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ABSTRACT. We are concerned with the asymptotics of the spectral measure associated with a
self-adjoint operator. By using comparison techniques we shall show that the eigenfunctionals of
L, are close to the eigenfunctionals L, if and only if dI'; < dI'; as A — oo.
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1 INTRODUCTION

We would like to obtain a relation between the growth of the spectral measure of a self-adjoint
operator and the behaviour of its eigenfunctionals. In this study we shall assume that we have
two “close” self-adjoint operators acting in the same separable Hilbert space, H say. Without loss
of generality we can assume that both operators have simple spectra. To this end, let us denote
by ¢()) and y(A) the eigenfunctionals of L, and L, respectively. Recall that the spectrum of a
self-adjoint operator is defined by
VA€, 3 pn€ DLy / lleiall =1 and [|Lipin — Apuall =30
where i = 1,2. In case ) is in the continuous spectrum the sequence is not compact in the Hilbert
space H. For this we can assume the existence of a countably normed perfect space ®, such that
&~ H—
where the embeddings are compact, for further details see [1] and [2]. For the sake of simplicity
we shall assume that the embeddings are given by the identities and so
fed veH (f,¥)=<f,¥>exe -

Since the sequence ¢, is bounded in H, it is then compact in &', which implies

en o)) € @
and similarly for the operator L; Since both operators are acting in the same Hilbert space H,

we shall assume that the space ®' contains both systems of eigenfunctionals; i.e.,
{y(N)} c @' and {p(N)}C P
Recall that the system {y())} helps define an isometry for L,
Vi€ f— fA0)=<fy) >oxer
f= / FEy(\dTo(A)  where () € Linyo
Similarly for ()\);



476 A. BOUMENIR

v f €d f d .fl(’\) =< f’(p(’\) >oxe'
£ = [ FOINIr) where £(3) € Lir,g
These transforms define isometries, and Parseval equality yields

/ AW O ) = (f, ) = / POVERMLN).

where the nondecreasing functions I';(A) and I'z(\) are called the spectral measures associated
with L, and Lo, respectively. It is these functions that we would like to estimate as A — oo.
In all that follows y(A) ~ p(A) as A — oo means Vf € &,

1) < f20) as A— o0
and dI'y(}) ~ dl'2(A) as A — oo means that VF € Lip ) N Lir,

/ ” Pln)dly(n) = / " Fn)dTatm) s A— oo.
A A

In this work, we shall try to answer the following problem:
Statement of the Problem: under what conditions
y(A) ~ p()) as A > 00 & dI'i(A) ~ dle()) as A — oo.

In order to answer the above question, we shall compare the self-adjoint operators L, and Lo,

'see [3]. Recall that a shift operator or transmutation is defined by
y(A) =Ve(d) reoy
Clearly the definition of V' depends on 0; and 0, and we shall agree to set
y(A)=0if A€oy and p(A\) =0 if Agan
y()\) = V(p()\) A€o, Coy CR
Condition o2 C 0; insures that V0 = 0 and so defines an operator on the algebraic span of
{¢(AN)}. Thus it is clear that in order for V and V! to exist as linear operator it is necessary that
02Co; and o0, Cop
O = 0.

It is readily seen that {¢(A)} form a complete set in the reflexive space (perfect) ®', and so the

space generated by {¢o(\)} is dense in ®’. Consequently V is densely defined. This in turns allows
us to define the adjoint operator V' : & — .

2 MAIN RESULTS
We shall agree to say I';()) is Abs-dI'; if there exists g(n) € L}ﬂf:‘ such that

() = /0 o(m)dT2(n) + T1(0)

This fact shall be denoted by
N =2y e Ly
9N =1, Tz

In this case the condition dI';(A) ~ dI'z()) in the statement of the problem can be restated as
g(A) <1 as X — o0. Recall that due to reflexivity of the space ®, the operator V' is defined in
® and since & — H, V' is actually defined in H. Let us denote this extension to the space H by
V. Since we are interested in the case where y()\) ~ () we can expect V to be bounded. In
this regard we have the following result:
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Theorem 1: If the extension V : H — H, is a bounded operator then
I'1(X) is dT2-ABS continuous.
Proof: It is clear that for f € Dy

< f[,Vp(A) >oxer
<V'f,0()) >exer

< f’y(’\) >oxe!

In other words
POV =VF 0. (1)

Equation 2.1 obviously holds for f € H. Indeed let f, € Dy C H such that f, A f € H
Given that V is a bounded operator in H, we obviously have Vf, — Vf. Using the fact that
vn, f2A) =V f,. (X) and the isometries are bounded operators we have f2 — f2? and v/, f,.
‘:/-}1. Therefore .

PN=VF() feH. (22)
From which we deduce that Vf € H

/ VF VT dra)

V5, V')

Vg2

I

c / | P PdT(N)  VfeH

/ PPN ()

IA

IN

Thus each dI'; negligible set is a dI'; negligible set. Henceforth I'; (A) to be dI'2())-Abs continuous.
The above inequality is exactly a sufficient condition for the Radon-Nikodym theorem to hold, see

(4.

In all that follows we shall assume that dI';(A) is dT'; — Abs continuous which is denoted by

9\ = dFl

ar,

We now need to define a function of an operator, namely g(Lz) for the next result:
o 2 g
f — ataf = [ dNFONAr().

Theorem 2: Assume that V' admits closure in &' and I'; is Abs-dI'z()\) then

vy € Dy C ® <\/ dls (L2)> (\/ dls (Lz)) v=VVy% ind.

Proof: From equation 2.1 and the fact that the embeddings are defined by identities, we deduce
that Vf,’l[} € DVI C [0}

Il

/ POV () / V77 dry () (2.3)
(V'f, V') (2.4)
<V'f,V' >exer

< f,T/_V"(ﬁ Soxd’ -

1
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However the left handside of equation 2.3 can rewritten as
[POPR = [ ORI
[ Va0 et

— 2T — 2
/ VoS Vallayw dTa(N)
(Va(L2)f, Va(La)¥)
< VL) VT >oxer -

Observe that if we set f = 9 in equations 2.4 and 2.5 then we would obtain

IVg(La)f1l = IVl

from which we deduce that Dy, C D Noo) C @, from we obtain

VY € Dy 9(L2) Va(La)¥ = VV'.

Il

(2.5)

(2.6)

@.7)

Remark: Observe that both operators 1/g(Lz) \/g(Lz) and VV"’ are mappings from ® — &' .

It is easy to see that if we restrict equation 2.7 to
fe€Dyuny={f€®/ NN € Li,}
then it reduces to
dr —
Vf € Dy' N Dyryy #(L,) =g(L)=VV' in &
2

The next result describes the domain of V.

Theorem 3: V is densely defined if and only if L3y ) N L2, is dense in L2 ).

Proof: From equation 2.2 it is readily seen that
feDy e fA(N e Lzrl(x) n leﬂ"z(.\)
Then use the fact that f — f2 is an isometry between H and Lﬁr;(,\)'

This work is based on the following result.
Theorem 4: Assume that

e V admits closure in @’

e I'; is Abs- dT'2()\)

71

o V ~ exists

e V:® — & is a bounded operator
then
gNe(A) —y(N) = (V' =1)y(}) in @
Proof: Notice that conditions of Theorem 2 hold and so it follows that

Va(l2) VeIz) =VV' in & .

2.8)

(2.9)

By the above condition we have that \/g(Lg)I\/g(Lg)f € ® if fe Dy C ®. However since it is

assumed that V' exists, then equation 2.8 yields

v (\/g(Lg))I\/g(Lz) =V in &

(2.10)

In order to proceed further we need to extend the operator V' to ®'. For this observe that since
V :® — & is a bounded operator, V' = V' is a bounded operator in ®’. Hence V' is defined for

all elements in 9', and in particular for y(A), thus
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V(L) VaTay(d) = V().
We now need to compute \/g(Lg)' 9(L2)y(A). Let f € Dy: C ® then
!
< [ivV9(L2) Vg(L2)y(A) >exer = < Vg(La2)f, V9(L2)y(A) >axer
= <V9(L2) V9(L2)f,y(A) >axa
= Va)VeM ()
= g
= <f,g(Ny(}) >
where we have used the fact that / g(Lg)I\/ 9(L2)f =VV'f € &. Hence
V9(L2) Vg(L2)y(A) = g(Ny(}) in @' dlza.e.
where g(\) = %;-(/\) is a real function. Hence we have
IN7 Y(N) = V'y().
Since by definition we have V'~ 'y(A) = p()) we obtain
9NN —y(A) = (V' -1)y()) in @'
We easily deduce the following result:
* Corollary 1: Let conditions of Theorem 4 hold then

INe(N) — () T 0 & (V' = 1)y(3) 20
Corollary 2: Let conditions of Theorem 4 hold and (V' — 1)y(}) 2,0 A — oo then

g(A)~1 as A > o0 %go(,\)—y(,\)—&o as A — oo.
Proof: By hypothesis and Corollary 1 we have Vf € ®
g/ ) = f7(N) =0 as A—oo.
Thus if g(A) — 1 then f}(A) — f2(A) — 0 which means that p()) — y(A) == 0 as A — oo.
Conversely f1(\) — f2(X) — 0 together with y()) — g(A\)p(}) 250 implies that
g ) - ) -0

ie. g(A) = 1as A — oo.

Corollary 2 suggests to write V = 1+ K. In this case Theorem 2 would read

gV —y(A) 20 & K'y(\) 250 as A —o0.
The question we would like to answer now is under what condition would
Ky 250 as A — oo.

First we need to observe that the above convergence holds in ®'. Indeed by construction the
function y(\) is in @’ and so the operator K’ originally was defined in & must be extended to &'.
This is easily achieved if the operator K, i.e. V, is bounded in ® — ®.

Theorem 5: Let

e V :d — ® be a bounded operator.
e K =V —1, be such that LK His densely defined in &

then
K'y(\) 250 as A—oo.
Proof: Recall that for each A, there exists a bounded sequence ¢, » € Dy, such that
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@nx € Dy, [l onall =1, and || Lagny = Apnp [— 0
The last condition can be written as
Apnx = Lagny +€(n, A)
where €(n,A) — 0 in H as n — oo. This allows us to obtain the following limit
<[ KYA) Sexer = < Kf,y(d) >oxer
= lm < Kf,onx >exer

n—00
1 ..
= 3 lim (Agnp, Kf)
n-—0o0

1
= X '}i_l.lalo(Lﬁpn,'\ + G(TL, )‘)i Kf)

1. 1.
= 3 Jim (Lapnx, Kf) + 5 lim (e(n, A), K f)
1 1
= 3 Jm (Pnn, LK) + 5 lim (e(n, A), K )
n—oo A n—oo

1 1.

5 1ena llll L2KS | +5 lim [l(e(n, MK A

So as A — oo we shall obtain < f, K'y()\) >¢x¢'— 0. This last limit means that
K'y()) 2,0 as A— oo

IA

Recall that in order for the conclusion to hold we need L, K to be at least densely defined in .
Remark: The condition V : & — ® bounded can be replaced by densely defined. This forces

us to use Baire’s Theorem to obtain the density of ® N Dy N D,k in ®.

Theorem 6: Let the conditions of Theorem 2 hold, and

e V:d— @ be a bounded operator

e (g(Lz) = 1)7'K be a bounded operator in ®
then
(@) -1y(\) 50 = Ky >0 as A— oo
Proof:
< [, K'y(\) >oxer < Kf,y(A) >exer
= k7’0
= () - DN - VKT -
= () = D{(e(Laf = DKS )
= (9(N) = 1) <(g(L2) = DK f),y(A) >exs
= <(9(L2) = D)TKS), (9(N) = 1)y(A) >exer
Since the [g(A) — 1]y(}) 2, 0 we obtain < fiK'y()) >exer— 0 Vf € ® and so K'y(A) —
0 as A — oo.

Corollary 3: Assume that conditions of Theorem 4, hold and
e y(A\) are bounded functionals for large A

e (g(L2) — 1)"' K be a bounded operator in ®
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then
g(/\)—lﬂfo = yA)—pA) 50 as A—oo

Proof: It suffices to see that (g(X) — 1)y(A) =, 0, and since Theorem 6, is applicable
K'y(A) =0 as X —o0.
From Theorem 4, we deduce that
gNe(A) —y(3) 2 0.

It remains to see that since g(A) <1as A — 00 = p(}) 2, y(A) as A — oo.

3 EXAMPLES

Below we shall consider two simple examples to illustrate the above results.
Let L; and L, be two self-adjoint differential operators in L?[0, c0) defined by

{ Lf=-f'@+aa)f@) _ [Lf=-f@)
nf(0) - f/(0) =0 nf(0) - f(0) =0.
where |n| < co. Let the eigenfunctionals associated with L; and L, be defined by

0

Lip(z, A) = p(z, ) and Lay(z, A) = My(z,A)
‘P(01 A) =1, V’I(Oa A)=n y(0, ’\) =1, y,(03 A)=n

where y(z, A) = cos(VAz) + n22 \{\X: . It is clear that

e(z, ) = y(z,)) + Ax ﬂll(\/_%_t)l

By the Riemman-Lebesgue theorem we have

q(t)p(t, Mdt.

o(z,A) —y(z,A) — 0 as A — oo.

It is also known that the following representation holds

(2, 2) = 3, \) + / " K(z, ty(t, V.

Then formally -
V- ya ) = [ Kt Nt

Therefore if (V' — 1)y(z, ) 2, 0 then

ary() _ 1 v
d\ T wA4n?
Remark: It is known that if ¢'(z) € L"'°[0, 00) then for each fixed z Ky (z,t) € L}*[0, 00) and
hence Lo K is densely defined. Therefore Theorem 5 is applicable.

as A — oo

The next example deals with the generalized Sturm Liouville operator. Let

Lf=-ggf @+e@)f@ [ Li=3/6
f'(0)=0. f'(0)=0.

where w(z) < 2% as £ — 0 and a > 0. In this case the operator L, corresponds to a string whose

length and mass are infinite, and is known to be self-adjoint in the space LZ.4,, see [5, p. 151]

and [9).
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We shall see that the behaviour of w(z) — 0 dictates the behaviour of the spectral function
at infinity. Although this result is known, see [6], we shall provide a different treatment as it is
stated in [7]. For simplicity let the eigenfunctionals associated with Liand L;be defined by

Lip(z, A) = Mp(z, A) and Lay(z, ) = My(z, A)
e(0,2) =1, ¢'(0,A) =0 y(0,2) =1, ¥'(0,A) = 0.
It is clear that .
pla ) = v(a N+ [ Rla.t Na(oyptt, Vi

where R(z,t, ) is the Greens’ function and it is shown, by the semi-classical approximation, see
[8], that R(z,t,A) —> 0 as A — oo. Therefore we have that ¢(z, ) = y(z,A) — 0 as A — oc.
The solution y(z, A) are known explicitly,

Yz, = ﬁAJ.y((%)z‘?).

where v = ﬁ and A = {%g}?h——r(ll_").

Therefore provided (V' — 1)y(z, A) -2, 0,we shall have
I1(A) <xTe(A) as A —oo.

where, see [3], [2(}) = A5 for A > 0.
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