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ABSTRACT. The purpose of this paper is to study the second fundamental form of some submanifolds
M" in Euclidean spaces E™ which have flat normal connection. As such, Theorem 1 gives precise
expressions for the (essentially 2) Weingarten maps of all 4-dimensional Einstein submanifolds in ES,
which are specialized in Corollary 2 to the Ricci flat submanifolds. The main part of this paper deals with
flat submanifolds. In 1919, E. Cartan proved that every flat submanifold of dimension <3 in a
Euclidean space is totally cylindrical. Moreover, he asserted without proof the existence of flat non-
totally cylindrical submanifolds of dimension > 3 in Euclidean spaces We will comment on this
assertion, and in this respect will prove, in Theorem 3, that every flat submanifold M™ with flat normal
connection in E™ is totally cylindrical (for all possible dimensions n and m).
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1. INTRODUCTION.

This paper deals first of all with the second fundamental form of an Einstein submanifold of
codimension 2. ‘

A Riemannian manifold is Einstein if its Ricci tensor field is proportional (with a constant coefficient
of proportionality) to the Riemannian metric. We recall that every space of constant sectional curvature
is Einstein

The converse statement is true also in 2 and 3 dimensions, as shown by J.LA Schouten and D.J
Struik in 1921

FACT A (see [8] or [5] or [1]). If a Riemannian manifold M of dimension n (n < 3) is Einstein,
then it is a space of constant curvature.

T.Y. Thomas in 1936 and A. Fialkow in 1938 classified the Einstein hypersurfaces of the real space
forms In particular, we have

FACT B (see [9] or [6] or [10] and [1]). Let M™ be a hypersurface immersed in E"*!, where
n > 3. If M™ is Einstein, then:

(B.1) the Riemannian scalar curvature, say s, of M is constant and non-negative,

(B.2) if s = 0, then M is locally Euclidean,

(B.3) if s > 0, then every point of M is umbilical and M is locally a hypersphere S™.

Theorem 1 of this paper determines all possible expressions of the second fundamental form of all
Einstein 2-codimensional submanifolds with flat normal connection in E®, and in Corollary 2 we specify
these expressions for all Ricci flat 2-codimensional submanifolds with flat normal connection in ES. The
proofs of these two results use the flatness of the normal connection and are based on the following well-
known characterization of 4-dimensional Einstein spaces by .M. Singer and T.A. Thorpe.
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FACT C (see [9] or [1]). Let M be a Riemannian 4-manifold. Then M is Einstein if and only if,
for every m € M, for any 2-plane P at m, the sectional curvature of P is equal to the sectional curvature
of the 2-plane P perpendicular to P at m.

The method of the proof of Theorem 1 inspires us to establish in Theorem 3 a relation between
flatness and cylindricity. The importance of this relation will be justified in Fact D.

2. STATEMENTS OF THE MAIN RESULTS.

THEOREM 1. Let M be a 4-manifold isometrically immersed with flat normal connection in ES.
Then M is Einstein if and only if for each point m € M:

(1.1) either M is cylindrical at m;

(1.2) or M is umbilical (non-geodesic) with respect to a normal direction N; at m and cylindrical in
another normal direction N perpendicular to N, at m;

(1.3) or with respect to a suitable orthonormal tangent frame of M at m and an orthonormal
normal frame {Nj, N2} at m, the Weingarten operators Ay,, Ay, admit respectively one among the
following matricial representations:

a 0 00 00 00
0b 00 0 00O
Av=lo 000 “4™=|o0o0 c o (131
0000 00 0 d
where ab = cd;
a 0 O 0
0 a O 0
Ap, = 00 -a o | (13.2)
00 O —-a
where a is a non-zero real number, and N; is cylindrical,
a 0 0 O 0 000
0t oo _|opo0o0
AN, = 0 0 G‘Z‘ ol Ay, = 00 g0 (13.3)
00 0 O 0000
where e = +1,a,b,p, g are real numbers such that ab # 0 and pg = €(a® — %; ;
a 0 0 O 00000
0 200 0p 0O
Ay, = 00 ﬁ ol An, = 00 ¢ O (13.4)
000 ¢ 000w

where a, b, ¢, d, p, g, u are real numbers such that a # 0, and

pq:d_%cfr pu=c_%r

qu=b-h ad (b~ ) (c~§) (4~ %) >0

With respect to case 1.3.1 of Theorem 1, we give in particular the following

EXAMPLE AND REMARK 1. Let M;(c) and M;(c) be two surfaces of constant Gauss
curvature c in the Euclidean 3-space E3. Then

(1) the Riemannian product M* = M;(c) x Ma(c) canonically isometrically immersed in ES is an
Einstein 2-dimensional submanifold with flat normal connection. It is not a space of constant curvature
and moreover it is not Ricci flat, unless ¢ = 0.

(2) In particular, for ¢ < 0, for instance M;(c) and M(c) both being a pseudo-sphere in E3 of
the same pseudo-radius c, the Riemannian product manifold M* is an Einstein submanifold with flat
normal connection in E® which has strictly negative scalar curvature. Thus, in contrast to the fact that for
1-codimensional Einstein submanifolds in Euclidean spaces the scalar curvature s € R*, there exists 2-
codimensional Einstein submanifolds with any given real number as scalar curvature.
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COROLLARY 2. Let M be a 4-dimensional manifold isometrically immersed with flat normal
connection in ES.

Then M is Ricci flat if and only if for each m € M;

(2.1) either M is flat (hence cylindrical) at m;,

(2.2) or with respect to a suitable orthonormal tangent frame at m and an orthonormal normal
frame {N;, Np} at m, the Weingarten operators Ay,, Ay, admit respectively one of the following
matricial representations:

a 0 0 0 0000
0 -2 0 0 o p 00

Am=lo o -z 0| “m=|00 40 @21
0 0 0 a 0000

where pg = 3 a% > 0.

a 0 0 O 000 O
0 200 0p 00

AM=10 0t 0| “4m=|g0 ¢ 0 222)
000 g 00 0 u

wherea;éo,pq=d—%,pu:c—ﬁ—‘},qu:b—f;?

andb+c+d=0,(d—%)-(c—%)-(>—%)>0.

THEOREM 3. Let M™ be a n-dimensional manifold isometrically immersed with flat normal
connection in E"*+V.

Then M™ is flat if and only if it is cylindrical.

3. DEFINITIONS [3].
NWe consider a manifold M isometrically immersed with codimension N in the Euclidean space
EN,

3.1. Let £ be a normal vector field on M.

We shall say that M is quasi-umbilical in the direction £ if the Weingarten tensor A¢ of £ admits an
eigenvalue A, with multiplicity n — 1 or n.

In particular:

(i) if \¢ = 0, we say that M is cylindrical in the direction &,

(ii) if A¢ has multiplicity n, we say that M is umbilical in the normal direction .

3.2. M is (totally) cylindrical [resp. quasi-umbilical] if, locally around each point, there exists an
orthonormal normal frame field composed with cylindrical [resp. quasi-umbilical] directions.

Now we prove our results.

4.1 PROOF OF THE THEOREM 1.

Let M be a 4-manifold isometrically immersed in the Euclidean 6-space ES.

Suppose that M is Einstein. Then by Fact C, for any m € M and any 2-plane P in T, M, its
sectional curvature is the same as the sectional curvature of its orthogonal 2-plane P! in T, M.

To exploit this statement, we suppose moreover that the normal connection of M in E° is flat.
Then, at each point m € M, there exists an orthonormal tangent frame {e;(m), - - -,e4(m)} which
diagonalizes simultaneously all Weingarten tensors of M (at m). We denote by c,;(m) the sectional
curvature of the 2-plane {e,(m),ej(m)} for 1 < i < j < 4. Then M is Einsteinian if and only if for each

meM.
c12(m) = c34(m)
c13(m) = c4(m) *)
c14(m) = cpa(m).

Now we fix the point m in M. Either M is geodesic at m: then the problem is solved. Or M is
non-geodesic at m; we can assume that o,,(e;(m), e;(m)) # 0 where o, is the second fundamental
form at m. We can put N} = ﬁﬁ%ﬁ and denote NNy the unit normal vector perpendicular to
Ni. By our choice of the tangent frame {e;(m), - - -,e4(m)}, the Weingarten tensors Ay, Ap,
relative to N7, N, respectively can be represented by the matrices:

M O O O 0 0 0 O
10 x 0 o |0 uw 0 o
Am =19 .0 A3 O] Am=9 0 ps 0
0 0 0 Aq 0 0 0 177
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Hence the previous system (*) is equivalent to the following one:

A =b (1)
M =c (2)

Mhd=d (3) .
XAy +pusps=b (4)

g + papy = ¢ (5)
A3 +pouz =d (6),
where b = C1g =C34,C=C13 = C24,d = C14 = C23.

To resolve this system of 6 equations with 7 unknowns, let us first compute A; Using the equations
(1), (2), (3) and the equality b +c +d = 413 (where s is the constant scalar curvature of M) we find that
A1 is a solution of the equation:

:c2—4<H,N1>x+4ls=0 (***)
where z is unknown and H is the mean curvature vector at m. Such an equation admits a solution
A1 = a since:

4<H N >2-3s=A1+d+X+X)2 = A(A2 + A3+ 2 0.

To determine the unknowns Ag, Az, Ag, pa, 43, K4, We discuss on the index of nonnullity w(m) of M
at m, i.e., the rank of the Riemannian curvature operator R at m. Because of the system (*),
wm(m) € {0,2,4,6}.

CASE 1: w(m) = 0. Then M is flat (hence Ricci flat) at m. By the system (**), M is

cylindrical at m.

CASE 2: n(m) = 2. Then we obtain the situation (1.3.1).

CASE 3: w(m) = 4. Itis easy to check that this is impossible.

CASE 4: 7(m) = 6. From a simple discussion on the rank of Ay,, we deduce either (1.2) or

(1.3.2) or (1.3.3), or (1.3.4). This proves the Theorem 1
4.2. REMARK.

In accordance with each of the possibilities from Theorem 1 and Corollary 2, we can construct local
parametrization of submanifolds of codimension 2 in E® with flat normal connection which are, at a
particular point, Einstein or in particular Ricci flat.
5. ON FLAT SUBMANIFOLDS.

5.1. A flat manifold is in particular Einstein. In 1919 [2], Elie Cartan studied the second
fundamental form of flat submanifolds of a Euclidean space.

FACT D. ([2]). (D.1) Every n-dimensional flat submanifold;d of E**" withn < 3is

cylindrical. Moreover: (D.2) E. Cartan stated without proof, that the
assertion (D.1) fails if n > 4.

With respect to (D.2), we consider the case of dimension n = 4.

Assume h:E* x E* — EV is a flat bilinear symmetric map and consider the dimension of the vector
space [Imh] generated by the image of h. We may suppose without loss of generality that
N = dim[Imh]. Since the dimension of the space of all symmetric bilinear forms on E* is equal to 10,
we can restrict ourselves to 0 < N < 10. Using techniques as for the proof of Fact (D.1), it is easy to
demonstrate that, if N € {7,8,9,10}, we can reduce N so that N € {0,1,2,3,4,5,6}. In the same
paper where E. Cartan proved Fact (D.1), he showed also that for the case N € {0, 1,2, 3,4} the flatness
implies the cylindricity. Consequently, the only unknown cases are: “/N = 5" and “N = 6". In 1986 [7],
an example of a 4-submanifold in E!° which is, at a particular point, flat without being cylindrical is
constructed. However, a full justification of Fact (D.2) is still lacking for the moment; in other words the
method of resolution of the so-called Gauss equation of a flat submanifold in a Euclidean space is still
unknown in dimension n and in codimension N with N > n + 1, even for the case of dimension n = 4.
One first resolution for such a problem is given in Theorem 3 for the particular case of flat normal
connection.

5.2. PROOF OF THEOREM 3. For this purpose, we apply the following Fact E and Lemma (*)
which we state and prove below:

FACT E (see [7] and [2]). Let v be a vector space. let w be another vector space, endowed with a
scalar product < -, - >. .

Suppose ¢:v x v — w is a bilinear symmetric map, flat with respect to < -, - > (ie,

< ¢(z,y), p(z,w) > = < ¢(z,w),P(y,z) > for any z,y,z,w in v. Assume moreover that the
orthogonal projection of ¢ on a subspace W of w is cylindrical.

Then the orthogonal projection of ¢ on the orthogonal supplementary subspace W+ of W in w is
flat too.

Y
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LEMMA (*). Let o:E" x E* — E" be a flat bilinear symmetric map satisfying the following

property (F): “There exists an’orthonormal frame B = {e;, - - -,e,} in E" which diagonalizes
simultaneously all projections < 0,£ > of o in any direction ¢ € EV".
Then o is cylindrical.

PROOF. We shall prove this lemma by induction on N, and suppose ¢ is not geodesic. The lemma
istrue for N = 1.

Consider the case N = 2. Let {¢!,£?} be an orthonormal frame in E?. The property (F) implies
that each component < ¢,£* > can be represented in the frame B by the matrix

AT
0
<o, > = Ag
0
Aq
The sectional curvature c,, of each 2-plane generated by {e,, ¢,} is given by
n
G = LA
a=1

We may suppose that o(e;, e1) # 0 and £ is collinear to o(e;, e;). By this manner: Al = 0and A2 # 0.
Since o is flat, the c,, are both null. This implies:

M =0fr2<i<n.
Hence o is flat and < 0,¢% > is cylindrical. By Fact E, < o,¢! > ifflat too. Since < 0,£! > isa
(flat) bilinear symmetric form, it is well-known that it is cylindrical. Hence the lemma is proved for
N=2.

" Now suppose Lemma (*) is true for a certain integer k and any dimension N with N < k. Let us
prove that it then is also true for N = k + 1. By our hypothesis, : E* x E* — E*+! if flat and enjoys
the property (F). When we reason as for the case N = 2, we easily find that < o,&*+! > is cylindrical.
We apply Fact E again and deduce that the projection o on the hypersurface EF of E**! perpendicular to
£5+1 is flat too, o: E" x E* — EF.

Our hypothesis of induction obviously asserts that o is cylindrical too. Hence o:E" x E* — E*+!
is cylindrical. This completes the proof of Lemma (*). O
6. OPEN PROBLEMS.

For the moment, the following questions related to this paper remain still without answer.

PROBLEM 1. How to classify all Einstein 4-manifolds, and in particular all Ricci flat 4-manifolds?
(see [1]).

PROBLEM 2. Resolve the Gauss equation of a flat submanifold M4 of codimension 5 or 6 in the
Euclidean space; i.e., find all bilinear symmetric map o: E* x E* — EV (for N = 5 or 6) satisfying the
equality: < o(z,y),0(2,w) > ~— < o(z,2),0(y,w) > =0 for any z,y, 2, w in E* (consider only the
case when the kernel Ker o of o is trivial!).
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