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ABSTRACT. Fermat’s Little Theorem states that zP = z(modp) for z € N and prime
p, and so identifies an integer-valued polynomial (IVP) g,(z) = (zP — z)/p. Presented here
are IVP’s g, for non-prime n that complete the sequence {g, | n € N} in a natural way.
Also presented are characterizations of the g,,’s and an indication of the ideas from topological

dynamics and algebra that brought these matters to our attention.
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Some ideas in topological dynamics (Namioka [6] and Milnes [5]) lead to the consideration
of product groups with a group operation that for Z° =Z xZ x Z x ... is as follows:

(24,2, 25, T4, ... )®(T1,%2,23,T4y .. )=
(=) + z1, 7% + 221 + 22,75 + 247y + Th22 + 23, 7Y + TyT1 + ThTo + TjT3 + 24, . )
The operation is abelian and in fact (Z°*°,®) is isomorphic to the direct product group
(Z>°,+).

In Namioka [5] a way of defining a class of these seemingly trivial operations ®' on Z* is
given. Such operations are basic in the definition of Witt vectors, for which the ring product
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in Z* is changed as well, and in an analogous way. (See Lang [4] and Demazure [3]; thanks to
J.F. Jardine for these references.)

One property of such an operation is that it makes a certain map E from Z* into the
algebra FP of formal power series with constant term 1 a homomorphism. For (Z*,®), the
map F is

0
E(a) = E(al’a2ya3, oo ) =1+ Zant”.

n=1

(For Witt vectors the map is given by E(a) = II32;(1 — ant").)

A SEQUENCE OF POLYNOMIALS.

An isomorphism (the obvious one) between (Z*°, ®) and (Z>, +) led to our first sequence of
polynomials. Some details of the calculation of this isomorphism are given in the appendix. We
computed the first 51 polynomials in 1987, and take this opportunity to thank R. Girgensohn,
who using Maple has recently computed the first 100 polynomials (verifying our computations
on the way). Here is a sampling of these polynomials.

Pi(z) =z, Py(z)=-(22-12)/2, Ps(z)=(a®-17)/3

Py(z) = —(z* —z)/4 — (22 - z)/4, Ps(z)=(z*—2)/5

Ps(z) = —(2° —2)/6 + (z* —2)/6 + (22 — 2)/6, Pi(z) = (2" —2)/7

Py(z) = —(2®* —2)/8 — (z* - 7)/8 — (22 — 1)/4, Po(z) = (2 — 2)/9 — (z* — 7)/9
Pyy(z) = —(2%° — 2)/20 — (2° — 2)/20 + (2 — 7)/10 + (z* — 2)/20 + (2 — 2)/20
Py (z) = (231 — 2)/31,  Piy(z) = (2°° — 2)/39 — (2! — 2)/39 — (2 — 7)/39
Pyg(z) = —(2*® — 1)/48 — (2% — 7)/48 + (2% — 2)/48 — (2!? — 1)/24 + (2® — 7)/48

—(2% - 2)/12 + (2* — 2)/24 + (2 — 2)/6 + (2® — 2)/12

The method of construction dictates that the P,’s are integer-valued polynomials (IVP’s).
Furthermore, for prime p Fermat’s Little Theorem (FLT) says that

z? = z(mod p), i.e., (zP —z)/pE Z for z € Z,

just the polynomials we are getting for the prime values ezcept for p = 2 (at least as far as
calculations have been done).

We note that (z* ~ z)/4 equals 7/2 at z = 2, and furthermore that n = 561 = 3 x 11 x 17 is
the smallest non-prime n such that (z" — z)/n is an IVP; 561 is called a Carmichael number.
The infinitude of the set of Carmichael numbers has recently been demonstrated in Alford et
al. (1]. (Thanks to Jan Minag for this reference.)

We view the isomorphism calculation as an algorithm that determines, for each n € N,
in a canonical way, an IVP P,, such that P,(z) = (z™ — z)/n, the Fermat polynomial, when

n > 2 is a prime.
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There was clearly enough information in the formulae for the P,’s to figure out something
to say about these polynomials. The sequence {g,} of the next theorem is observed to agree
with {nP,} up to n = 100.

THEOREM 1. The following are equivalent ways of defining inductively a sequence {gn}
of polynomials starting with g;(z) = z. Forn > 1
(4) ga(z) = (=1)"z"+ Y (-1)"/4gu(a); or

1<d<n
din

(B) gn(z) = Z bu,kzk, where
k=1
(8) bux =0if ktn,

(b)if k|n and k # 1, by x = (=1)**'b,/k 5, and
(€) bna == bnp (== bus forallm>n).
k=2

k=2
PROOF. Proceeding by induction, we note that

g2(z) =z — 2’ = (~1)*(z” - )

satisfies both (A) and (B), and assume that gn,(z), as defined in (A) satisfies the conditions of
(B) for all m < n. It then suffices to show that

gn(@) = ()" (" —2) + Y (-1)"*g4()

1§1<n
(as defined in (A)) also satisfies the conditions (a), (b) and (c) of (B).

With gn(z) = Z bn,kz*, note that the induction hypotheses imply that
k=1

* b,k = E (=1)™bgx (1<k<m<n).

1<d<m
dlm

(a) If k t n, then k { d for any d such that d|n, so that

b= 3 (<1 Mb0s =0,

1<d<n
din

(c) bug = (1" 4+ Y (=1)"bay

1<d<n
d|n

d
= —bpn+ z (_1)"/‘ (_ kz-:zb.i,k)

1<d<n
dln

n—1
=—ban+t D (-1)M4) bup| (sinced<n)
e k=2
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n~-1 n-1
==|bantd | Y D)ban||=- (b +y b..,.) (by *)
k=2

1<d<n k=2
din

=- Eb"""

k=2

(b) Both (A) and (B) give bp,n = (—1)"*),s0let k|n, 1 < k < n. Then

b= Y (=1)"bgi (by =)

1<d<n
din

=3 {(-1)"/"5,,,, [1<d<n, din, k |d} (since k  d implies by = 0)
=¥ {(_1)"/"(—1)'=+1b,,,,,_l |1<d<n, d|n, kld} (since 1 < k).

Writing e = d/k, we have

b = 2:{(—1)"/(“0(-1)"*‘1b,,1 | 1< ek <n, ek|n, kfelc}

= (1M S {10 b | 1< e < (n/R), el(m/k)}

= (=DM (1) re 0 + Z (=1)~/Bep,

1<e<(n/k)
el(n/k)

el il FC VLR SN VAL

1<d<(n/k)
dl(n/k)

which equals (—1)¥+1b,,;; by (A), and so we have the formula (b) of (B) holding for
n
gn(z) = E bn,kz* (as well as (a) and (c)).

k=1
The induction proof is complete. H

We shall get explicit formulae for the g,’s, as well as other information. First we collect
preparatory material in some lemmas; the second conclusion of part (a) of the next lemma is

well known.
LEMMA 2. (a) For odd prime power p", gpr = zP — z"'-l, and g,-/p" is an IVP.
(b) For powers of 2, we have g; =z, g, = —z%> + z, and for r > 1
2" - 2" 2m-t 2" r—1 -« j—1, 2"~
gor = —2 +Zgr-,=—(z -z )+ 2g2r-1 = —z° +2 1—22’ z H
=1 1=1
also g+ /27 is an IVP.
PROOF. (a) In this case (A) becomes

r
"
Gpr = P — ngr-j.
=1
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The first claim is then easy to show by induction: just write

1 2 -3

gpr = 2 —2P =P - (= - z”'-z) - (:1:"- —z* )= . —(aP —z)—12.

For the second claim, FLT says that (z? — z)/p € Z for z € Z, i.e., 2P = z + kp; expanding
(z + kp)?" ™" gives the result.

(b) In this case (A) becomes

r
gor = —zz + 292"5 )
j=1

the first expression for g,r; the validity of the other 2 forms follows readily by induction. To
see that g /2" is an IVP, apply induction and the proof of (a) to the middle form for g,-.
]

A function f from N into an abelian ring is called multiplicative if f(1) = 1, and f(mn) =
f(m)f(n) at least if m and n are relatively prime, (m,n) = 1; thus a multiplicative function is
determined by its values at the prime powers. Since explicit formulae for the g,’s have been
given at the prime powers in the previous lemma, all we need to do to complete the explicit

presentation of the g,’s is to show that the function n — g,, N — F'P, is multiplicative.
We remind the reader of the convolution formula for multiplicative functions f and A,
frh(n) =" f(d)h(d/n)
d|in
and that

f * h is also multiplicative,
the operation * is associative, and

the sequence e = (1,0,0,0, ...) is the identity element for the operation *.
Furthermore, the Mébius function p is the multiplicative function that is the inverse of p =
(1,1,1, ...) and is defined by (1) =1, and forn > 1
{ (~1)* if n is the product of k distinct primes,
H(n) =

0 otherwise.

Then there is the Mébius inversion formula, h = f * pif and only if f = h* y, ie.,
h(n) =Y f(d) if and only if f(n) = Y _ u(d)h(n/d).
din din

(Baker [2] is a reference for all this.) The next lemma was pointed out to us by R. Girgensohn;
the inversion formula that the lemma yields is the key ingredient in the proof of Theorem 4

given here, which is much more elegant than our original proof.
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LEMMA 3. The sequence p; = (1,-1,1,-1,1,-1, ...) is multiplicative and its inverse
41 (also multiplicative) is the sequence whose entries are the coefficients of z in the polynomials
gn-

PROOF. Clearly p; is multiplicative. Rewrite (A) of Theorem 1 as

(A) (-)"am = Y (-1)gu(a)
1<d<n
din
and look at the coefficients of z. The resulting equation is just e(n) = p; * p1(n), the desired
conclusion.
Finally, if v is multiplicative and a sequence v~! satisfies v * v~! = ¢, then v~! is also

multiplicative; this is well known (and is readily proved by induction). W

N.B. We consider the formal polynomials FP to have multiplication

0 (S (;b,.a) - Tt

so that z is the identity element. (One may consider this multiplication to reflect composition
of functions, or to involve a representation of £;(N, x).)

Since the g,’s have been identified for prime power n in Lemma 2, the next theorem gives
all the g,’s explicitly.

THEOREM 4. The function G : n — g,, N = FP, is multiplicative, so the gn’s

satisfy gn = II{gyne) | p € P} (product using (-)) for n > 1 with prime factorization n =
o{p"® | pe P}.
PROOF. Let FP>™ denote the set of sequences in FP, which we assume has multiplication (-).
Define X € FP* by X(n) = (—1)"*!z", and note that X is multiplicative. Then equation
(A) in Lemma 3 says that X = G * p;, and so G = X * ;. Thus G is the convolution of
multiplicative functions, and hence is multiplicative. W

The first corollary is a direct consequence of Lemma 2 and the fact that G is multiplicative;

we may view it as extending Fermat’s Little Theorem to non-primes.
COROLLARY 5. Foralln €N, go/nis an IVP.
We can also identify p; (of Lemma 3) explicitly in terms of the M&bius function u.
COROLLARY 6. Let n € N and write n = 2"n’, where n’ is odd. Then p(n) =
2r—l ,‘(nl).
PROOF. This follows directly from Theorem 1 and Lemma 2. (Recall that z is the multiplica-
tive identity of F'P.) |
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ANOTHER SEQUENCE OF POLYNOMIALS.

The more complicated formulae for the g,-’s presented an obstacle to the explicit identifi-
cation of the g,’s. Especially with hindsight we can identify a more tractable related sequence
{gn} C FP, where g,. = 2P — zP""" for all prime powers (not just the odd ones) and the
function G' : n — ¢, N - FP, is multiplicative; thus, for n € N with prime factorization
I{p"® | pe P}

dh = Tep(a™®) — 201,
and ¢/, /n is an IVP. Computations (up to n = 50) indicate that the polynomials {g;,} arise
from (Z*>,®") with multiplication

(24,25, 25,24, .. )®" (21,%2,%3,Z4, ... ) =

’ ! ! ! ! ! ! 1 ! !
(2} + 71,75 — )21 + 22,2" — 2h1) — Ty T2 + 23,24 — T3y — T9Tz — 123 + Ty, ... )

in the same way that the polynomials {g,} arose from (Z>°,®). The corresponding homomor-
phism E" : (Z*°,®") — FP is given by
oo
E"(a) = E"(a;, 02,03, ... )=1—= Y ant™
n=1

In this situation, the formulae (A) and (B) of Theorem 1 need to be modified so that 2 is

treated in the same way as the other primes. Thus the g/,’s satisfy

(A" = Y gio).

1<d<n
din

(The corresponding (B') has the term (—1)**! omitted from the equation in (b) of (B).) So, if
X' € FP™ is defined by X'(n) = z", then X' =G'*pand G' = X' * p.

APPENDIX. It is from the ‘obvious’ isomorphism between (Z*°,®) and (Z*, +) that we
get the sequence of polynomials {P,}. Here are some details. Consider s; = (1,0,0,0, ...) €
(Z*, ®); then

=508 =(21000,..)= (2, (;),o,o,o, )

S =508 Q8 = 3,3,1,0,0,0, ... )= (3, (3), (g),0,0,0, ) , and

3= () ()ono )

Also, for s; =(0,1,0,0,0, ... ) and s3 = (0,0,1,0,0,0, ... ) in (Z*°,®),

n n n
8; = (0,1’1,0, (2>70) (3)70’ o 709 (n)voy()’o? oo ) ’ and
= (o,o,n,o,o, (’;)oo (g)oo 0,0, (:),0,0,0, ) ,
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etc. Since the groups are abelian, a homomorphism ¢ : (Z*°,+) — (Z*°, ®) is given by
p:z=(21,22,23, ... )=

(21,0,0,0, ... ) +(0,22,0,0,0, ... ) +(0,0,25,0,0,0, ... ) + ...

— s{' @ 532 @ 83* ® (terms with first 3 entries = 0) =

z x T T
(zl,(zl), (3‘), ) ® (0,32,0,(22),0, ) ® (0,0,.1:3,0,0, (2"), ) ® ..
= (31,32 + (?),z;, + 122 + (:;1), ) .
1

It is the inverse of ¢ that gives the desired sequence of polynomials; a few terms of ¢~! :
(Z*°,®) — (Z>,+) are easy to calculate by hand,

07 (21,22, 23,34, - ) (21, 22— (2} = 21)/2, 23 — 7122 + (2] — 21)/3,

Ty — 2123 — (22 ~ 22)/2 + 2322 —(z} — 2,)/4 — (23 — 2,)/4, ... ).

The sequence {P,} can be seen emerging in the z; variable; P, — P, are underlined.

We remark that, although ¢ seems an obvious isomorphism in this context, its analogue for
Witt vector addition (which yields an isomorphism of the additive group of Witt vectors and
(Z>=,+)) is not the Witt vector map and does not yield Witt vector multiplication.

In conclusion, we pose some

QUESTIONS. 1. We have P, = g,/n for n < 100; does this equality hold for all n? (The
analogous question can be posed for the g),’s.) To this end, R. Girgensohn has shown for all n
that the coefficient of z in P, is the same as that in g, /n.
2. If, as we suspect, question 1 has a positive answer, why does the isomorphism ¢ : (Z°,+) —
(Z*°, ®) yield such a structured sequence of polynomials?
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