrap estimators is considered. Let X1, X2,

be independent random variables with common distribution function F. Assume that F has

finite mean # and variance a2, both unknown. The conventional estimators for # and a are

the sample average and sample variance, respectively. By the strong law of large numbers,

), _1 X,. -/ a.s.
n

and
1sR >_] (x, R,)= = .s.
n

%---1

In this situation, the consistencies of these estimators have been well-known. However, there has

been considerable theoretical and practical interest in examining how the "bootstrap estimator"

performs.
Let F be the empirical distribution function of X1,X2,...,X, putting mass 1/n on each

X. The next step in the bootstrap method is to resample the data. Given (XI,X2, ...,X,.,):
let XI, X2, X, be conditionally independent, random variables with common distribution

F. We denote the "bootstrap mean" by, and the "bootstrap variance by S,, where

Bickel and Freedman [6] showed the following result:
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Suppose X1, X2, are independent, identically distributed random variables which have finite

positive variance a2. Along almost all sample sequences X1, X2, given (X1, X,), if n and

m tend to oc, then S, a in conditional probability, that is, for all positive e,

P [IS,I,, a] > elX1,..., X,] 0 a.s.

Athreya, Ghosh, Low and Sen [7] obtained

P[sup sup -*
kn)_N m)_dn

(3.2)

as N cx for all > 0 and d > 0 when EIXlla+ < oo for some 6 > 0. Clearly, (3.2) yields the

strong consistency of the bootstrap mean ,.,. Athreya [8] and Corg6 [9] also provided proofs
of the consistency of ){, under slightly different settings. It will now be shown that Theorem

2.1 can be used to obtain the strong consistency of the bootstrap mean and variance in a very

natural formulation in a fairly different approach from previously cited references.

Theorem 3.1. Let r.v.’s Xa,X2, be i.i.d, with mean # and EIXI+e < oo for some 6 > 0.

Along almost all sample sequences X1, X2, given (X1, Xn), if n tends to cxz, then ),, #

with conditional probability 1.

Proof. The approach in this proof will be to start with a sample path realization X, X2, X3,
from which the array {X,} is computerized generated and then show that the hypotheses of

Theorem 2.1 are satisfied. It is understood that null sets from the domain of the observations

{Xn } must be excluded, and for the proof of Theorem 3.1 the specific null sets to be excluded

are indicated by (3.3), (3.4) and (3.5). This approach is more natural for the experimenter and

provides a short proof for the consistency of the bootstrap mean as an application of Theorem

2.1.

Let EIX1] l+e < o from some , 0 < 6 < 1. Let k be an integer such that k > 2 and

k(6/(1+6)) > 1. Applying the Marcinkiewicz-Zygmund SLLN to {IX,]k-J > 1} with c, +
k-3

in (1.2) and a 1 in (1.1), we have

n(k-)/(+) Z IX’]t- 0 a.s. for j 0, k 2 (3.3)

and

! Ix, EIX, a.s. (3.4)

Given (X1,...,Xn),n >_ 1, the resampled data {Xn,,1 <_ <_ n},n _> 1, form a triangular array

of r.v.’s which are rowwise i.i.d, with distribution Fn and mean
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If we choose b(t) =Itt k, then

by (3.3), (3.4) and the choice of k. Next,

E((X,,- fg,.)21X1,...,X,.

n=l =1

(3.6)

E n4k6/(l+5) n2/(1+5) n(-O/(i+,) < a.s. (3.7)
n=l t=l

by (3.3) and (3.5). Therefore, Theorem 2.1 implies

for almost all sample paths X,X2, and

with probability one when considering the total probability space.
,2 -*(x) .The bootstrap variance can be written as X,, Thus, with Xn, X,,, in

.2 EX21 with conditional probability 1. Therefore, theTheorem 3.1, we have K -=1 Xn
consistency of the bootstrap variance is established and is formally stated in Theorem 3.2, and

the proof is similar to the proof of Theorem 3.1.

Theorem 3.2. Let r.v.’s X1,X2,... be i.i.d, with mean #, variance a and EIXll2+ < oc

for some 6 > 0. Along almost all sample sequences X1, X2, given (X1, Xn), if n tends to

o, then S2 if2 with conditional probability one.

In practice there is considerable interest in allowing the resampled implications m (in 3.1) to

be different from the number of original data points n. Consistency of these bootstrap estimators

was established by Athreya [8] and Corg5 [9] when m and n had certain relationships. Their

results are available in Theorems 3.1 and 3.2 by a different choice of k (depending on the

relationship) in the proof of Theorem 3.1.
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