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ABSTRACT. In this paper we generalize the notion of pure injectivity of modules by introducing what
we call a pure Baer injective module. Some properties and some characterization of such modules are
established. We also introduce two notions closely related to pure Baer injectivity; namely, the notions of
a -pure Baer injective module and that of SSBI-ring. A ring R is an SSBI-ring if and only if every
sémisimple R-module is pure Baer injective. To investigate such algebraic structures we had to define
what we call p-essential extension modules, pure relative complement submodules, left pure hereditary
rings and some other related notions. The basic properties of these concepts and their interrelationships
are explored, and are further related to the notions of pure split modules.
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0. INTRODUCTION

In this introduction we establish terminology and recall a summary of some basic definitions and
results in the literature necessary for subsequent sections of the paper.

Throughout R will denote a ring with identity. Unless otherwise stated, all modules will be unitary
left R-modules, and all homomorphisms will be R-homomorphisms.

A short exact sequence 0 = N - M — K — 0 of left R-modules is said to be pure if
L®pN — L ® gM is a monomorphism for every right R-module L. A submodule N of an R-module
M is called a pure submodule of M in case the natural homomorphism L ® RN — L ® p M is injective
for every right R-module L. Equivalently, N is pure in M if and only if for any finite system of

linear equations ) r,;z, =a,, 1 <i<m, where r,, € R and a, € N, if the system has a solution
=1

(s1y---,8n) € M™, it also has a solution (¢, ...,t,) € N".

A left R-module is regular if and only if every submodule of M is pure, and a submodule N of a flat
R-module M is pure if IN = IM N N for all right ideals I of R. For further results concerning this type
of purity see [1] and [2].

A left ideal I of a ring R is pure in R if and only if for every = € I there exists an y € I such that
z = zy Furthermore, a ring R is Von-Neumann regular if and only if each left (right) R-module is flat if
and only if every (principal) left (right) ideal is pure (see [3]).

A submodule N of an R-module M is called relatively divisible or briefly RD-submodule if
rN=NnNrM forallr € R. A commutative domain R is Priifer if and only if every finitely generated
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ideal is projective. For modules over a Priifer ring, purity and R D-purity coincide, flatness and torsion
freeness coincide (see [4]).

By K 9 M we shall understand that K is an essential submodule of M.

A ring R is called a left V-ring if and only if every simple left R-module is injective. Kaplansky
proved that a commutative ring R is a V'-ring if and only if it is regular [S].

A left R-module M is called pure injective if it is injective relative to every pure exact sequence of
R-modules Warfield [4] proved that any left R-module can be embedded as a pure submodule of a pure
injective R-module. It can also be proved that a pure injective R-module is a direct summand of every
R-module containing it as a pure submodule (see [6]).

For further related results we refer to [2], [3] and [4], together with the monographs [1], [6] and [7]

1. PURE BAER INJECTIVE MODULES

We now introduce the definition of a pure Baer injective module

DEFINITION 1.1. An R-module M is called a pure Baer injective module if for each pure left
ideal I of R, any R-homomorphism f : I — M can be extended to an R-homomorphism f : R — M.

If a ring R is free from non-zero one sided zero divisors then any R-module is necessarily pure Baer
injective. In fact R does not possess any non-zero proper pure one-sided ideal in this case. This means,
in particular, that any abelian group is a pure Baer injective Z-module.

We find it necessary to point out from the start that the notion of pure Baer injectivity is different
from that of pure injectivity; as an example consider the Z-module Z. However, it is evident that every
pure injective R-module is pure Baer injective. Furthermore, we note the easily deduced fact that any
pure Baer injective module over a Von-Neumann regular ring is injective.

The following result is essential in characterizing pure semisimplicity of rings, a notion to be
introduced in the sequel.

THEOREM 1.2 (Pure Baer Injectivity Test). For a left R-module the following are equivalent:

(1) M is pure Baer injective R-module;

(2) For every pure left ideal I of R and every R-homomorphism f : I — M, there exists an m € M
such that for all a € I, f(a) = am,;

(3)! For every pure exact sequence

0—-I—-R—-R/I—0

the sequence

M — Homg(I,M) — 0

is exact.

PROOF. Clear. O

PROPOSITION 1.3. The direct product IT, M, of R-modules is pure Baer injective if and only if
each M, is pure Baer injective.

PROOF. Clear. 0O

We recall that a module M over a ring R is called torsion-free if for no 0 # r € R, rz = 0 unless
0O=zeM.

The proof of the previous result shows that if @,M, is pure Baer injective, then so is each M,
However, we have:

PROPOSITION 1.4. A direct sum &®,M, of torsion-free R-modules is pure Baer injective if and
only if each M, is pure Baer injective.

PROOF. Let M, be pure Baer injective for each a and consider any R-homomorphism
f:I— ®.M,, I being a pure left ideal of R. Considering the canonical projection 7, on M, and

1 wish to thank my study supervisors for calling my attention to this result.
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applying the pure Baer injectivity test Lemma 1.2, one can find m, € M, for each a such that

7o f(x) = zm, for every z € I. Thus f(z) = 3 zm,. This means that zm, = 0 for all but a finite
finite

number of the indices. But since each M, is torsion-free, we conclude that m, = 0 for almost all «

This means that the element {m,} of Il M, is an element of & ,M,, proving that this direct sum is
pure Baer injective O

2. THE NOTIONS OF PURE HEREDITARY AND PURE SIMPLE
RINGS AND THEIR ROLE IN PURE BAER INJECTIVE MODULES

In this section we define and study two notions: the pure hereditary ring and the pure simple ring,
both of which appear to have a vital role in characterizing pure Baer modules.

DEFINITION 2.1. Aring R is called left pure hereditary if every pure left ideal of R is projective.

In what follows we shall prove that the class of pure Baer injective R-modules over a pure hereditary
ring, is homomorphically closed.

THEOREM 2.2. The following statements are pair-wise equivalent for a given ring R-

(1) R is left pure hereditary;

(2) The homomorphic image of a pure Baer injective R-module is pure Baer injective;

(3) The homomorphic image of an injective R-module is pure Baer injective;

(4) Any finite sum of injective submodules of an R-module is pure Baer injective.

PROOF. (1) = (2) Consider the following diagram

0 — I — R

fl

M2 kK o

of R-modules, where I is a pure left ideal of R, and M is pure Baer injective. Projectivity of I shows
that for some R-homomorphism ¢ :I — M, f = gp. Moreover there exists a homomorphism
?: R — M that extends . This shows that f = g is an extension of f; and so K is pure Baer
injective as required.

(2) = (3) Clear.

(3) = (1) Let I be a pure left ideal of R and M be a left R-module whose injective hull is E(M)
Consider the following diagram of R-homomorphisms

O—OI—ioR

fl

EM) L K — 0

recalling that K is pure Baer injective by assumption. So, there exists an R-homomorphism & : R — K
whose restriction on I is f. Again since R is projective, there exists an R-homomorphism
o : R — E(M) such that go = h; and so goi = f. This means that I is E(M)-projective Thus I is
M-projective (for the proof cf. [5, p. 180, prop 16.12]); and so I is projective
3) =(4)_Clear
(4) = (3) Let N be a submodule of an injective R-module E. To prove that E/N is pure Baer
injective we consider the submodule K = {(z,z):z € N} of Q = E® E and the two submodules
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M, ={(z,0)+K:z€ E} and Mo = {(0,y)+ K :y€ E} of Q/K. Now Q/K = M; + M, also,
MiNM; ={(z,0)+ K :z € N}. Forifz €N, then (z,0)+ K = (0, —z)+ K € M; N M,; on
the other hand the assumption that (z,0) + K = (0,y) + K where z,y € E means that z = —y € N
and therefore My N M, = {(z,0) + K : z € N} Define f: E — M, with f(z) = (,0) + K for all
z € E to obtain the isomorphisms E = M; and N M;NM,. Similarly E= M,  Thus
Q/K = M; + M, is pure Baer injective. This shows that for some R-module G, Q/K = M; &G and
G= (Q/K)/M; = M,/MiNM, =2 E/N. Now since G is pure Baer injective, E/N is pure Baer
injective as to be proved. 0O

If R is left self-injective, the pure Baer injectivity of each homomorphic image g R can be discussed
in view of the following.

PROPOSITION 2.3. Let R be a left self-injective ring. If R/J is pure Baer injective for each
essential left ideal J, then R/ is pure Baer injective for every left ideal I of R.

PROOF. Let I be a left ideal of R and let E(I) be its injective hull. Now, since E(I) is a
direct summand of R, there exists an idempotent e € E(I) such that E(I) = Re. Consider the R-
homomorphism f : R — re, with f(r) = re for each r € R. Since I a Re, f~'(I)a R. Therefore by
hypothesis R/f~1(I) is pure Baer injective. Define f : Re/I — R/f~Y(I) by f(re+1) =r + f~1(I)
This is a well-defined R-isomorphism; and so Re/I is pure Baer injective. We prove that the sum
B=R(l—-e)+Iisadirectsum. Ifz € R(1-e)NI,thenz =r —re=r'e for somer, r € R and
so z =0. Thus B/I = R(1 — e) showing the pure Baer injectivity of B/I. Furthermore we have
R/I =B/I® Re/I. To see this we notice that 7+ = (r(1—e) +I)+ (re+1I) for eachr € R
Also T=r(1-e)+I=3se+ I means that »r —re = (s +r')e for some ' € R which shows that
Z=0. Now R/I, being the direct sum of two pure Baer injective R-modules, should be pure Baer
injective. O

DEFINITION 2.4 [8]. A left R-module M is called pure-split if every pure submodule of M is a
direct summand. R is left pure-split if g R is pure-split.

It obviously follows that every left pure-split ring is left pure hereditary.

It is easily seen that every pure submodule of a pure-split module is pure-split, and the quotient of a
pure-split module by a pure submodule is again pure-split.

We thus extract the following simple result

THEOREM 2.5. For a given ring R the following statements are equivalent.

(1) Every direct sum of copies of R is pure-split;

(2) Every flat R-module is pure-split.

PROOF. (1) = (2) For any flat module M, there is a pure exact seql;ence

0-K—->F—-M-0

where F is free and so is a pure-split module; consequently both K and M are pure-split modules.
(2)=() Clear. O
THEOREM 2.6. The following statements are pair-wise equivalent for a given ring R
(1) R is left pure-split;
(2) Every left R-module is pure Baer injective;
(3) Every pure left ideal of R is pure Baer injective;
(4) Every pure left ideal of R is principal.
PROOF. (1) = (2) Let I be a pure left ideal of R and let f : I — M be an R-homomorphism.
Then R=1 & J for some left ideal J of R, so that there is an R-homomorphism R — M that extends f
(2) = (3) Obvious.
(3) = (1) Since every pure left ideal of R is pure Baer injective, each pure exact sequence
0—-I—-R—-R/I—-0



PURE BAER INJECTIVE MODULES 533

splits, showing that R is left pure-split.

(4) = (1) Let M be an R-module and let I = Rz be a pure left ideal of R. So, for some a € I,
z=za If f: Rz - M is a given R-homomorphism, the restriction on I of the R-homomorphism
f: R — M effected by f(1) = f(a) is f. Indeed f(rz) = f(rza) = f(rz) forallr € R.

(1) = (4) Obvious. O

REMARK 2.7. We know that g R is semisimple if and only if every R-module is semisimple. This
fact cannot be extended to pure-splitting. To see this we notice that Z is a pure-split Z-module
However Z can be embedded as a pure submodule in a pure injective Z-module J. But J cannot be
pure-split since otherwise Z will be a direct summand of J, contradicting the fact that Z is not pure
injective. O

However, the previous property is valid for certain types of rings. For example, a regular ring R is
pure-split if and only if it is semisimple. We can thus state the following proposition.

PROPOSITION 2.8. For a regular ring R, the following statements are equivalent:

(1) R is pure -split;

(2) Every module is semisimple;

(3) Every module is pure-split;

(4) Every (pure) exact sequence is split exact.

PROOF. Clear. 0O

We now recall the following definition; for analogous and related concept cf. [6, p. 48].

DEFINITION 2.9. An R-module M is called pure injective relative to the R-module N, or simply
N -pure injective, if in each diagram

0——oK—foN
gl
M

where the embedding f(K) is pure in N, there exists an R-homomorphism h : N — M such that
g=nhf.

The following theorem relates some of the previous notions.

THEOREM 2.10. For a left perfect ring R the following properties hold:

(1) Every flat R-module is pure-split,

(2) Every R-module is pure Baer injective, and

(3) Every R-module is pure injective relative to any flat R-module.

PROOF. (1) and (2) are both direct. To prove (3), let C be a left R-module and N be a pure
submodule of a flat R-module M. Then N is a direct summand of M, so that every homomorphism
N — C extends to a homomorphism M — C. 0O

DEFINITION 2.11 (see [9]). A non-zero R-module M is called pure simple if {0} and M are its
only pure submodules.

PROPOSITION 2.12. In a commutative ring R in which every ideal is the intersection of maximal
pure ideals, every epimorphism f : I — S whose domain is a pure ideal of R and codomain is a pure
simple R-module has an extension f : R — S.

PROOF. Let f: I — S be as given in the premise By assumption Ker f is the intersection of a
family {C, : j € J} of maximal pure idealsof R. If I C C, forall j € J, then Ker f = I and this means
that S = {0} contradicting that S is a pure simple R-module. Thus for some j € J we have I ¢ C,
Now R is commutative. So, I + C, is pure; and maximality of C, forces R=1I+C,. ButINC,is
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pure in R. So INC, is pure in I, and so I NC,/Ker f is a pure submodule of I/Kerf = S By
assumption either I N C,/Ker f = {0}, or I N C,/Ker f = I/Ker f. The latter assumption is impossible,
since otherwise I C C,. So, INC, = Ker f. Now the assignment 7 : R — S defined by f(r) = f(3)
where i € I that satisfies r = i 4 ¢ for some c € C, is a well-defined function that gives the required
homomorphism. O

COROLLARY 2.13. Let R be a commutative ring in which every ideal is the intersection of
maximal pure ideals. Then

(1) Every pure simple R-module is pure Baer injective,

(2) Every semisimple R-module is a direct sum of pure Baer injective R-modules.

PROOF. The proof follows from Proposition2 12. O

LEMMA 2.14. A finitely generated non-zero R-module M possesses a maximal pure submodule

PROOF. The set A ={K : K < M and K pure in M} is partially ordered by inclusion. The
union of a chain of A is clearly a member of A; and an appeal to Zorn's Lemma yields the result. O

THEOREM 2.15. Let M be an R-module M in which every cyclic submodule is pure-split, then
every non-zero submodule of M contains a pure simple submodule.

PROOF. Let {0} # K <M, if 0# z € K. Then by Lema 2.14 Rz contains a maximal pure
submodule, say, H. Thus Rz = H @ H'. This shows that H' is a non-zero pure simple submodule in
Rz and so is a non-zero pure simple submodule in K. O

It seems that an appropriate notion of an "intersection property" would play an important role in the
structure theory of rings. Thus within our context, we define

DEFINITION 2.16. An R-module M is said to have the pure intersection (resp. pure finite
intersection) property if and only if the intersection of any (resp. finite) family of pure submodules of M
is again pure.

It can be easily shown that any commutative ring possesses the pure finite intersection property, and
furthermore, a regular ring R possesses the pure intersection property to each R-module

PROPOSITION 2.17. Any torsion-free R-module M over a Prufer ring R has the pure
intersection property.

PROOF. It is known that over a Prifer ring purity and RD-purity are equivalent notions, see
[4, p. 706]. Thus the required result is immediate if we notice that the intersection of any family of RD-
submodules of a torsion-free module is again an RD-submodule, see [10, p. 39]. O

PROPOSITION 2.18. A torsion-free R-module M over a principal right ideal ring R has the pure
intersection property.

PROOF. Let {N, : j € J} be a family of pure submodules of M. In view of the torsion-freeness of
M, K = NN, is an RD-submodule, see [10, p. 39]. We prove first that K is an N -pure submodule.
To this end let I be a given right ideal of R. Now K is RD-pure and R is a principal right ideal ring
So, givenz € KNIM,wecanfinda € [ and m € M suchthatz =am € aK. Thus K NIM = IK,
showing that K is N -pure. Finally the flatness of M guarantees the purity of K. [J

3. THE SSBI-RING AND Z-PURE BAER INJECTIVE MODULE

In this section we introduce two related notions namely SSBI-ring and X-pure injective module
which prove to be useful to our investigations.

Byrd [11] calls a ring R an SSI-ring if every semisimple R-module is injective. In what follows we
generalize this concept.

DEFINITION 3.1. A ring R is called an SSBI-ring if every semisimple R-module is pure Baer
injective.

THEOREM 3.2. A ring which is both a V-ring and SSBI-ring satisfies the ascending chain
condition (A.C.C.) on pure left ideals.
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PROOF. Let Iy C I C ... C I, C ... be a strictly ascending chain of pure left ideals of R and for a
given I in the chain take a € I suchthata ¢ I;_;. Thefamily Ay = {L<R: Iy 1<K L<I;:a ¢ L}
is partially ordered by inclusion in which every chain has an upper bound. Let L, be a maximal member
of Ax. Thus, Ra + Li/Ly is simple and the given assumption yields I /Ly = Ra + Lx/Ly & N/L;
for some left ideal N of R. Now, since a ¢ N, the maximality of L, forces N = L;. This means that
Ic/Lg is simple. Hence I/Ly = I;/Ly @ Ni/Ly for some left ideal Ny and I = % I.. Now, if

T =z + Ly = Ty + 7 for some Ty € I /L; and 7 € Ni/Ly, the assignment 0 : I — @I, /Ly, with
o(x) = {Zx} is a well-defined R-homomorphism. For if z € I, then z € L, for some i and z € L,,, for
all 5. So, o(x) = {Zx} € ®k(Ix/Lk) since Z,., =0 and @, (Ix/Lk) is semisimple. By hypothesis
@ k(Ix/Ly) is therefore pure Baer injective and we should have the extension R-homomorphism
G:R— ®i(Ix/Ly) of o. Furthermore, since (1) € @ ,(I,/L,) for some n € Z*, we see
that 3(I) C @ ,(I,/L,). Suppose now that T =z + Iny, € Ini/Lny, and o(z) = (Zk), then
Zp4, =Z = 0. The argument shows that I,,., = L,,,, contradicting the fact L,,, € A,,,. This shows
that the above tower of pure left ideals is of finite length. [

DEFINITION 3.3. A left R-module M is called X-pure Baer injective if every direct sum of copies
of M is pure Baer injective.

As examples of X-pure Baer injective modules we mention torsion-free modules, modules over
integral domains or over left pure-split rings.

THEOREM 3.4. A ring R in which every injective module is X-pure Baer injective, satisfies the
ascending chain condition on pure left ideals.

PROOF. Let I; CI, C...C I, C ... be a chain of pure left ideals For each i let K, be the
injective hull of R/I, and let K = @ ,K,. For every 0 € Z*,ILLK, = K, &I, K,. If we set
M, =11, K,, then M, is injective By abuse of notation we have

Dacz+ M, = ( $a62+Ka) 5] ( Dacz+ HK:) .
1#a

By assumption @,M, is pure Baer injective. Thus K itself is pure Baer injective. Now the R-
homomorphism f: U;I, —» K, defined by f(z)={x+ I} extends to an R-homomorphism
F:R— K. Let n € Z* such that (1) € @ K;. Then f(U,L,) < ®2,K,. So,ifz € U,I, then
z € I, foralla > n, and so U,I, = I,,;; and the chain should terminate. [
PROPOSITION 3.5. A direct summand of a -pure Baer injective module is again X-pure Baer
injective. ’

PROOF. Immediate. [

THEOREM 3.6. R is left pure-split if and only if R is left pure hereditary and X-pure Baer
injective.

PROOF. <« Let I be a pure left ideal of R. Then I is projective and so a direct summand of a free
R-module F. But R is pure Baer injective. Thus both F' and I are pure Baer injective, yielding the left
pure-splitting of R. => The proof follows from Theorem2.6. [

4. P-ESSENTIAL SUBMODULES

In this section we introduce the notion of p-essential submodules with the aim of gaining further
insight about the structure of pure Baer injective modules. For example, Corollary 4.16 to follow
presents a criterion for a left R-module over a commutative ring R to be pure Baer injective, employing
this notion of p-essentiality. Also by using this notion, corollary 4 17 sharpens a result [5] of Kaplansky's
on V-rings.

DEFINITION 4.1. A submodule K of an R-module M is called p-essential in M, abbreviated by
K <a'M, in case for every pure submodule L of M, K N L = {0} implies that L = {0}. In this case
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M is called a p-essential extension of K. Also a monomorphism f : N — M is called a p-essential if
Imfa'M.

Given left R-modules M and N,PHgp(M,N) designates the set of R-homomorphisms
PHp(M,N)={h:h: M — N and Ker h pure in M}.

PROPOSITION 4.2. The following statements are equivalent for any submodule Kof an R-
module M

(1) Ka'M;

(2) For each R-module N and for each h € PHg(M,N)

(Kerh) N K = {0} implies that h is monomorphism

PROOF. (1) = (2) Holds by the definition of p-essential submodule.

(2) = (1) Since any pure submodule L of M is the kernel for some h € PHp(M, A) for some
R-module A, then L N K = {0} implies that L = {0} andso K a'M. 0O

COROLLARY 4.3. A monomorphism f : K — M is p-essential if and only if (any epimorphism)
h € PHp(M, — ) is monic whenever h f is monic

PROOF. Let0 —» K l» M be p-essential and h : M — N, where h € PHp(M,N). Thenif hf
is monic Kerh N Im f = {0}. So, Kerh = {0} and k is monic. Conversely, suppose that f : K — M
is a monomorphism satisfying the given condition and let L be a pure submodule of M with
LNIm f={0}. Then nf is obviously monic, 7 being the canonical map = : M — M/L. By
assumption 7 should be monic. This meansthat L = {0} and Imfa'M. O

The following result is analogous to a similar result concerning essential submodules of a module.

THEOREM 4.4. Let K < N < M be a tower of R-modules. Then:

(1) fK<a'Mthen Na'M.

(2) If Nispurein M and K a’'M,then K 9'Nand N<a'M.

(3) If M has pure finite intersection property and if N is pure in M, then K 4’'M if and only if
Ka'Nand Na'M.

PROOF. (1) and (2) are obvious.

(3) Let L be pure in M with LN K = {0}. By assumption L N N is pure in M. This means that
LN Nispurein N. Thus L NN = {0} and consequently L = {0}. Therefore K<'M 0O

COROLLARY 4.5. Let M be an R-module that has the pure finite intersection property. If H is
purein M, then HN K a’M if and only if H 9’ M and K q’M for any submodule K of M.

PROOF. = The proof follows from Theorem 4.4. < Suppose that H 9'M and K <’'M. Given
a pure submodule L of M with LN (HNK) = {0}, then LNH is pufe in M by hypothesis. Thus
LN H = {0} and consequently L = {0}. O

EXAMPLE 4.6. We give here an example of submodules A, B, A’ and B’ of a certain Z-module
M =Z @ Z/2Z with A< 'B and A’ a’ B’ whereas A + A’ is not p-essential in B + B’. The idea of this
counter example is lifted from example 1.2 from Goodearl's monograph [7]. Take A = A’ = Z(2,0),
the submodule generated by (2,0),B =Z(1,0) and B’ =Z(1,1I). Now ANZ(0,T) = {0}; see
Goodearl [7]. What is left now to prove our assertion is to prove that Z(0,1) is purein B + B’ To see
this suppose that n(m,0) + (k,k) = (0,T). This means that L is odd and m = — k. Again n is odd
This gives n(m,0) + (k,T) = n(0, I), showing that Z(0,T) ispurein B+ B’. O

A pure left ideal I of a ring R is a direct summand of R if I is pure Baer injective. Hence, we have
the following:

PROPOSITION 4.7. A ring R cannot have a proper pure left ideal I which is both p-essential and
pure Baer injective.

PROOF. Clear. 0O
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PROPOSITION 4.8. A pure injective module N does not have a proper p-essential extension M in
which N is pure.

PROOF. Clear. O

COROLLARY 4.9. Any R-module M cannot have a proper submodule which is both injective and
p-essential.

PROOF. Any injective submodule K of M is pure in M. But K is pure injective. So, if K is
p-essential in M, the previous proposition shows that K = M. 0O

DEFINITION 4.10. A submodule N of an R-module M is called a pure closed submodule of M if
M does not contain a proper p-essential extension of N. Obviously N < M is pure closed if and only if
N a’K < M implies that K = N.

PROPOSITION 4.11. Any direct summand of an R-module M is pure closed.

PROOF. Let M =A@ B. f Ad’K < M, then KNBispurein K But KNBNA={0}
This means that K N B = {0};andso K = A. O

COROLLARY 4.12. (1) Every pure injective R-module M is pure closed in any R-module that
contains M as a pure submodule.

(2) A pure left ideal of R which is pure Baer injective is pure closed in R.

PROOF. (1) Let M be embedded in N as a pure submodule. In this case M is a direct summand
of N; and so M should be pure closed in M

(2) Clear. 0O

DEFINITION 4.13. Let N and K be submodules of an R-module M with K purein M K is
called pure relative complements of N in M if K is maximal with the property K N N = {0}.

PROPOSITION 4.14. Every R-submodule of M has a pure relative complement in M.

PROOF. Let N be a given submodule of M and consider the set

A={K;K <M,K purein M and N N K = {0}}.

A is partially ordered by inclusion. Obviously any chain of A has an upper bound. Zorn's lemma then
guarantees that A has a maximal member, which means that N has a pure relative complementin M O

PROPOSITION 4.15. I and J are given ideals of a commutative ring R If J is pure relative
complements of I in R, then I @ J is p-essential in R.

PROOF. Let AN (I ®J) = {0} for some pure ideal Aof R ThenIN(A®J)= {0} Since R
is commutative, A @ J is pure in R. The maximality of J forces A = {0}. This means that I & J is
p-essentialin R. O

So we deduce that a commutative ring that has no proper p-essential ideals'is necessarily semisimple.

COROLLARY 4.16. R is a commutative ring. An R-module M is pure Baer injective if and only
if Homg (R, M) — Homg(J, M) is an epimorphism for every pure, p-essential ideal J of R.

PROOF. Consider a homomorphism f : I — M where [ is a pure ideal of R By Proposition 4.14
we can find a pure relative complement J of I in R. Then f extends to a homomorphism I & J — M,
and this extends to a homomorphism R — M by our assumption.

It is known [5] that if R is a right V-ring, then I? = I for any right ideal I of R. This yields the
celebrated result of Kaplansky stating that a commutative ring is a V-ring if and only if it is regular The
following result refines that of Kaplansky's.

COROLLARY 4.17. A commutative ring R is a V-ring if and only if I = I? for every p-essential
ideal I of R.

PROOF. Let J be an ideal of R. If J' is a pure relative complement of J in R, then J + J' is
p-essential. By assumption (J + J')> = J + J'. But since JNJ' = {0}, weget J +J' = J% + J?
This directly gives J = J?, showing that Risa V-ring. O
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