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ABSTRACT. The purpose of this paper is to study the second fundamental form of some submanifolds
M in Euclidean spaces E" which have flat normal connection. As such, Theorem gives precise
expressions for the (essentially 2) Weingarten maps of all 4-dimensional Emstem submanifolds in E6,
which are specialized in Corollary 2 to the Rcciflat submanifolds. The main part ofthis paper deals with
fiat submanifolds. In 1919, E. Caftan proved that every flat submanifold" of dimension < 3 in a
Euclidean space is totally cylindrical. Moreover, he asserted without proof the existence of flat non-
totally cylindrical submanifolds of dimension > 3 in Euclidean spaces We will comment on this
assertion, and in this respect will prove, in Theorem 3, that every flat submanifold M" with flat normal
connection in lg is totally cylindrical (for all possible dimensions n and rn).
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1. INTRODUCTION.
This paper deals first of all with the second fundamental form of an Einstein submanifold of

codimension 2.
A Riemannian manifold is Einstein if its Ricci tensor field is proportional (with a constant coefficient

of proportionality) to the Riemannian metric. We recall that every space of constant sectional curvature
is Einstein

The converse statement is true also in 2 and 3 dimensions, as shown by J.A Schouten and D.J
Struik in 1921

FACT A (see lSl or [51 or [1]). If a Riemannian manifold M of dimension n (n _< 3) is Einstein,
then it is a space of constant curvature.

T.Y. Thomas in 1936 and A. Fialkow in 1938 classified the Einstein hypersurfaces of the real space
forms In particular, we have

FACT B (see [9] or [6] or [10] and [1]). Let M be a hypersufface immersed in En+l, where
n _> 3. IfM is Einstein, then:

(B. 1) the Riemannian scalar curvature, say 8, ofM is constant and non-negative,
(B.2) if 8 0, then M is locally Euclidean;
(B.3) if 8 > 0, then every point ofM is umbilical and M is locally a hypersphere S’.
Theorem of this paper determines all possible expressions of the second fundamental form of all

Einstein 2-codimensional submanifolds with flat normal connection in E6, and in Corollary 2 we specify
these expressions for all Ricci flat 2-codimensional submanifolds with flat normal connection in E. The
proofs of these two results use the flatness ofthe normal connection and are based on the following well-
known characterization of4-dimensional Einstein spaces by I.M. Singer and T.A. Thorpe.
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FACT C (see [9] or [1]). Let M be a Riemannian 4-manifold. Then M is Einstein if and only if,
for every m E M, for any 2-plane P at n, the sectional curvature ofP is equal to the sectional curvature
ofthe 2-plane P+/- perpendicular to P at n.

The method of the proof of Theorem inspires us to establish in Theorem 3 a relation between
flatness and cylindricity. The importance ofthis relation will be justified in Fact D.
2. STATEMENTS OF THE MAIN RESULTS.

THEOREM 1. Let M be a 4-manifold isometrically immersed with flat normal connection in E.
Then M is Einstein if and only iffor each point m E M:

(1.1) either M is cylindrical at m;
(1.2) or M is umbilical (non-geodesic) with respect to a normal direction N1 at m and cylindrical in

another normal direction N2 perpendicular to N1 at m;
(1.3) or with respect to a suitable onhonormal tangent frame of M at m and an orthonormal

normal frame {N1, N2} at , the Weingarten operators AN1, AN, admit respectively one among the
following matricial representations:

ANt=
0 b 0 0 0 0 0 0
0 0 0 0 AN,= 0 0 c 0
0 0 0 0 0 0 0 d

(1.3.1)

where ab cd;
a 0 0 0 10 a 0 0AN 0 0 --a 0
0 0 0 --a

(1.3.2)

where a is a non-zero real number, and N2 is cylindrical;

(1.3.3)

where 4- 1, a, b, p, q are real numbers such that ab 0 and pq e(a b2);

0 - 0 0 0 p 0 0
(1.3.4)Av, 0 0 0 Av,= 0 0 q 0

a 0 00’u0 0 0

where a, b, c, d, p, q, u are real numbers such that a - 0, and

pq=d- , pu=c- ,
qu b- , and (b- cd bd (d- > o.

With respect to case 1.3.1 ofTheorem 1, we give in particular the following
EXAMPLE AND REMARK 1. Let Ml(c) and M2(c) be two surfaces of constant Gauss

curvature c in the Euclidean 3-space lg3. Then
(1) the Riemannian product M4 M] (c) x M2(c) canonically isometrically immersed in lg is an

Einstein 2-dimensional submanifold with flat normal connection. It is not a space of constant curvature
and moreover it is not Ricci fiat, unless c 0.

(2) In particular, for c < 0, for instance M](c) and M2(c) both being a pseudo-sphere in E of
the same pseudo-radius c, the Riemannian product manifold M is an Einstein submanifold with flat
normal connection in E6 which has strictly negative scalar curvature. Thus, in contrast to the fact that for
1-codimensional Einstein submanifolds in Euclidean spaces the scalar curvature s R+, there exists 2-
codtmensional Einstein submanifolds with any given real number as scalar curvature.
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COROLLARY 2. Let M be a 4-dimensional manifold isometrically immersed with flat normal
connection in lg.

Then M is Ricci flat if and only iffor each m E M;
(2.1) either M is flat (hence cylindrical) at m;
(2.2) or with respect to a suitable orthonormal tangent frame at rn and an orthonormal normal

frame {Na, N2) at m, the Weingarten operators AN ,AN admit respectively one of the following
matricial representations:

0 - 0 0 0 p 0 0
(2.21)AN,= 0 0 - 0 AN= 0 0 q 0

0 0 0 a 0 0 0 0

where pq a > 0.

0 g 0 0 0 p 0 0
(2.2.2)A..,v. 0 0 0 A.., 0 0 q 0

0 0 0 . 0 0 0 u

where a

and++a o,(a- ).(- )>o.). (b-
TIIEOREM 3. Let M be a n-dimensional manifold isometrically immersed with flat normal

cbnnection in E +N.
Then M" is flat if and only if it is cylindrical.

3. DEFINITIONS [3].
We consider a manifold M isometrically immersed with codimension N in the Euclidean space

]n+N.
3.1. Let be a normal vector.field on M.
We shall say that M is quasi-umbilical in the direction if the Weingarten tensor A of admits an

eigenvalue A with multiplidty n I or n.
In particular:
(i) if
(ii) if
3.2. M is (totally) cylindrical [resp. quasi-umbilical] if, locally around each point, there exists an

orthonormal normal frame field composed with cylindrical [resp. quasi-umbilical] directions.
Now we prove our results.

4.1 PROOF OF THE THEOREM 1.
Let M be a 4-manifold isometrically immersed in the Euclidean 6-space
Suppose that M is Einstein. Then by Fact C, for any m E M and any 2-plane P in T,M, its

sectional curvature is the same as the sectional curvature of its orthogonal 2-plane px in T,,M.
To exploit this statement, we suppose moreover that the normal eormeetion of M in E is fiat.

Then, at each point m M, there exists an orthonormal tangent frame {el(m), ,e4(m)} which
diagonalizes simultaneously all W.eingarten tensors of M (at m). We denote by cq(m) the sectional
curvature ofthe 2-plane {e,(m),ej(m)} for 1 < < j < 4. Then M is Einsteinian if and only if for each
mM.

cgt(m) C34(m
ca(,) c4(r-) (*)
c4(,) ().

Now we fix the point m in M. Either M is geodesic at m: then the problem is solved. Or M is
non-geodesic at m; we can assume that a,(el(m),ea(m)) 0 where cr, is the second fundamemal

o.,(e(,,,)x(,)) and denote N2 the unit normal vector perpendicular toform at m. We can put N1 o,.(e (m),e (m))ll
N. By our choice of the tangent frame {e(m),.-. ,e(m)}, the Weingarten tensors Av,Av:
relative to N1, N respectively can be represented by the matrices:

Au 0 Ag. 0 0 0 = 0 0
0 .0 Az 0 A= 0 0 #3 0
0 0 0 A4 0 0 0 p4
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Hence the previous system (*) is equivalent to the following one:
i2 b (1)

c (2)
AA4 d (3)

(**)A3A +3 b (4)
A=A + ## c (5)
A=A3 += d (6),

where b c2 c34,c c13 c24,d c14 c23.
To resolve ts system of 6 equations th 7 unos, let us first compute A1 Using the equations

(1), (2), (3) d the equity b + c + d s (where s is the constt scg cuature ofM) we find that
A1 is a lution ofthe equation:

z 4 < H, N > z + s 0 (***)
where x is uo md H is the m cuature vector at m. Such m equation adts a solution
A] a since:

4 < H,N] > s (A1 + A2 + Az + A4) A(A= + A + A) 0.
To detene the uos A2, A3, A4, p2,,, we discuss on the index of nomulliW r(m) ofM

at m, i.e., the r of the emm amre operator at m. Bause of the system (*),
() e {0, 2, 4, }.

CASE l: =(m) O. Then M is flat (hence cci flat) at m. By the system (**), M is
cyfinddc at m.

CASE 2: (m) 2. Then we obtn the situation (l.3.1).
CASE 3: (m) 4. It is to chk that ts is impossible.
CASE 4: =(m) 6. From a simple discussion on ther ofAN, we deduce either (1.2) or

(1.3.2) or (1.3.3), or (1.3.4). Ts proves the Theorem
4.2..

In acrdmce th ch ofthe possibilities om Theorem md Coroll 2, we cm ngmct loc
pettion of submfolds of codimeion 2 in Eo th flat no come,ion wch e, at a
pil poim, Einge or pmicul cci flat.
5. ONTSOLDS.

5.1. A flat mold is in picul Einein. In 1919 [2], Erie Cm studi the second
ndemfo offlat submolds ofa Eucfidem space.

FACT D. ([2]). .1) Eve n-mension flat mbmfold;d ofE"+N th n 3 is
linddc. Moreover: .2) E. Cm ted thout proof, that the
ason.l) fls ifn 4.

With respe= to .2), we consider the case ofdimension n 4.
sume h: E x E4 EN is a flat bilincpmd consider the mension of the vor

space [Imh] generated by e age of h. We may suppose thout loss of generity that
N dim[Imh]. Sin the mension of the space of secbfos on E is equ to 10,
we cm re oselves to 0 N 10. Using tecques for the proof ofFa .l), it is sy to
demonstrate tt, if N 6 {7, 8, 9,10}, we cm reduce N so that N 6 {0,1, 2, 3, 4, 5, 6}. In the se
par where E.Cprov Fa.1), he showed so that for the ce N 6 {0,1, 2, 3, 4} the flatness
impliese cyfinddci. Consequemly, the oyuoces e: "N 5" md "N 6". In 1986 [7],

exple of a 4-mbmold in EI wch is, at a picul poim, flat thout being finddc is
constm. However, a ll justifition ofFact .2) is =ill lacing for the moment; in other words the
method of resolution of the so-cl Gauss equation of a flat submfold in a Eucfidem space is still
uo in mension n d in codimension N th N n + 1, even for the case of dimension n 4.
One first resolution for such a problem is ven in Theorem 3 for the picul ce of flat no
come=ion.

5.2. PROOF OFEOM 3. For ts puose, we apply the follong Fact Ed Lena (*)
wch we at md prove below:

FACT E (s [7] and [2]). Let v be a veor space, let w be mother veor space, dowed th a
scproduct <-,. >.

Suppose :v x vw is a bifin setdc map, flat th respect to < -,- > (i.e.,
< (x, y), (z, w) > < (x, w), (y, z) > for y x, y, z, w in v. sume moreover that the
onhogo projtion of on a subspace W ofw is lindfi.

Then the onhogo projon of on the onhogon supplement subspace Wl of W in w is
flat too.
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LEMMA (*). Let a: E x E EN be a flat bilinear symmetric map satisfying the following
property (F): "There exists an’orthonormal frame B {el,..., e,} in E" which diagonalizes
simultaneously all projections < a, > ofa in any direction E Ev’’.

Then a is cylindrical.
PROOF. We shall prove this lemma by induction on N, and suppose c is not geodesic. The lemma

is tree for N 1.
Consider the case N 2. Let {1, :} be an orthonormal frame in Ig. The property (F) implies

that each component < a, > can be represented in the frame B by the matrix

0
<, > ,

0 ".

The sectional curvature of each 2-plane generated by {e, e} is given by

We may suppose that a(el, el) :fi 0 and f2 is collinear to a(el, el). By this manner: A 0 and A2 0.
Since a is flat, the are both null. This implies:

A, 0 for 2 _< _< n.
Hence a is flat and < a, f2 > is cylindrical. By Fact E, < a, f > if flat too. Since < a, f > is a
(flat) bilinear symmetric form, it is well-known that it is cylindrical. Hence the lemma is proved for
N=2.

Now suppose Lemma (*) is tree for a certain integer k and any dimension N with N <_ k. Let us
prove that it then is also true for N k + 1. By our hypothesis, a: Ig x ]g ]g+1 if flat and enjoys
the property (F). When we reason as for the case N 2, we easily find that < a,+1 > is cylindrical.
We apply Fact E again and deduce that the projection a on the hypersufface ]g ofEk+l perpendicular to

+1 is flat too, a: E x E lg.
Our hypothesis of induction obviously asserts that a is cylindrical too. Hence a:

is cylindrical. This completes the proof ofLemma (*). I-I
6. OPEN PROBLEMS.

For the moment, the following questions related to this paper remain still without answer.
PROBLEM 1. How to classify all Einstein 4-manifolds, and in particular all Ricci flat 4-manifolds?

(see [1 ]).
PROBLEM 2. Resolve the Gauss equation of a flat submanifold M of codimension 5 or 6 in the

Euclidean space i.e., find all bilinear symmetric map a" 4 4 _, Ev (for N 5 or 6) satisfying the
equality < a(z, y), (z, w) > < a(z, z), a(, w) > 0 for any z, , z, w in 4 (consider only the
case when the kernel Ker of is trivial!).

ACKNOWLEDGEMENT. The second author would like to thank Professor Abdus Salam, the
International Atomic Energy Agency and the UNESCO for hospitality at the ]International Centre for
Theoretical Physics, Trieste, where most of the work on this article was done. The paper was finished
when the second author was a Doctoral Research Fellow at the Katholieke Universiteit Leuven.

1. BESSE, A.L., Einstein Manifolds, Ergebnisse der Mathematik and ihrer Grenzgebiete, Springer-
Verlag, Berlin.

4E, Sur les vari6tds de courbure constate d’un espace euclidien ou non euclidien, Bull.2. CARTAN,
,(Soc. Math. 1919), 25-160.

3. CHEN, B.Y., Geometry ofSubmanifolds, M. Dekkar, New York, 1973
4. FIALKOW, A., Hypersurfaces ofa space ofconstant curvature, Ann. ofMath. 39 (1938), 762-785.
5. KOBAYASHI, S. & NOMIZU, K., Foundations of Differential Geometry, Wiley, Interseience 1,

1963.
6. KOBAYASHI, S. & NOM/ZU, K., Foundations of Differential Geometry, Wiley, Interscience 2,

1969.
7. MORVAN, J.M. & ZAFI RATAFA, G.K., Conformally fiat submanifolds, Ann. Fac. Sci.

Toulouse, VIH.3 (1986-87), 331-347.
8. SCHOUTEN, J.A. & STRUIK, D.J., On some properties of general manifolds relating to Einstein’s

theory ofgravitation, Amer. J. Math. 43 (1921), 213-216.
9. SINGER, I.M. & THORPE, J.A., The curvature of 4-dimensional Einstein spaces in global analysis,

Papers in Honour ofK. Kodaira, Princeton University Press, Princeton (1969), 355-36-5.
10. THOMAS, T.Y., On closed spaces of constant mean curvature, Amer. J. Math. 55 (1936), 702-704.


