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ABSTRACT. In this article we present the matrix spread sets of the p-primitive planes of order io

where p 3, 5, 7, 11.
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1. INTRODUCTION
The p-primitive semifield planes are precisely the semifield planes of order p4 and kernel GF(p)

which are obtained when the construction method of Hiramine, Matsumoto and Oyama is applied to

the Desarguesian plane of order f (see Johnson [2]). If 7r is a p-primitive semifield plane, then rr has a

matrix spread set ofthe form

I(v) u,v e C;F()

where f(v) fov + flyp for some fo, fl E GF(p2). We denote this plane by 7r(f) or 7r(f0, f) In [3]
we began our study of this class of planes which we continued on [4]-[6]. First we studied necessary and

sufficient conditions on the function f that give isomorphic planes. Also we showed on Theorem 4.2 [4]
that there are () nonisomorphic p-primitive semifield planes for every prime p > 2. Ofthese 2 are

of the type imroduced by Hughes-Kleinfeld in [7]; one is a Dickson semifield plane (see Dembowski [8])
and (p- 1)/4 or (p- 3)/4 are Boemer-Lantz [9] semifield planes (according as 1 is a square or a

nonsquare in GF(p), respectively, p > 3. For p 3, the Boemer-Lantz semifield plane oforder 81 is p-

primitive). In a joint work with R. Figueroa 10] we showed that the remaining planes and their duals do

not belong to any of the known classes of semifield planes. In this article we present the results of a

search done with the aid of the computer to determine explicitly the matrix spread set of a representative
of each isomorphism class ofthese new semifield planes of order p4 for p 3, 5, 7 and 11

2. p-PRIMITIVE PLANES FOR p <_ 11

We recall the following result.

PROPOSITION 2.1 (see Cordero [3]) Let f" GF(p) --GFp2) be given by f()=
fou + fluP where fo ao / alt, fl b2 d- bit, ao, al, bo, bl GF(p) and let 0 be a nonsquare in

GF(p) such that 8. Then f defines a matrix spread set

f(v) ’ ’v e Cf(p2)

of a p-primitive semifield plane ifand only if ag (a b])8 is a nonsquare in CF(p)
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For p= 3,5,7 and 11 all the functions f in GF(p2) that satisfy the condition on (2 1) were

determined employing the computer program PRIMITIVE The input for this program is NONSQ which

contains first the prime p, then an arbitrary but fixed nonsquare O in GF(p) and then all the nonsquares in

GF(p). PRIMITIVE determines all the sets a0, al, bl that satisfy the condition above for the given

value of 0 In the output we get these coefficients a0, al, b0, bl where b0 is any element in GF(p)
After obtaining all such functions f we divided the planes determined by these into isomorphism

classes For this, we first used a computer program called ISO_B that determines which planes are

isomorphic via the isomorphism given by

l"=a 0 B

where B bO 01 b E GF(p) {0} and cr is an automorphism of GF(p2). Notice that if F is

isomorphism from r(f0, f) into zr(Fo, F) then F0 b2fo and F blf or F0 bf0 and

FI bv+lf and therefore many planes will be found to be isomorphic via this isomorphism (see
Cordero [4])

When these programs were run, the following was obtained

Prime p Nonsquare O How Many Solutions How Many Nonisomorphic
3 2 13 4
5 2 200 11
7 6 882 23
11 10 6050 58

After obtaining all the possible isomorphic planes with this type of isomorphism we analyze the

output and apply the isomorphism theorem for p-primitive semifield planes given in Cordero [4] to

determine all the nonisomorphic p-primitive planes for p 3, 5, 7 and 11

Case p 3: From the output of PRIMITIVE, we obtain that there are 18 functions f that give matrix

spread sets of p-primitive planes for p 3. ARer running ISO_B with these as input we obtain that there

are 4 isomorphism classes and no further collapsing is possible by Theorem 3. in Cordero [4].
Two ofthese planes have f0 0 and by using Theorem 3.3 in Cordero [4] we conclude that they are

Hughes-Kleinfeld semifield planes. Of the two remaining planes one has f 0 and therefore it is a

Dickson semifield plane by Theorem 3.2 in [4] and the other is the’semifield plane of Boerner-Lantz of

order 81 by Theorem 3.5 in [4]. We present these results in the following table; the first column gives the

coefficients a0, al, b0, b ofthe function f in the matrix spread set ofthe plane

I() ’v’ a(v)

where f(v) for + flyv, fo ao + alt, fl b + bit, GF(3), of one representative of each

class.

Table 1. p-primitive planes for p 3

Coefficients of f Identification ofthe Class

0,0,0,1, 0,0,1,1 Hughes-Kleinfeld

1,1,0,0 Dickson

1,1,0 Boerner-Lantz
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Case p 5: There are 200 matrix spread sets of p-primitive planes of order 54 When we use

these as input for ISO_B, we obtain 11 isomorphism classes: a representative of each class is given

below (the plane number is the number that was assigned to the plane in the output ofP IM TIVE)

Plane Coefficients off
ao a bob1

1 1112
2 1122
3 1132
4 1142
5 1102
11 1210
12 1220
15 1200
181 0 0 1 1
182 002 1
185 000 1

Planes #1-5 have fo 1 + and fl :/: O. Applying Theorem 3.4 in Cordero [4] to these, we get that

plane 1 is isomorphic to plane #4 and plane #2 is isomorphic to plane #3. The next two planes have

o 1 + 2t, but the fl’s do not have the necessary property for the planes to be isomorphic. Plane #15

has f 0 and it is not isomorphic to any other plane on the list by Theorem 3.2 in Cordero [4] and the

last 3 planes have f0 0 and are not isomorphic by Theorem 3.1 in [4] A plane with f0 1 + cannot

be isomorphic to a plane with f0 1 + 2t because this will imply that there exist a E GF(5) and

c E GF(25) such that 1 + 2t ad’-l(1 + t) od + 2t acP-l(1 t); in either case we will need

a 2, which is impossible. Therefore, we conclude that there are 9 nonisomorphic p-primitive planes
for p 5. A p-primitive semifield plane r(f0, f) with p _> 5 is said to be of type l if fo - 0 and

1) 0, 1, and of type V if f0 : 0 and fl2(p-1) 1. In a joillt work with R. Figueroa [10] we

showed that if r is a p-primitive plane of type IV which is not a Boemer-Lantz semifield plane or is of

type V then neither 7r nor its dual belong to any of the known classes of semifield planes. For p 5 we

have one plane oftype IV which is not Boerner-Lantz and three nonisomorphic planes oftype V.
In table 2 we give representatives ofthe p-primitive planes p 5.

Table 2. p-primitive planes for p 5

Coefficients off Identification ofthe Class

0,0,0,1 0,1,2,1; 0,0,2,1 Hughes-Kleinfeld

1,2,0,0 Dickson

1,1,2,2 Boemer-Lantz

1,1,1,2 Type IV

1,1,0,2; 1,2,1,0; 1,2,2,0 Type V

Case p 7. When p 7 there are 822 functions f that give matrix spread sets of p-primitive

planes of order 74 With ISO_B these are reduced to 23 isomorphism classes and by using similar
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arguments as in the case when p--5 we get that there are 16 nonisomorphic p=primitive planes for

p 7 These are presented in the following table.

Table 3. p-primitive planes for p 7

Coefficients of f Identification ofthe Class

0,0,0,1- 0,0,1,1; 0,0,2,1,
0,0,3,1

Hughes-Kleinfeld

1,2,0,0 Dickson

1, l,4,2 Boerner-Lantz

1,1,1,2; 1,1,2,2; 1,2,1,3; Type IV
1,2,2,3; 2,2,3,3

1,1,0,2; 1,2,0,3; 1,2,1,0; Type V
1,2,2,0; 1,2,3,0

Case p 11. There are 6050 matrix spread sets ofp-primitive planes of order 114 When these are

used as input for ISO_B we obtain 58 isomorphism classes. To complete the analysis ofthese we need to

determine if a plane with f0 1 + can be isomorphic to a plane with f0 1 + 2t. Suppose there exists

a GF(11) {0} and c GF(112) such that 1 + 2 acp- (1 + ) or 1 + 2 ad’-: (1 ) In the

first case we will have (l+t)c-: a’: Since t 1 we must have that a satisfies the equation

a 8, but 8 is a nonsquare in GF(11). In the second case we will have that (1-0c-’ tP+I and

again this implies that a 8. Therefore no plane with f0 1 / can be isomorphic to a plane with

f0 1 / 2t. We conclude that there are 36 classes of nonisomorphic p-primitive planes for p 11

Their function f is given in the following table.

Table 4. p-primitive planes for p 11

Coefficients of f Identification ofthe Class

0,0,0,1" 0,0,1,1" 0,0,2,1;
0,0,3,1; 0,0,4,1; 0,0,5,1

Hughes-Kleinfeld

1,1,0,0 Dickson

1,2,4,3; 1,2,4,5 Boemer-Lantz

1,1,1,4, 1,1,2,4; 1,1,3,4,
1,1,4,4, 1,1,5,4; 1,1,1,5,
1,1,2,5; 1,1,3,5; 1,1,4,5;
1,1,5,5, 1,2,1,3; 1,2,2,3;
1,2,3,3; 1,2,5,3; 1,2,1,5;
1,2,2,5, 1,2,3,5; 1,2,5,5

Type IV

1,1,0,4; 1,1,0,5; 1,1,1,0;
1,1,2,0; 1,1,3,0; 1,1,4,0;
1,1,5,0; 1,2,0,3; 1,2,0,5

Type V
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