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ABSTRACT. In this paper, we discuss the concepts of fuzzy hybrid fixed points, of g-®-contractive
type fuzzy mappings and common fuzzy hybrid fixed point theorems of a sequence of fuzzy mappings.
Our theorems improve and generalize the corresponding recent important results.
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1. INTRODUCTION

Heilpern [1] first introduced the concept of fuzzy mappings and proved fixed point theorems for
contraction fuzzy mappings. Chang [2] introduced the concept of ®-contraction type fuzzy mappings,
and proved a fixed point theorem, which is an extension of the result of Heilpern. Also, he obtained
common fixed point theorems for a sequence of fuzzy mappings. Lee, et al [3-4] introduced the concept
of g-contractive type fuzzy mappings, and proved a common fixed point theorem for sequence of fuzzy
mappings on a complete metric linear space.

In this paper, we introduced g-®-contractive type fuzzy mappings and defined the concept of the
fuzz hybrid fixed point for fuzzy mappings, proved common fuzzy hybrid fixed point theorems for a
sequence of fuzzy mappings on a complete metric space. Our theorems improve and generalize the
recent important results of [1-4].

2. PRELIMINARIES

Throughout this paper let (E,d) be a complete metric space, CB(E) be a collection of all non-
empty bounded closed subsets of E and C(E) be a collection of all non-empty compact subsets of E
Let Z* be the set of all positive integers. A mapping B : B — [0, 1] is called a fuzzy subset over E
We denote by W(E) the family of all fuzzy subsets over E. Let A€ W(E),Va€[0,1]. Set
(A), = {z € E: A(z) > o} is called the a-cut set of A. A mapping T': E — W(E) is called fuzzy
mapping over E.

DEFINITION 2.1. Let the function & : [0, + 00)® — [0, + 00). We say & satisfies the condition
(®1), (®2) or (®3), if ($1)® is upper semi-continuous and non-decreasing for each variable
(®2)®(2,¢,t,at,bt) < Q(t), Vt > 0,a,b=0,1,2, and a + b = 2, where Q(t) : [0, +00) — [0, +00),
Q(0)=0,Q(t) <t,Vt>0. (P3)0(t,t,¢,at,bt) < rt, wherer € (0, 1) is a constant, a,b = 0,1,2 and
a+b=2.
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DEFINITION 2.2. Let T: E — W(E). We say that T : E — W(E) satisfies the condition A4,
(A2). Ifthere exists a(z) : E — (0,1] suchthatVz € E, (Tz)y(r) € CB(E) (C(E)).

Let T,: E—» W(E)(i=1,2,..). WesayT,: E— W(E)(i = 1,2,...) satisfies the condition A,
(A2). If there exists a sequence of functions a,(z): E — (0,1} (i =1,2,...) such that Vz € E,
(Tiz),,(z) € CB(E) (or C(E)).

Let T: E —» W(E) satisfies the condition A; (or Ag), V z€ E, Tz = (Tx)o(r) € CB(E).
T : E — CB(E) is called the set-valued mapping induced by T.

DEFINITION 2.3. Let g : E— E be a single-valued mapping, F : E—~»W(E)and G : E—W(E)
be two fuzzy mappings satisfying condition A;. If, V z,y € E, u, € Fr (Gx) there exists v, € Gy
(Fy) such that

d(uz,vy) < 2(d(g(2), 9(y)), d(9(z), 9(uz)), d(9(y), 9(vy))
d(g(z), 9(vy)), d(9(¥), 9(u2)))- @n

Then, we say that F' and G satisfy the condition B.
DEFINITION 24. Let F: E - W(E), G: E — W(E) be two fuzzy mappings satisfying the
condition A;. Iffor any z,y € E, u, € Fz(Gx) there exists v, € Gy(Fy) such that
d(uz,vy) < ®(d(z,y), d(z, uz), d(y, vy), d(z,vy), d(y, uz)). (22)

Then, we say that F', G satisfy the condition C.
DEFINITION 2.5. Let F: E —» W(E) and G : E — W(E) be two fuzzy mappings satisfying the
condition A;. Iffor any z,y € E, u, € Fz(Gxz) there exists v, € Gy(Fy) such that

H(I;‘,,@y) < @(d(z,y),d(z, F‘,),d(y,éy),d(z, éy),d(y, Fz)), 23)

where d(z, Fz) = mm d(:c p) and H is the Hausdorff metric induced by d, then, we say that F and G

satisfy the condmon D.

DEFINITION 2.6. Let g : E — E be a single-valued mapping, F, : E - W(E)(:=1,2,...)bea
sequence of fuzzy mappings, if for any 7, j € Z*, F, and F; satisfy conditions A; and B. Moreover, ® in
condition B satisfies condition (®;) and (®2). Then we say F, :E — W(E)(¢ =1,2,...) be a g-&-
contractive type sequence of fuzzy mappings. In particular, when F, = F, = F (Vi,j € Z*) we say
F : E — W(E) be a g-®-contractive type fuzzy mapping.

DEFINITION 2.7. Let F: E — W(E). If P € E such that F;{(p) = %Fp(u), then P is
called a fixed point of F. Let F,:E-W(E) (¢+=1,2,..)) If PeFE such that

( N sz) (p) = ( N sz) (u) then P is called a common fixed point of { F}}.
=1

DEFINITION 2.8. Let T: E — E be a single-valued mapping and F : E — W(E) be a fuzzy
mapping. If P € E suchthat P =Tp and Fp(p) = %Fp(u), then P is called a fuzzy hybrid fixed
point of T and F'.

Let T: E — E be a single-valued mapping and F, : E —» W(FE) (¢ = 1,2, ...) be a sequence of
fuzzy mappings. If p € E such that p = T}, and ( N sz) (p) = ( N sz) (u), then pis called a
common fuzzy hybrid fixed point of T" and {F,}.

3. MAIN RESULTS

THEOREM 3.1. Let (E, d) be a complete metric space. Let:
(1) T : E — E be asingle-valued continuous mapping such that Vz,y € E

d(Tz,Ty) < d(z,Ty) (ER))
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(2 F,: E->W(E)(i=1,2,..) be a g-P-contractive type sequence of fuzzy mappings, where
g: E — E is a non-expansive mapping, a,(z) : E — (0,1] (i = 1,2, ...)such that Vz € E, T(Fiz)
= (F’iT:t)al(Tz) ('l = 1, 2, ...).
(3) Let 6 > 1, 2o € T(E), z1 € (F1%0) 4y (z0)» {t= }123 be a sequence of nonnegative real numbers
which is defined as follows
to = 0,t; > d(zo,Z1), tks1 = tx + Q(6(tk — tk—1)), K = 1,2, ... 32

a,(z)

Ileim tx = t. < + oo, then there exists P € E such that P = T'p and (ﬂ sz) (p) > mm{a,(P)}
when o,(z) = rzneagFiz(u) (:=1,2,...) be a sequence of functions satisfying the condmon (2). Then

there exists P € E such that P = Tp and (ﬂ sz) (p) = (ﬂ sz) (u), i.e P be a common

fuzzy hybrid fixed point of T and { F;}.

PROOF. Let T(E)={z|z=Tu,u€ E},F(E)={z|z =Tz,z € E}. 1t is obvious that
F(E) CT(E). Next we prove that T(E) C F(E),V Z; € T(E), 3u; € E with Z; = Tu,, by (3.1),
0 < d(T2z,Tu;) £d(z1,Tu;) =d(21,21) =0, .. Tz; = Tu; = 21,21 € F(E). Thus T(E)C F(E),
T(F) = F(E).

We prove that V z € T(E), Fiz C T(E) (i =1,2,...). Infact, for z € T(E) = F(E) by z=Txz,
T(Fiz), ;) = (FiT2), 15 (i = 1,2, ..), we have Fiz = FiTz = (FiTz), 1, = T(Fiz),

=TFiz CT(E)(i=1,2,..) take zo € T(E),z; € Fyzo C T(E), by the conditon B and
g : E — E be a non-expansive mapping, 3 x5 € Fz; such that
d(z1,22) < ®(d(9(z0), 9(21)), d(g(z0), 9(21)), d(g(x1), 9(z2))

d(g(zo), 9(z2)), a(g(z1), 9(z1)))
< ®(d(zo,z1), d(z0, Z1), d(Z1, 22), d(z0, Z2), d(z1,21))

for zo € Foxy, 3 z3 € F3z5 such that
d(z2,73) < ®(d(z1,22), d(x1,22), d(Z2, 73), d(1, Z3)d(z2, T2)).

Taking this procedure repeatedly, we can define a sequence {z,} in T(FE), satisfying
z, € Fs:,-; g T(E)a Tey1 € F,+1$, g T(E), and

d(zs: zs+l) < Q(d(za—ly z,), d(zs—l 1 Zs), d(l,, Ter1), d(zs—l » Tatl)s d(z:,, z,)). (33)

We prove that {z,} ] be convergent. First we prove the following inequality
d(xn, In—l) < 6(tn - tn—l)(n’ =1, 2v "') (34)

for n =1,d(z1,z0) < t; =t —tg < 6(t; —to), (3.4) is true. Suppose that n = k. (3.4) is true, i.e.
d(zk,Tk-1) < 6(tk —tk—1) We prove that it remains true for n =k +1, when n=k+1, by
($1),(®2), (3.2), (3.3), d(xk-1,Zk+1) < d(Tk-1,2x) +d(Zk, Zr11), and it is easy to prove that
d(Zk+1,Zk) < d(Tk-1, k), We have
d(zi1, zk) < B(d(zk, Tk-1), d(Tk, Tk-1), A(Tk, Ths1), A(Zh~1, Ths1), A(Tk, Tk))

< ®(d(zk, Tk-1), d(Tk, Tk-1), d(Tk-1,Zk), 2d(Tk-1, Tk ), 0)

< B(6(tk — tk-1), 6(tk — te-1), 6(tx — tk—1),26(tk — tk-1),0)

< Q(6(tk — tr-1)) = ti1 — tk < 8(tks1 — tk)-
Thus (3.4) remains true forn = k + 1. This completes the proof of (3.4).

k+m—1

By hm =t,< +oo and (3.4) d(Tksm, Zk) < < Z d(:c,“,zJ) <6 Z (t41—1;) = 6(tksem —1tk).

Thus {zs}!% be a Cauchy sequence in T(E). Smce (T(E),d)isa complete metric space, therefore 3

P e Esuchthatlimz, = P, ‘- P € T(E) = F(E), ... P=Tp. Next, we prove that P € ﬂ Fip v
§—00 =1
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me€ Z*, ‘- z, € Fsz,_1(n =1,2,...) by the condition B and g : E — E be a nonexpansive mapping,
3w, € Fmp such that

d(zs,vs) < $(d(zs-1,P), d(T5-1,%5), d(P, vs), d(Z5-1,v5), d(P, Z,)) (35)
by the condition A;, Fmp = (Fmp)g, (n) € CB(E), Fmp be a non-empty bounded closet set of
E,v, € Fmp. Thus {d(vs,p)} be a bounded sequence of real numbers. Therefore, there exists
{d(vs,,p)} € {d(vs, P)} satisfies lim. d(v,,p) = d, by (3.5) and d(v,,, z,,-1) < d(v,,p)+d(zs-1,P),
we have

d(v,,,p) < d(p,zs,) +Q(d(z,:_l,p),d(z,,-l,:r,,),d(p, v,,),d(zy,-1,p) +d(p, v,),d(p, zs,))-
Let j — + o0, by d(v,,,p) — d, z, — p, (®1), (¥2), we have, whend # 0
d< +%(0,0,d,0+d,0) <Q(d) < d.
This is a contradiction, therefore, d = 0, i.e.llirg vs, =P, by v,, € Fmp and vy, =P, .. PE Fmp=
(Fmp),, ) (YmEz*) ie. Fmp(p) > am(p)(m=1,2,...). Thus Fmp(p) > rgi{l{a;(p)}(m:l,z )

+00
(13 Fme) ) = mip (et
m=1 2
When o,(z) = TgFiz(u)(i:l,Z ..). Then ﬂ sz) (p) = mm{a,(p)} > mm max Fip(u) >

minFip(u) = (ﬁo Fip) (u), Vu e E. Thus (ﬂ F:p> (p) > max ( n sz) (u) > (ﬂ Fip) (p).

=

(ﬂ sz) (p) = (ﬂ sz) (u), i.e. p be common fixed point of { F;}, by p € T(E) = F(E),

1=1
p = Tp. Thus p be a common fuzzy hybrid fixed point of T and {F;}.

COROLLARY 3.1. Let (E,d),T:E—E and F,: E—->W(E)(i=1,2,..) satisfy the
conditions of Theorem 3.1. Moreover ¢ satisfies the condition (®3), then the conclusion of Theorem 3.1
remains true.

PROOF. Taking to =0, 2o € T(E), z; € Fyz¢, t; > d(zo,z1). We define a sequence of non-
negative real numbers {t;}23 as follows:

by =t +70(tk —tko1), k=1,2,... 36)
where § > 1 and 67 < 1, 7 be a constant in the condition ($3). It follows from (3.6)

the1 — tk = TO(tk — tyoy) = - = (r6)5ty.

Therefore we have hm ty = hm Z (t, — ti-1) = 725 < + oo. The conclusion of Corollary 3 1 follows

0,21
from Theorem 3.1 immediately.

COROLLARY 3.2. Let (E,d),T: E — E satisfies the condition of Theorem 3.1  Let
F:E-W(E)(i=1,2,..) for a;(z): E— (0,1](: =1,2,...) satisfies the condition A, imd v
z € E, T(Fiz), ;) = (FiTZ), 1, ( = 1,2,...). Moreover, for any i,j € z*,z,y, € E,u, € Fiz, 3
vy € Fjy such that

d(uz,vy) < gmax{d(g(z), 9(v)), d(9(z), 9(u=))

d(9(v), 9(vy))s %[d(g(z),y(vy)) +d(g(y), 9(uz))]} (€)

where g € (0,1) is a constant, g : E — E be a non-expansive mapping. Then the conclusion of Theorem
3.1 remains true.
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PROOF. Taking ®(t1,12,t3,84,t5) = gmax {t;, 12,13, 1 (t4 +t5)}, we have &(t,1,¢,at, bt) = qt,
where a,b=0,1,2 and a+b=2. It is easy to see that & satisfies the condition (®;)and (®3),
therefore the conclusion follows from Corollary 3.1 directly.

THEOREM 3.2. Let (E,d) and T: E — E satisfy the condition of Theorem 3.1. Let
F:E-W(E)(i=12,..) for o,(z): E— (0,1](i =1,2,...) satisfy the condition A; and V
z € E,T(Fiz), 5y = (FiTz), (1, (i = 1,2,...). Moreover for any i,j € Z*,z,y € E,u, € Fiz, 3
v, € Fjy such that

d(uz,vy) < end(g(z), 9(uz)) + a2d(9(y), 9(vy)) + a3d(9(y), 9(uz))
+ a-d(g(z), 9(vy)) + asd(g(z), 9(y)) (€X))

where g: E — E be a non-expansive mapping, o, >0(:=1,2,...,5),a1 + a3 +... + a5 < 1 and
a3 > ay. Then the conclusion of Theorem 3.1 remains true.

PROOF. By proof of Theorem 3.1, T(E) = F(E), and V z € T(E), Fiz C T(E)(i = 1,2, ...),
by (3.8) and g : E — E be a non-expansive mapping, the same as the proof of Theorem 3.1 We can
define a sequence {z,} C T(E), suchthatz,,; C F,, z, C T(E). Moreover

d(.‘!:,, Is+1) < a,d(a:,_l,:z:,) + QQ(I,, zs+1) + a3d(zm :C,)
+ @4d(Z5-1, Ts11) + a5d(T5-1, 2,)
< 01d(T5-1,T5) + @2d(Z5, To11) + 4d(Z,-1, Z,)
+ 04d(z,, To41) + 5d(T,-1, Zs).

Therefore

oy +a4 +as
a(zavza+l) < -

=72 az — aq d(za—hxa) (39)

caz>ay>0,a1+--+as< 1. Thusr—el*%*'—:‘i<l we have

d(I,,:t,.H) S Td(.‘l.‘,_l, Is) S T d(xa—sza) S S T’d(xo,xl)- (310)

By (3.10), it is easy to see that {z,}}% is a Cauchy sequence in T'(E). Thus 3 p € T(E), such that
lim z,=p Next, we prove that peﬂ Fop,VYmeZ*, for z,€ Foz,.1(n=1,2,...), by

assumption, 3 v, € F'mp such that
d(zs,v,) < 01d(25-1,75) + 2d(p, ) + a3d(p, z,)
+ a4d(z,_1, ’U,) + asd(a:,-l,p)
< 1d(z5-1,25) + @2d(p, 7,) + a2d(z,, )
an(pr 1’,) + O4d(17,-1,:!:,) + aqd(:c,, 'U,) + a5d(x3—lr P)-

Thus we have

(1 — Qg — a4)d(1',, 'Us) < ald(zs-—ly Is) + agd(p, Is)
+ a3d(P» z,) + d4d($3_1,.1:,) + an(zs—hp)~

We have d(z,,v,) = 0(n— +00). Thus d(v,,p) <d(v,,z,) +d(z,,p) = 0(n — +00), .. ’]ir?ov, =p,

- - +00
by v, € Fmp € CB(E). Therefore p € Fmp(¥ m € 2*). By p=Tp and p € | Fmp, the same as
m=1
the proof of Theorem 3.1, we obtain the conclusion of Theorem 3.1.
When T = [ is the identity operator on E, we obtain the following result.

COROLLARY 33. Let (E,d) and F,: E > W(E)(i=1,2,...) satisfy the conditions of
+00
Theorem 3.2. Then there exists p€ E such that { [ Fip) (p) = n;i{l{a,(p)}, when o;(z) =mea%<Fi:c(u)
=1 2 z

(i = 1,2,...) satisfies corresponding conditions, p is a common fixed point of { F, }.
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REMARK 3.1. When a3 = a4 in the condition (3.8) of Theorem 3.2, Theorem 3.2 is a special case
of Corollary 3.2. Corollary 3.3 is an improvement and generalized version of Theorem 3.1 of [4]) and
Theorem 3.10 of [3]. In Theorem 3 of [2], if { F;} for {a;(x)} satisfy condition Ay, then Theorem 3 of
[2] is a special case of Theorem 3.1 of this paper. In fact, when T = I and g = I are identity operators
on E, by the theorem of Nadler [S], it is easy to see the condition D implies the condition C'.
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