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ABSTRACT. Probabilities for reaching specified destinations and expectation values for

lengths for random walks on triangular arrays of points and edges are computed. Probabilities
and expectation values are given as functions of the convex (barycentric) coordinates of the

starting point.
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1. INTRODUCTION.

Barycentric coordinates were introduced into mathematics by the geometer A.F. MSbius

(1790-1868). Suppose that Vz,V2,V3,...,Vn,V,+ are the linearly independent vertices of an n-

dimensional Euclidean simplex. The barycentric coordinates of point P in the Euclidian space
n+l n+l

are given by the unique (n + 1)-tuple of real numbers cq such that P= c,Vi withy c,=l. [1]
==1

The points of the closed simplex S, VzV2V ...VnV + are those points for which all

barycentric coordinates are nonnegative. The barycentric coordinates of vertex V, are given by

a, 1, aj 0 for i. In our paper, we are concerned only with points of the closed simplex,

and we will refer to (az,o2,a3 a,) as the convex coordinates of P e S, with a’espect to the

vertices in the order V,V2,V3 Vn,V, + 1" However, our primary concern will be with the

closed triangular region VzV:V3.

Convex (or barycentric) coordinates admit of physical interpretation. The point P is

the center of mass for the discrete distribution of point masses a, at V, for 1,2,3, n, n+l.

The notions of balance and mechanical equilibrium permit us to discover the convex coordinates

of various special points of triangles and tetrahedra and to relate the geometry of triangles to

mechanics. [2]

Convex coordinates axe quite versatile mathematical objects. Their invariance under

affine transformations has many applications in geometry and their interpretation as lengths,

areas, and volumes leads to a way to count partitions of the integers. [3]

Since 0 < a, < for each point of S,, it has also seemed natural to seek probabilistic

interpretations and applications for convex coordinates. Such interpretations and applications

in one and two dimensions are the concerns of this paper.
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A RANDOM WALK ON A LINE SEGMENT. Let us consider a line on which there is

defined a Cartesian coordinate system so that points V and V of have Cartesian coordinates

x 0 and x 1, respectively. Next, let us consider n- points, AI,A2,...,An 1, equally spaced
between V and V2 as shown in Figure 1. For convenience in notation, let us give V and V2
the alternate names A0 and A,, respectively. The collection of n segments A,A + 1, 0,1,2,...,
n- 1, and n + 1 points As, 0,1,2 n, constitutes a one dimensional graph. The convex

coordinates of point A, with respect to VI=Ao and V=A, are (al, )= (1- , i)for
0,1,2 n.

FIGURE 1. The One Dimensional Graph.

Now let us suppose that a random walk takes place on the one-dimensional graph. If the
walk has reached A, 1,2,..., n- 1, the next step must be either to A,_ with transition

probability p(Ai-* Ai_ 1) or to A, + also with transition probability p(A, A, + 1)
End points V1=Ao and V=A, serve as traps. That is, p(Ao A) p(A, A,_ 1) 0. The

walk must continue until it reaches either VI=Ao or V=A,.

Let p(Ai) denote the probability that a walk starting from Ai reaches endpoint V. Then

p(Ai) must satisfy the equation

p(Ai) p(Ai Ai_ 1) p(A) + p(A Ai + 1)P(A, + 1)

21- ((A,_,) + ((A,+,)) ()
for 1,2 n-1, subject to the boundary conditions p(Ao)=O, p(An)=l. A function such as

p(A) is an example of a discrete harmonic function; and, if p(A) satisfies both 1 and the

boundary conditions, it does so uniquely. [7,9]

It is simple to show that p(A)=a2, the convex coordinate of A with respect to V2=A,
meets the requirements given above. Thus the probability that a walk starting at A with

terminate at V is a. Likewise, the probability that the walk will terminate at V1 is

q(A)=l- p(A) 1-a a1.

THE EXPECTED LENGTH OF THE ONE DIMENSIONAL RANDOM WALK. Each

walk beginning at A eventually terminates at V A0 or V An. Let E(A) denote the

expected length of a walk as measured by the number of steps taken from starting point A to

either endpoint. Since the walk begins with a single step from interior point A to either A,_
or A + 1, we can write

E(A)= p(A- A_I)-(1 +
+ p(A-,A+I).(1 + E(A+)) (2)

1/2 (E(A_ 1) + E(A, + )) + 1.

Since a walk beginning at either endpoint will have zero length, our boundary conditions are

that E(A0) 0 and E(A) 0.

Suppose that both E(A) and E(A) satisfy 2 and the boundary conditions. Then F(A,)
E(A) E’(A)satisfies 1 with boundary conditions E(Ao) E(A,)= 0 and F(A) 0. Thus

F(A) is a discrete harmonic function and must be uniquely given by F(A) 0 for 1, 2,

n. Therefore E(A) E’(A), and any function satisfying 2 while vanishing at the endpoints is

the unique expected length of the walk.
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Since E(Ai) n2ala2 satisfies 2 and the convex coordinates of V1, V2 are (1,0), (0,1),
respectively, we have the expected length. That is, the expected length of a random walk

starting from A, on the one dimensional or linear graph of n + points and n segments is E(A,)

n2ac where c,1, c are the convex coordinates of A,.

A RANDOM WALK ON A TRIANGLE. Consider the closed triangular region named

by its vertices as V1V2V3. For convenience, we take the triangle to be equilateral. We consider

each side to be a copy of the one dimensional graph of n + 1 equally spaced points and n

connecting segments described above. If a line is drawn within VV2V parallel to side ViVa
then each point of the line has the same convex coordinate a,, k i,j Suppose, then, that

three lines are drawn so that each is parallel to a different side of the triangle and so that the

three lines are concurrent. Each is a line of constant convex coordinate with respect to a

different vertex. Thus the convex coordinates for the point P common to the three lines can be

read from the points at which the lines intersect the side of the triangle as indicated in Figure 2.

FIGURE 2. The Convex Coordinates of P: (a,b,c).

Now let us "draw three sets of n- lines each parallel to one of the three sides so that the

lines divide the sides into n congruent segments. In Figure 3, we show the three sets of lines

for the case in which n 6. The interior intersection point P has six adjacent points.

FIGURE 3. The Triangular Graph for n 6.

The array of points and segments constitutes a two dimensional, triangular graph upon

which we will consider a random walk. Each step is a move between adjacent points of the

graph along the segment connecting them. If we denote the points adjacent to interior point P

by A, for 1,2,3,4,5,6, we can state the following rules for the random walk.
11. The probability of a move from P to A is given by p(P A) .

2. Once the walk reaches a boundary point, the walk must remain on the boundary.

3. The vertices of the triangle serve as traps. The walk must terminate once it reaches

a vertex.
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The probability of a move from any boundary point other than a vertex to either of

its two neighboring boundary points is 1/2. That is, once the walk has reached a side

of the triangle, the walk becomes a one dimensional walk as described above.

Let us now suppose that Figure 3 represents the general case for the triangular graph
with n > 3. Then, if the convex coordinates of interior point P are a(P) (al,a2, as), the

convex coordinates of its nearest neighboring points are

(A,) (,- , +, ), () (,- ,, + ),
() (,,,- , + ), (,)= (, + , ,- , ),

By ect computation, we s that

H P is udy point shown

() ((,) + (n,)).

(3)

FIGURE 4. Point P on Side ViVj

Let p(P) denote the probability that a random walk starting from point P of the

triangular graph will reach vertex V1. The function p(P) is again a discrete harmonic function.

It satisfies the condition
6 6

for each interior point P. On the boundary p(P) 1/2 (p(A1)+ P(A2)) with the notation tkea

from Figttre 4.

Equation 3 and the results for the one dimensional walk imply that p(P) al. That is,

the probability of reaching V1 starting from point P is al. Likewise, the probabilities of

reaching V and Vs are a and as, respectively.

The walk can be extended to graphs on tetrahedron V1V2V3V4. Each face contains a

triangular graph and each edge contains a linear graph. The probability of a random walk’s

reaching vertex V, 1,2,3,4 from starting point P is a, the convex coordinate of P with

respect to vertex V,. The walk can be extended inductively to graphs on the k-simplex, each

face of which is a (k-1)-simplex.

ELECTRICAL APPLICATION 1. For each random walk there exists an electrical

potential problem having the same solution with the only difference between the problems being

the physical meaning of the variables. [4]

Imagine that the triangular grid of Figure 5 is an electrical network of identical resistors

in which each segment connecting adjacent points has resistance R. Let the potential at V1 be

maintained at 1 volt while all points of V2Vz are held at zero potential. The potentials on sides

VIV and V1V3 decrease linearly from to 0 volts. Thus the boundary conditions on

potential match those of the random walk.

At points P and A, the potentials may be represented by v(P) and v(A,), respectively.

Since the algebraic sum of currents into and out of P must be zero, we can write
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or v(P)= v(A,). Thus the average value property given by Equation 3 is satisfied. We
can conclude’’ht the electrical potential at point P is a.

Figure 5. An Electrical Network.

THE EXPECTED LENGTH OF THE TRIANGULAR RANDOM WALK. Let us

suppose that a random walk starts from point P of the triangular graph and terminates at one

of the vertices. Let us denote the expected length of the walk by E(P).

If P is an interior point having nearest neighbors A,, 1,2,3,4,5,6, it follows that

E(P) (I+E(Ai)) + E(A,).
=1 =1

()

If P is a bounda.,T point with bounda neighbors A1, A on V,Vj, we already know that

E(P) n2aiaj satisfies E(P)= 1+1/2 (E(A1) +(E(A2)). Furthermore, E(V) E(Vi) 0.

Since E(P) n2(la + aa3 + aas) satisfies Equation 4 and also reduces to the

boundary solution, it follows that we have discovered the expected value of the length of the

random walk.

That is, the expected length of a walk starting from point P of the triangulaz graph is

E(P) n2(ala2 q- ala q- a2a3) where a, a, az e convex crdinates of with rt to

V, V, Vz in that order.

AN EXAMPLE. Let n 12. The centroid of the trigle h convex crdinates

(, , ) ,d is a point of the aph.

The probability that a wMk stating om the centroid will__reach a ptic..x vtex is ]
steps.

COMMENTS ON BOUNDARY CONDITIONS. A nst problem concerns the

cotruction of discrete hoc functions on the inteMor points of the trigul aph when

the functions e required to mt bitrly set boundy conditions. We consider the

problem with a sci ce.

Let us chge the fourth of our roles for rdom wks on tMgles by supsing that the

entire boundy of V]VVz serves trap. In other words, the rdom wk must come to

a ht whenever it rh bound point. Let us find or indicate how to find discrete

honic nctions in tes of ], a, d z in closed fo which will give the probabity of

rehing a point of side V2V from any point P:(],,z) of the trigul graph. Agn, we
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denote the desired probability by p(P).

Since the vertices V1,V,V3 cannot be reached directly from any interior point of the
array, we can exclude them from our calculations. In Figure 6, we indicate the triangular graph
with V1,V2,V3 removed.

v!

Figure 6. AV1V2V3 {VI,V,V3}.

The boundary conditions for p(P) are p(P) 0 if Pe V1V2 U VV {V,V,V3} and

p(P) if Pe VV {V2, V3}. Once we find a function p(P} satisfying both these boundary
conditions and the average value property given by 3, that probability function will be unique.

However, the forms of the functions will not be unique. For example, p(P) ot + a is

harmonic, yet it has the different, but equivalent, form p(P) 1 03. Furthermore, since the

functions need be evaluated only at a finite number of points, various combinations of
continuous functions may take on the same values.

A bit of calculation indicates that p(P) cosnra cosnrct co3rtrct3 satisfies the average
value property, but the value of p(P} is at all interior points of the graph if n is even and

if n is odd.

This example involving the trigonometric functions suggests that we investigate products
of exponential functions in our search for other, more useful, harmonic functions. Therefore,
suppose that f(P) analbna2cha3 for nonmegative real numbers a,b,c. We can rewrite the

n a nl a n2function as f(P)= ana’bnC’2cn’nc’1"na =c () ()
implying that we need only consider products of the form p(P) ana,bna=.

If p(P) analbha2 is to satisfy the average value property, we require that

Simplifying this equation, we find that

a’Ib+a-+b"l+ab"+a+b=6 or (a+l)b2+(a 6a+l)b+(a2+a)=0.

In order that b take on real values, it is necessary that the discriminant D be

nonnegative. The discriminant takes the simplified form D (a- 1) (a- 14a + 1)
implying that a should be chosen from (-cx, ?-4x/r] U [7 + 4V/, cx). In addition, neither a

nor b may be zero.

Since we intend to use sums of functions of the form (constant)-a’mlbha2 to satisfy the

boundary conditions of our problem, let us choose a and b to yield as simple calculations as

possible. To that end, we list all of the admissible values of a that give discriminants which are

perfect squares.
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-6

14

15

20

5929

169

3136

43681

S or 15
21 10- or "T
-6 or -12-35- or

Table 1. Values of a,D,b.

Since the roles of a and b may be interchanged, we can construct fifteen different

functions in a and a which have one integral base while the other base is rational. In
addition, we can use the pairs of convex coordinates cq,c,3 or c,2,aa as independent variables. Of

course, a and b need not be rational, but our immediate purpose is to produce simple examples.

In Figure 7, we show the simple graph for n 3. The probability that a walk starting at

P, the only interior point, will reach a point of VVa is clearly 1/2. However, we use this graph
as a test case to display the process for constructing a discrete harmonic function giving the

desired probability.

Figure 7. The Case for n 3.

The problem is symmetric with respect to a and aa. Since sums of harmonic functions

are harmonic, let us find constants A,B,C, and D so that

p(P) [z,(-) + *(-) + Bo, + C, + D (S)

vishes if (a,a,a) 0, 0, d h the vMue if (a, a3) 0, ,
(0, , )}. Note that syetry imphes that if p(P) vishes on VV, it will Mso vh on

VV. Substitution of appropriate values of a,a,a into Equation 5 yields the follong line

equations:

-3375A+2B + D=0,
1665A+ B +2D=0,

90A / C+2D=3,
90A +2C+ D=3.

Solving these equations, we obtain A 1/2205, B 187/147, C D 149/147.
Checking our work by evaluation of the probability function with these coefficients at

In Figure 8, we show the case for n 4.
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Figure 8. The Case for n 4.

probabilities of reaching V2V3 from ,
that probability by x. The average value property implies that

0+0+l+l+z+y 0+0+0+0+x+z
6 =x and 6 =Y"

Thus

Now let us construct p(P) and then compare our function values with x and y. Recalling
that the form of p(P) is not unique, we simply choose our form for reasons of convenience. Let

p(P) A[154a’(_6)’In, + 154a’(-6)4%

+ Oa + E% + Fa.
Using the convex crdinat of points from VV vV {V,V,V}d noting that

E F, we c write the equations

-16874A 8780.8B 5062.5C + .75D + .25F 0

8325A + 3653.44B +1631.25C + .5D + .5F 0

-3225A -1023.232B- 219.375C + .25D + .75F 0

22A -78.288B 18.125C + F 1

72A + 35.28B + 12.5C + F

A computer program to implement a Gaussian elimination procedure yields A 1.425 x

10"4, B 1.029 x 10-4 C -8.189 x 10"4, D -1.449, and E F 0.996. Evaluating

easily explained by round-off errors in computation.

We conclude that linear combinations of functions of the form ahal bha2,
ahal bn%, an% bn%, and c1,c2,o3 will produce discrete harmonic functions satisfying

arbitrarily set boundary conditions for triangular random walks. Unfortunately, the

computations do not seem anesthetically pleasing, but they do generalize the subject.

ELECTRICAL APPLICATION 2. Let us consider the network below which is derived

from the graph shown in Figure 8. All segments have the same resistance R. All points of sides
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VIV {Vl, V} and VlV {Vl, V} are maintained at a potential of +1 volt.

Figure 9. Another Electrical Network.

1 3It follows from our last computations that the potentials at points P,
and , respectively.

THE EXPECTED LENGTH OF THE RANDOM WALK WHEN THE BOUNDARIES
ARE TRAPS. In the case that all points of the boundary of triangular graph V1V2V3 serve as

traps, the expected length of a random walk from interior point P: (ch,c,,a3) is given by E(P)

3nala2a3 This result follows from the fact that E(P)=

Again, the average is taken over adjacent points A,, 1,2,3,4,5,6. The claim can be verified

quite easily by direct computation over the six points adjacent to P in the graph having n +
points on each side. It is also clear that E(P) vanishes on the boundary of the triangle since at

least one convex coordinate must be zero at any boundary point. The result is unique by
arguments similar to those given in the one dimensional case.

In the simple case with n 3, E(P) 1 for the walk starting from the centroid. If n

n 12 and P is the centroid, then E(P) 16.

FURTHER COMMENTS ON EXPECTED LENGTHS. Again, it is the result of

straightforward computation that, for interior point P: (a,a,c,), each of the following
functions n2aa, n22a3, n2al3, and n2l2a3 satisfies the average value property

f(A)+1/2 f(P).

It follows that E(P) n(aaa + bac, + caa3 + da=a3) satisfies Equation4 and
becomes a candidate for an expected length if the real coefficients, a,b,c,d, sum to 3.

For example, if a b c 1, d 0, we have the expected length for the walk in which

the vertices are the only traps and for which original boundary condition 4 holds.

If a b c 0, d 3, we have the expected length if all boundary points serve as

traps.

Suppose that all points of VV= U V1V serve as traps but that boundary condition 4

holds true on VV3. Then E(P) is given by a 0, b 1. c 0, d 2 since such a function

uniquely satisfies the boundary conditions.

In similar fashion, other values of a,b,c, and d may be sought to satisfy various

conditions for terminating the walk on the boundary.
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