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ABSTRACT. Fermat’s Little Theorem states that xp z(modp) for z E N and prime

p, and so identifies an integer-valued polynomial (IVP) g,(z) (zr x)/p. Presented here

are IVP’s gn for non-prime n that complete the sequence {gn n E N} in a natural way.

Also presented are characterizations of the gn’S and an indication of the ideas from topological

dynamics and algebra that brought these matters to our attention.
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Some ideas in topological dynamics (Namioka [6] and Milnes [5]) lead to the consideration

of product groups with a group operation that for Z Z x Z x Z x is as follows:

The operation is abelian and in fact (Z, (R)) is isomorphic to the direct product group

(Z,+).

In Namioka [5] a way of defining a class of these seemingly trivial operations (R)’ on Z is

given. Such operations are basic in the definition of Witt vectors, for which the ring product



522 P. MILNES AND C. STANLEY-ALBARDA

in Z is changed as well, and in an analogous way. (See Lang [4] and Demazure [3]; thanks to

J.F. Jardine for these references.)

One property of such an operation is that it makes a certain map E from Z into the

algebra FP of formal power series with constant term 1 a homomorphism. For (Zoo, (R)), the

map E is

E() E(,,, + n.

(For Witt vectors the map is given by E(a)

A SEQUENCE OF POLYNOMIALS.

An isomorphism (the obvious one) between (Z, (R)) and (Zoo, +) led to our first sequence of

polynomials. Some details of the calculation of this isomorphism are given in the appendix. We

computed the first 51 polynomials in 1987, and take this opportunity to thank R. Girgensohn,

who using Maple has recently computed the first 100 polynomials (verifying our computations

on the way). Here is a sampling of these polynomials.

PI(x) x, P2(x) -(x2 z)/2, P3(z) (x x)/3

P() -( )/- ( )/, P() ( )/

Po(=) _(= =)/6 + (= =)/ + (=, =)/, P(=) (= =)/

P(=) -( =)/s (= =)is (=, =)/, P,() (= )/ (=, =)/

P,0() -(=’0 =)/20 (0 =)/20 + (= )/0 + (= )/0 + (=’ =)/=0

P,(=) (=, =)/], P,(=) (=,0 =)/ (=, =)/ (=, =)/

P,(=) -(=, =)/8 (=, =)/s + (= =)/s (=, =)/2 + (= =)/s

-(x x)/12 + (x4 z)/24 / (x x)/6 + (x2 x)/12

The method of construction dictates that the Pn’s are integer-valued polynomials (IVP’s).

Furthermore, for prime p Fermat’s Little Theorem (FLT) says that

xp z(modp), i.e., (xp x)/p /Z for x /Z,

just the polynomials we are getting for the prime values ezcept ]or p 2 (at least as far as

calculations have been done).

We note that (xa x)/4 equals 7/2 at z 2, and furthermore that n 561 3 x 11 x 17 is

the smallest non-prime n such that (x x)/n is an IVP; 561 is called a Carmichael number.

The infinitude of the set of Carmichael numbers has recently been demonstrated in Afford et

al. [1]. (Thanks to Jgn Minge for this reference.)

We view the isomorphism calculation as an algorithtn that determines, for each n E N,

in a canonical way, an IVP P,, such that P,(x) (x x)/n, the Fermat polynomial, when

n > 2 is a prime.
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There was dearly enough information in the formulae for the Pn’S to figure out something

to say about these polynomials. The sequence {gn} of the next theorem is observed to agree

with {nPn) up to n-- 100.

THEOREM 1. The following are equivalent ways of defining inductively a sequence {gn)

of polynomials starting with gl(z) z. For n > 1

(A) g.() (-Z)"+" + (--Z)"/gd(); o

(B) g.(z)= b.,kz, where
k-----1

(a) b., 0 if k n,

(b) if kin and k # 1, b,,k (-1)+1 bn/,,, and

(c) b., b., (= bn, for all m _> n).
k----2

PROOF. Proceeding by induction, we note that

g,() , (-)’(’ )

satisfies both (A) and (B), and assttme that gin(x.), as defined in (A) satisfies the conditions of

(B) for all m < n. It then suitlces to show that

On(x) (--1)n+1(x x)+
l<d<n
din

(as defined in (A)) also satisfies the conditions (a), (b) and (c) of (B).

With gn(Z) bn,kZ, note that the induction hypotheses imply that
k-----1

* bm,i= (--1)m/dbd,k (l<k<m_<n).
l<d<m
dim

(a) If k n, then k d for any d such that din, so that

b.,, (-:)"/b,, o.
l<d<n
din

b.,, (-:)"+’ +
l<d<n
din

(_])n/d
l<d<n
dln

bn,n + (-1)n/d bd, (since d < n)
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b,,, + E (-1)n/dbd, bn,, + E b,,t

(b) Both (A) and (B) give b,,, (-1)"+1, so let kin 1 < k < n. Then

(by *)

b,,= E (--1)r*/db’,l (by*)

=E{(--l)"/dbd, l<d<n, din kld} (sincekdimpliesba,=O)

E{(-1)’q(-1)+lba/, 1 <d< n, din, k{d} (since1 < k).

Writing e d/k, we have

bn,={(-1)n/(’)(-1)+1b,,1 l<ek<n, ek[., k[ek}
-(-1)+1 {(-1)("/’)/’b., 1 _< < (n/k),

E (-1)("l)l’tbd,)ll(nlk
which equms (-1)+lb,,/t,1 by (A), and so we have the formula (b) of (B) holding for

g,(x) b,,x. (as well as (a) and (c)).
k=l

The induction prf is complete.

We shall get explicit formulae for the gn’s, as well as other information. First we collect

preparatory material in some lemmas; the second conclusion of part (a) of the next lemma is

well known.

LEMMA 2. (a) For odd prime power p", gp, xs’" xs’’-t, and gp,/p" is an IVP.

(b) For powers of 2, we have gl x, g2 -x + x, and for r > 1

g2" --x2" q- g:t’-, --(z2" Z2"- + 292,- --z2" "k 2r-lx 2-1x
j=l =1

also 02"/2

PROOF. (a) In this case (A) becomes
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The first claim is then easy to show by induction: just write

For the second claim, FLT says that (xr x)/p E Z for x E Z, i.e., xp x + kp; expanding

(z + kp)f-I gives the result.

(b) In this case (A) becomes

the first expression for g2.; the validity of the other 2 forms follows readily by induction. To

see that g2./2 is an IN’P, apply induction and the proof of (a) to the middle form for

A function f from N into an abelian ring is called multiplicttire if f(1) 1, and/(ran)

f(m)f(n) at least if m and n are relatively prime, (m, n) 1; thus a multiplicative function is

determined by its values at the prime powers. Since explicit formulae for the g,’s have been

given at the prime powers in the previous lemma, all we need to do to complete the explicit

presentation of the gn’s is to show that the function n - gn, N --, FP, is multiplicative.

We remind the reader of the convolution formula for multiplicative functions f and h,

and that

f h is also multiplicative,

the operation is associative, and

the sequence e (1, 0, 0, 0, is the identity element for the opera.tion ,.
Furthermore, the MSbius function p is the multiplicative function that is the inverse of p

(1,1,1, and is defined by p(1) 1, and for n > 1

(-1)k if n is the product of k distinct primes,

0 otherwise.

Then there is the Mibius inversion formula, h f p if and only if jr h p, i.e.,

h(n) f(d) if and only if f(n) p(d)h(n/d).
din din

(Baker [2] is a reference for all this.) The next lemma was pointed out to us by R. Girgensotm;

the inversion formula that the lemma yields is the key ingredient in the proof of Theorem 4

given here, which is much more elegant than our original proof.
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LEMMA 3. The sequence pl (1,-I, 1,-1,1,-I, is multiplicative and its inverse

Pl (also multiplicative) is the sequence whose entries are the coefficients of z in the polynomials

gn.

PROOF. Clearly pl is multiplicative. Rewrite (A) of Theorem 1 as

(A) (-l)"+Ix" (--l)=Idgd()
l<d<n

and look at the coetBcients of z. The resulting equation is just e(n) p pl(n), the desired

conclusion.

Finally, if t, is multiplicative and a sequence -I satisfies t, t,-1 e, then t,- is also

multiplicative; this is well known (and is readily proved by induction). I

N.B. We consider the formal polynomials FP to have multiplication

(-)

so that z is the identity element. (One may consider this multiplication to reflect composition

of functions, or to involve a representation of 1(N, ).)
Since the g,’s have been identified for prime power n in Lemma 2, the next theorem gives

all the g.’s explicitly.

THEOREM 4. The function G n g., N - FP, is multiplicative, so the

satisfy g. II{gpn(p) P E P} (product using (-)) for n > 1 with prime factorization n

PROOF. Let FP denote the set of sequences in FP, which we assume has multiplication (.).
Define X FP by X(n) (-1)+lz", and note that X is mul,tiplicative. Then equation

(A) in Lemma 3 says that X G Pl, and so G X p. Thus G is the convolution of

multiplicative functions, and hence is multiplicative.

The first corollary is a direct consequence of Lemma 2 and the fact that G is multiplicative;

we may view it as extending Fermat’s Little Theorem to non-primes.

COROLLARY 5. For all n N, g,/n is an IVP.

We can also identify p: (of Lemma 3) explicitly in terms of the MSbius function p.

COROLLARY 6.

2-,(’).

Let n N and write n 2"n’, where n’ is odd. Thenp(n)

PROOF. This follows directly from Theorem 1 and Lemma 2. (Recall that x is the multiplica-

tive identity of FP.)
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ANOTHER SEQUENCE OF POLYNOMIALS.

The more complicated formulae for the g2,’s presented an obstacle to the explicit identifi-

cation of the gn’s. Especially with hindsight we can identify a more tractable related sequence

z’" z’’-t for all prime powers (not just the odd ones) and the{g.} C FP, where gp,
function G’ n ., N -, FP, is multiplicative; thus, for n (: N with prime factorization

’. IIpe(z"<) z-(p)-1),

and a/n is an IVP. Computations (up to n 50) indicate that the polynomials {a.} arise

from (Z, (R)") with multiplication

(Z;,Z2,3:3,3:4, (Z1,Z2,3,Z4, .--)=

,I(= + x,x2 xx + =, =2z =x2 + x,x4 x= x2x x= + x4,

in the same way that the polynomiMs {gn arose from (Zoo, (R)). The corresponding homomor-

phism E"’(Zoo, @’) FP is given by

In this situation, the formulae (A) and (B) of Theorem 1 need to be modified so that 2 is

treated in the same way as the other primes. Thus the g.’s satisfy

(A’) x"= E #(x).

(The corresponding (B’) has the term (-1)t+l omitted from the equation in (b) of (B).) So, if

X’ 6_ FPoo is deEned by X’(n) z", then X’ G’ p and G’ X’ /.

APPENDIX. It is from the ’obvious’ isomorphism between (Zoo, (R)) and (Zoo, +) that we

get the sequence of polynomials

(Zoo, (R)); then

s s] (R) sl (2,1, 0, 0, 0, ...)= (2,
s s: (R) s: (R) s, (3, 3,1, 0, 0, 0, ...)= (3, (3,), (:),0,0,0, ), and

,: (o, (;), (), (:), o, o, o, ).
Aso, for , (0, :,0,0,0, ad

s= (O,n,O, I),O, (),0, ,0, (:),0, 0,0, ), and

,: (0, 0,,, 0, 0, (),0,0,/),0,0, ,0,0, (:), 0, 0, 0, ),
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etc. Since the groups are abelian, a homomorphism 0" (Z, +) (Zoo, (R)) is given by

(,o,o,o, + (o,, o, o, o, + (o,o,,o,o,o, +

s (R) s’ (R) " (R) (terms with first 3 entries 0)

(o, o, o, (o,o, o, o,

It is the ine of that v the dir uenee of los; a few tes of -*
(Z, @) (Z, +) ey to ccate by hd,

-’ (,,,,, (,,- ,)/, , +( ,)/3,

,, ( )/+,-( )/4 ( )/4, ).

The uce {Pn} c nemer in the ab; P P4 e derlin.

We retook that, Mthough ms obvious imosm in ts context, its Moe for

Witt vtor tion (w elds imosm of the ditive oup of Witt vtod

(Z, +)) is not the Witt vector map dd not yield Witt vector mtipHcation.

conclusion, we me

QUESTIONS. 1. We ha Pn gn/n for n 100; d ts equity hold for M1 n? (The

Mogous qution c for the g’s.) To ts end, R. Girgehnh sho for n

that the ccient of x in Pn is the se that in gn/n.

2. , we sct, question 1 h a itive swer, whyd the irpsm (Z, +)

(Z, @) eld su a stct quence of lynoMs?
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