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AB,STRACT. Let R be a 2-torsion free semiprime ring, I a nonzero ideal of R, Z the center

of R and d" R R a derivation. If d [z, y] + [z, y] E Z or d [z, y] [z, y] E Z for all z, y E I,
then R is commutative.
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1 INTRODUCTION.

Throughout, R will represent a ring, Z the center of R, I a nonzero ideal of R, and

d R R a derivation. As usual, for z, y E R, we write [z, y] zy yz and z o y zy + yx.

Given a subset S of R, we put VR(S) ( z E R I[z, s] 0 for all s E S }. I [ 1, Daif and

Bell showed that a semiprime ring R must be commutative if it admits a derivation d such

that (i) d[;r.,y] [z,y] for all z, y E R, or (ii) d [z, y] + [x, y] 0 for all x, y e R. Our present

objective is to generalize this result.

2 THE RESULTS.

As mentioned in 1, our present objective is to prove the following theorem which gener-
alizes [1, Theorem 3].

THEOREM 1. Let R be a 2-torsion free semiprime ring, and let I be a nonzero ideal

of R. Then the following conditions are equivalent-

(l) R admits a derivation d such that d [z, y]- Ix, y] Z for all z, y E I.
(2) R admits a derivation d such that d[z,y] + [z,y] Z for all z, y I.

(3) R admits a derivation d such that d Ix, y] + [z, y] e Z or d [z, y] [z, y] e Z for all

z, yet_.
(4) ICZ.

In preparation for proving our theorem, we state the following two lemmas.
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LEMMA 1. Let R be a semiprime ring, I a nonzero ideal of R, and a E R.
(1) Let b G I. If [b,z] 0 for all z G I, then b G Z. Therefore, ifI is commutative,

then I C Z.

() I [,] z o 1 , th v().
(3) Let R be a 2-torsion ee ring d [,[z,y]] Z for z, y I, then a V(I).
PROOF. (1) is we o.
() Fo y , w [,] [,] z, a o t 0 [[,],] [,].

Since R is sepfime =d [a,z] Z, we obtn that In, z] 0 for m z C I. Hence = C VR(I).
() Since g 9 [a,[z, zV]] [a,z[z,V]] z[a,[z,V]] + [a,z][z,V] forMl z, V C I, we have

0 [a, z [a, [z, V]] + In, z][z, V]] 2In, z] [a, [z, VII + [a, [a, z]] [z, V]. Now, substituting az for V,

2In, z] [a, In, z]] z [a, In, z]] In, z]z. Substituting [z, V] for z (V fi I), we hve 2 [a, [z, V]]’ 0.
Since R is 2-torsion sepfime ring d In, [z,V]] Z, we get In, [z,V]] 0 for

LMMA . Let R be n sepfime ring, I n noero ide of R, d d" R R nonzero

deflation such that d[z,]+[z,U] fi Z or d[z,]- [z,] g for z, U I. If d(I) Va(I),
then I is eouttive, d m I g.

d so we get a V(I) by [1, Le 1]. Therore, I is eo=uttive, =d so obtn
that I Z by Le=n 1 (1).

We e now redy to complete the proof of Theom 1.

ROOr Orraoa . ()(4). t a b, n deflation su that d[z,]-[z,U] fi
g for z, I. If d 0, then I g by Le () md (). Now we suppo that

Le= 1 (Z), that is, d(I) V(I). Thefore we hve Z g Z by Le= .
(2) (4). Let d be n derivation such thnt d[z,V] + [z,V] g for z, V I. ra= the

deflation (-d) satisfies the eontion (-d)[, V]- [z, V] g. And so we have I g g by (1).
(Z)(4). For ea z I, we put I, { C I d[z,U]- [z,y] C g} d 1; { C I

se mthod, e c see that I { z III I,} or I { z III I:}. therefore, by
() =d () e he Z Z.

(4) (), (4) (2)=d (4) = (Z)=e d=.
The next is a generzation of [1, Theorem 2 ].
COROLLARY 1. Let R be a 2-torfion f pfime g, g the center of R d

d" R R a deflation. If d [z, ] + [z, ] g or d [z, ]- [z, ] g for z, U R, then R
is eoutative.

PROPOSION 1. Let R be a 2-torsion ee g th identity 1. Then there is no

deflation d" R R such that d(z o ) z o U for z, R or d(z o ) + (z o U) 0 for
z, R.
PROOF. If there sts a noero derivation d" R R su that d(z o y) z o y or

d(zoy)+(zoy) =0 for z, R, thenwehave 2z =zol d(zol)= 2d(z) for
z R. Since R is 2-torsion ee, we get d(z) z for z R. For y z, y R, we have

zu + z o u d( o u) d( +) 2(z + uz), =d so e get o zU + z 0.
Since Ris 2-torsionee, wehave z 0. Henee we have 0 zo(z+l) 2z, dsowe
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get z 0 for all z E R; a contradiction. If there exists a zero derivation d:R R such that

d(z o /) z o / or d(z o /) + (z o /) 0 for all z, y E R, then we can easily see that z 0

for all z /R; a contradiction.

REMARK. In Theorem 1 and Corollary 1, we can not exclude the condition "2-torsion

free" as below.
z/2zEXAMPLE. We denote by Z the integer system. Let R
Z/2Z Z/2Z]’

a

(1 0) and d the inner derivation induced by a that is, d(z)= [a,z] for all z E R Then0 0
R is a non-commutative prime ring with char R 2, and d [z, y] + [z, /] E Z for all z, fi R.

Finally, we state two questions.

Let R be a 2-torsion free semiprime ring, d: R R a nonzero derivation, and/" a nonzero

ideal of R. And let rt be a fixed positive integer.

QUESTION 1. Does the condition that d"[z, /] + [z, ] q Z or a[z, ] [z, y] Z for

all z, I imply that/" C_ ?
QUESTION 2. Does the condition that d[z,]+d[z,!/] E Z or d"[z,/]-a[z,y] E Z

for some positive integers rn rn(z,) and p p(z,y), and for all z,9 imply that C_ Z ?
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