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ABSTRACT. There is a formula (Gelfand's formula) to find the spectral radius of a linear operator
defined on a Banach space. That formula does not apply even in normed spaces which are not complete.
In this paper we show a formula to find the spectral radius of any linear and compact operator T defined
on a complete topological vector space, locally convex. We also show an easy way to find a non-trivial
T-invariant closed subspace in terms of Minkowski functional.
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1. INTRODUCTION

In all that follows E stands for a linear space of infinite dimension over the field C of the complex
numbers. E[t] will denote a complete topological vector space, locally convex, with topology t and
T :E — E will be a linear map. Finally, u(t) will be the filter of all balanced, convex and closed t-
neighborhoods of zero (in E). ‘

DEFINITION 1. The linear operator T : E[t] — E[t] is said to be a bounded (compact) operator,
if there is a neighborhood U € v(t) such that T'(U) is a bounded (relatively compact) set

REMARK 2. It is easy to show that any compact operator is a bounded operator and any bounded
operator is continuous.

DEFINITION 3. For a topological vector space X|[6] and a linear operator S : X[6] — X[6] we
define the resolvent of S as

pe(S) = {€ € C|¢T — S : X[6) — X[0] is bijective and
has a continuous inverse}.

The spectrum of S is defined by 4(5) = C\p;(S) (the set theoretic complement) and the spectral radius
is s7¢(S) = sup{|A| | X € 04(S)}.

DEFINITION 4. A net {z,}; C E[t] is said to be t-ultimately bounded (¢-ub) if given any
V € u(t) there is a positive real number r and an index ag € J, both depending on V, such that
Zo, €TV V a > ap. Let us denote by I the set of all t-ub nets in E[t].
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REMARK 5. Any bounded net is a t-ub net. For more details about t-ub nets we refer the reader
to DeVito [2]

From now on T : E[t] — E[t] will denote a compact operator and U € v(t) will be the zero-
neighborhood such that T'(U) is a t-relatively compact set. Py will stand for the Minkowski functional
generated by U (see Cotlar [1]), which is a seminorm on E. Let us denote by E[Py] the linear space E
with the topology given by the seminorm Py .

DEFINITION 6 (I';-convergence). Let £ € C, with £ #0 We will say that 6'17 ™ LIS 0
(T"=ToTo..oT n times) if given both V € v(t) and {z,}; €T there exist ag € J and ng € N
such that E—‘,,T"(z,,) eVVa>apandVn > ng.

DEFINITION 7 ~(T) = inf {|¢] | & T" = 0}.

REMARK 8. It is shown by Vera [7] that for a bounded operator T,

(@ %(T) < co, and for any £ € C such that % (T) < [¢], & T™ = 0

() sr(T) < v(T), where sr,(T) is the spectral radius of T".

(c) If E[t] is a Banach space then v, (T") = sry(T)

The main theorem (Theorem 28) in this paper states that for a compact linear operator on any
complete topological vector space, locally convex; we have sr;(T') = ,(T'), even when the topology ¢ is
not given by a norm. In fact, Remark 8 (c) will be used to prove our result.

2. MAIN RESULTS

Now, we will state a well known theorem about compact operators

THEOREM 9 (see Nikol'skij [S]). The spectrum of a compact operator T on an infinite-
dimensional linear topological space E consists of zero and no more than a countable set of eigenvalues
different from zero. The unique accumulation point of this set, if it is infinite, is zero.

REMARK 10. The topology on E given by the seminorm Py is coarser than the topology
t (Py<t).

PROPOSITION 11. T : E[Py] — E[Py] is a compact operator.

PROOF. Since T'(U) is t-relatively compact and Py < t, T'(U) is also Py-relatively compact.

DEFINITION 12. v, = inf{|§| | fl,rr—‘»”o}‘ Here, the meaning of & T™ =% 0 is given by
Definition 6 where the topology Py is used instead of ¢.

It is easy to show that I'g,-convergence means that given any net {z,}; C E such that for all
a € J, Py(z,) <t for some r € R* (these kinds of nets are said to be Py-bounded nets), then
PU(éT"za) — 0 as a net in R whose set of indicesis N x J.

PROPOSITION 13 ~p, (T) = (T).

PROOF. Let ¢ € C be such that yp,(T) < [£], let V € v(t) and {z,}, €T be given Since
% T(U) is a bounded set, there is a positive real number r; such that r}—€ T({U) Cc V DeVito [2] shows

that {z,}; €T = {rizo}; €T. This implies that there exist both ap € J and 7 > 0 such that
T1Z4 € ToUVa > ag. This means that Py(r1z,) < 1, hence the net {z,},,,, is 2 Py-bounded net.
Therefore, 3a; € J, a; > ap and n; € N such that PU(% T"(:r:a)) <1Va > ay, n > ng, that is,
# T"(za) € U for those indices. Hence

1 1,1 1
§n—+1T"+ Ty = 7T§T<—§T”‘rlz,,) € T—IZT(U) cVVa>a;,n>n;.

This implies & T" = 0. Then %.(T) < |¢| and v, (T) < %(T)
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On the other hand, set v (T) < |¢| and let {z,}; be a Py-bounded net, that is, z, € rU for all o

and some r > 0. Then { % Tz, }J C £ T(U) which is a ¢-bounded set. Therefore, {% T:ca}J er

Henoe,becauseof%T" 2»0,givene>0theree)dstsao€.f,no € N such that

5%?“%: Eln—T"(%T:c,,) €eUVa>ag,n>ng,

that is, Py (5-;1,,—, T"“a:a) < € for those indices. From here é Tz, is Py-convergent to 0, therefore,
7R, (T) < [€]. This implies that 7,(T) < ~p, (T).

DEFINITION 14 N = {z € E| Py(z) = 0}.

REMARK 15. Since U is a balanced, convex and closed set, for any real 0 <r <1,
{z€ E|Py(z) <r} CU. Then N C U. Sincet is not given by a norm, it follows from a Theorem of
Kolmogoroff (Theorem 1.39 in Rudin [6]) that {0} # N. On the other hand, if T" # O then N # E.

The following theorem is a generalization of a theorem of Lomonosov [4] about non-trivial invariant
subspaces.

THEOREM 16. N is a closed linear subspace of E and T'(z) = 0 for all z € N. In particular, N
is a T-invariant subspace.

PROOF. The first assertion follows from the fact that Py(éz +y) < |¢|Py(z) + Py(y). For
the second claim let us take z€ N, then mze N for all m=1,2,.., hence,
{mT(2)},,2103. CT(N) CT(U). Since the latter set is bounded, given V' € 9(¢) there is a positive
real number 7 such that {mT(z)} CrV = T(z) € LV C V when m > r, since V is an arbitrary
neighborhood of zero, then T'(z) = 0.

DEFINITION 17. Let E/N be the quotient linear space and let Pybe defined by
Pu(z + N) = Py(z).

Definition 14 tells us that Py is well defined. It is easy to show that Pyisanomin E /N We will
denote by (E/N)[Py] the vector space E/N with the topology given by the norm Py .

DEFINITION 18. Let T : E/N — E/N be defined by T'(z + N) = T(z) + N.

By Theorem 16 T is a well defined map.

PROPOSITION 19. T : (E/N)[Py] — (E/N)[Py) is a compact operator.

PROOF. U/N is an open set in (E/N)[Py] and T'(U/N) = (T(U) + N)/N c (T(U) + N)/N
the latter set is Py-compact because the canonical projection from E[Py] onto (E/N)[Py) is a
continuous map.

REMARK 20. By Remark 2, a compact operator is continuous, hence 7 is continuous.

PROPOSITION 21 v, (T) = vg,(T).

PROOF. The proof follows immediately from the definition of }A’U‘

PROPOSITION 22. ¢ € C\{0} is an eigenvalue of T if and only if it is an eigenvalue of 7"

PROOF. Let £#0 in C be an eigenvalue of T.  Hence there exists z+ N # N such
tht T(z+N)=¢@x+N)=>T(@x)+N=(z)+N=>¢ -T(z)e N=>3ye N such that
(¢I — T)(z) = &y. By Theorem 16 T(y) =0, hence T(z — y) = T(z) = é(z —y) where z —y # 0
because z ¢ N. Therefore £ is an eigenvalue of T'.

The other contention is ’t\n;vial.fv N

DEFINITION 23. (E/N)[Py] will denote ﬂr]:/ completion (as normed space) of (E/N)[Py] and
T will denote the natural extension of 7' to (E?JN )[Py] .

REMARK 24. (Ef/VN ) [%] is a Banach space (see Cotlar [1]) Besides, since 7" is a compact
operator, T : (E?JN ) [r};(.;] — (E?JN ) [rI;UJ] is a compact operator (see Kreyszig [3]). The espectrum
o, (see definition 3) is described in Theorem 9.

THEOREM 25. ¢ € C\{0} is an eigenvalue of 7" if and only if it is an eigenvalue of 7"
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PROOF. Let g€ E?JN, q#0 bi\such that T(g) = &q Let {2, + N} C E/N be such that it
converges to ¢ Hence {2, + N} is a Py-bounded set and therefore, because 7" is a compact operator,
iT(z., + N )} has a convergent subsequence. ~Without loss of generality let us suppose that
T(z2.+ N)— z+ N € E/N, then g =T(q) = 2+ N which implies that ¢ = $(z+N)€ E/N,

hence £ is an eigenvalue of 7.
The proof of the second part of this theorem is trivial since T is a restriction of T
PROPOSITION 26. s7(T) = sr (T) = o7 ().
PROOF. From Theorem 9, Proposition 22 and Theorem 25 we get
a(T\{0} = oo (D\{0} = o, (T)\{0}
and from these equalities the proposition follows.
LEMMA 27. 7, (T) < D)
The lemma follows from the definitions of Y5 (f”) and v % (T') and the fact that T" is the restriction of 7' to
E/N.
THEOREM 28. ~,(T) = sr(T).
PROOF. By Remark 8(b), it suffices to show that sr,(T) > ~,(T). Also by Remark 8(c)

Ty, T) = 57, (T) @n

~ .~
because (E/N )[Py] is a Banach space. From Proposition 13 and Proposition 21 we obtain

(1) =75 @) 22

from Lemma 27 and Equation (2.1) it follows that
7 (T) S o7 (T) (2.3)

from Equation (2.2), Equation (2.3) and Proposition 26 we finally get
sr¢(T) 2 %(T).
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