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,ABSTRACT. There is a formula (Gelfand’s formula) to find the spectral radius of a linear operator

defined on a Banach space. That formula does not apply even in normed spaces which are not complete.
In this paper we show a formula to find the spectral radius of any linear and compact operator T defined

on a complete topological vector space, locally convex. We also show an easy way to find a non-trivial

T-invariant closed subspace in terms ofMinkowski functional.
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1. INTRODUCTION
In all that follows E stands for a linear space of infinite dimension over the field C of the complex

numbers. E[t] will denote a complete topological vector space, locally convex, with topology and

T:E -- E will be a linear map. Finally, v(t) will be the filter of all balanced, convex and closed t-

neighborhoods ofzero (in E).
DEFINITION 1. The linear operator T E[t] E[t] is said to be a bounded (compact) operator,

if there is a neighborhood U E v(t) such that T(U) is a bounded (relatively compact) set

REMARK 2. It is easy to show that any compact operator is a bounded operator and any bounded

operator is continuous.

DEFINITION 3. For a topological vector space X[O] and a linear operator S :X[0] X[O] we

define the resolvent ofS as

po(S) { C[I- S: X[O] - X[O] is bijective and
has a continuous inverse}.

The spectrum ofS is defined by ao(S) C\pt(S) (the set theoretic complement) and the spectral radius

DEFINITION 4. A net {x}2 C E[t] is said to be t-ultimately bounded (t-ub) if given any

V v(t) there is a positive real number r and an index a0 J, both depending on V, such that

x E rV V a >_ ao. Let us denote by F the set of all t-ub nets in E[t].
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REMARK 5. Any bounded net is a t-ub net. For more details about t-ub nets we refer the reader

to DeVito [2]
From now on T :E[t] --} E[t] will denote a compact operator and U E v(t) will be the zero-

neighborhood such that T(U) is a t-relatively compact set. Pv will stand for the Minkowski functional

generated by U (see Coflar ]), which is a seminorm on E. Let us denote by E[Ptr] the linear space E
with the topology given by the seminorm

DEFINITION 6 (r’-convergence). Let E C, with : 0 We will say that T - 0

(T T o T o o T n times) if given both V v(t) and {xo). F there exist a0 J and no N
such that T (x,) E VVa E a0 and Vn > no.

7 0}.
REMARK $. It is shown by Vera [7] that for a bounded operator T,
(a) 7t (T) < oo, and for any C such that 7 (T) < ][, T" _r.k 0

co) srt(T) < 7t(T), where 8rt(T) is the spectral radius of T.

(c) If E[t] is a Banach space then 7t (T) srt (T)
The main theorem (Theorem 28) in this paper states that for a compact linear operator on any

complete topological vector space, locally convex; we have srt (T) 7t (T), even when the topology t is

not given by a norm. In fact, Remark 8 (c) will be used to prove our result.

2. MAIN RESULTS
Now, we will state a well known theorem about compact operators

THEOREM 9 (see Nikol’skij [5]). The spectrum of a compact operator T on an infinite-

dimensional linear topological space E consists of zero and no more than a countable set of eigenvalues

different from zero. The unique accumulation point ofthis set, if it is infinite, is zero.

REMARK 10. The topology on E given by the seminorm Ptr is coarser than the topology

( _< ).
PROPOSITION 11. T E[Pu] E[Pu] is a compact operator.

PROOF. Since T(U) is t-relatively compact and Pu <_ , T(U) is also Pu-relatively compact.

l}t’mrnoN 12. -r -ire Ill T 0 Hrw, the meaning of T 0 is given by

Definition 6 where the topology Ptr is used instead of

It is easy to show that Fev-convergence means that given any net {zo}j C E such that for all

a J, Pv(zo)5 r for some r R+ (these kinds of nets are said to be Ptr-bounded nets), then

Pt( T"zo) --}0 as a net in R whose set ofindices is N x J.

PROPOSITION 13 "-/(T) 7(T).
PROOF. Let C be such that 7(T) < [[, let V E v() and {zo)j F be given Since

T(U) c V DeVito [2] shows! T(U) is a bounded set, there is a positive real number

that {zo) F = {rl:o).r F. This implies that there exist both c0 J and r > 0 such that

rlZo r2UVc > co. This means that Ptr(rzo) A r2, hence the net {zo)>,0 is a Ptr-bounded net.

Therefore, 31 J, a _> c0 and n N such that Pv(_ T(zo)) < 1Va _> c,n > n, that is,
1 T(zo) U for those indices. Hence

1 T+I

This implies T 0. Then (T) _< [[ and 0’ (T) <_ (T)
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On the other hand, set 7t(T) < [[ and let {xo}j be a Pv-bounded net, that is, xo E rU for all o

and some r > 0. Then { Txo}j C T(U) which is a t-bounded set. Therefore, { Txo}j EF
Hence, because of T" - 0, given > 0 there exists a0 J, no N such that

1T+I

that is, Pu(,-zr 7+lxa)
\

<e for those indices. From here Txo is Pv-convergent to 0, therefore,

(T) ICI. Ts implies that 7t(T) 7Pv(T).
DE--ION 14 N {x E IPv(x) 0}.

15. Since U is a bc, convex d closed set, for y re 0 S r < 1,

{x E lPv(x) r} C U. Then N C U. Since is not ven by a no it follows om a Theorem of
Kolmogoroff (Theorem 1.39 in Rudin [6]) that {0} N. On the other hd, ifT 0 then N E.

The follong theorem is a generition of a theorem ofLomonosov [4] about non-tfi invt

subspas.
OM 16. N is a clo lin mbspace ofE d T(x) 0 for l x N. In picd, N

is a T-vt mbspa.
PROOF. The st seon follows om the fact that Pu(x + y) I[Pu(x)+ Pu(y). For

the second cl 1 us te xN, then mxN for 1 re=l,2,..., hence,

{mT(x)}=.2.3... C T(N) C T(U). Sin e laer is bonded, ven V (t) ere is a positive

r number r such that {roT(x)} C rV T(x) V C V when m > r, since V is bi
neiborhood of zero, then T(x) O.

DE--ION 17. L E/N be the quotiem line space d let Pvbe defined by

?(z +) Pv(z).
Deflation 14 tes us that v is well defined. It is to show that v is a no in E/N We 11

denote by (E/N)[v] the veor space E/N thetopolo ven by the no.
DEW.ION 18. " E/N E/N be defined by (x + N) T(x) + N.

By Theorem 16 T is a well defin map.
PROPOSON 19. " (E/N)[u] (E/N)[v] is a mpact operator.

PROOF. U/N is open set in (E/N)[v] d (U/N) (T(U) + N)/N C (T(U) + N)/N
the lauer t is v-compa becau the coc projion om E[Pv] onto (E/N)[v] is a

continuous map.
20. ByRk 2, a mpa opator is nfinuous, hence T is comuous.

PROmSIOS 2 () (T).
PROOF. The prooffollows eatelyom the deflation of Pv.
PROSON 22. C{0} is eigenvue ofT ifd oy if it is eigenvue ofT.

PROOF. L 0 C be eigenvue of T. Henceereests x+NcN such

that (x+N)=(x+N)T(x)+N=(x)+Nx-T(x)ENyN such that

(I- T)(x) y. By Theorem 16 T(y) 0, hence T(x y) T(x) (x y) where x y 0

because z N. Therefore is eigenvue ofT.
The other contention is tfi.

DEON 23. (E/N)[Pv] 11 denote the completion (as noed space) of (E/N)[Pu] d
11 dote the namr eension of to (E/N) [Pv]

24. (E/N)[Pv] is a Bach space (see Cotl [1]) Besides, since T is a compact

operator, ’(E/N)[Pv] (E/N)[Pv] is a compa operator (s sg [3]). The espect

a (detion 3) is defibed in Theorem 9.

EOM25. C{0} is eigenvue of ifd oy if it is eigenvue of.
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PROOF. Let q E/N, q 0 be such that (q) q Let (z, -b !V} C E/IV be such that it
converges to q Hence {z, + N) is a Prj-bounded set and therefore, because is a compact operator,
"(z, + At)) has a convergent subsequence. Without loss of generality let us suppose that
(z. + N) ---, z + N E/N, then q (q) z + N which implies that q (z + N) E/N,
hence is an eigenvalue of

The proofofthe second part ofthis theorem is trivial since
PROPOSITION 26.

PROOF. From Theorem 9, Proposition 22 and Theorem 25 we get

(T)\{0} a, ()\{0} r()\{0}

and from these equalities the proposition follows.
LU,7. (9) < %()

The Immna follows from the definitions of-7v (’) and "7u () and the fact that is the restriction of" to

E/N.
OI. (T) (T).
PROOF. By Remark 8).,. it suffices to show that r(T! -> "7 (T). Also by Remark 8(c)-() s(9) (2 )

because (E/N)[Pr] is a Banach space. From Proposition 13 and Proposition 21 we obtain

-(T) -() (2.2)

from Lemma 27 and Equation (2. I) it follows that

(9) < ,() (2.)

from Equation (2.2), Equation (2.3) and Proposition 26 we finally get

,(T) > -(T).
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