HAMILTONIAN-CONNECTED GRAPHS AND THEIR STRONG CLOSURES

PAK-KEN WONG
Department of Mathematics and Computer Science
Seton Hall University
South Orange, NJ 07079

(Received September 15, 1993 and in revised form November 2, 1993)

Abstract

Let G be a simple graph of order at least three. We show that G is Hamiltonianconnected if and only if its strong closure is Hamiltonian-connected. We also give an efficient algorithm to compute the strong closure of G.

KEY WORDS AND PHRASES. Hamiltonian-connected graph, strong closure, degree sequence. 1991 AMS SUBJECT CLASSIFICATION CODE(S). 05C45, 05C99.

1. INTRODUCTION.

Let $G=(V, E)$ be a simple graph, $n=|V|(\geq 3)$ and $m=|E| . G$ is called Hamiltonianconnected if every two vertices of G are connected by a Hamiltonian path. If G is Hamiltonianconnected and $n \geq 4$, then $m \geq \frac{1}{2}(3 n+1)$ (see [2], p. 61).

In this paper, we define the strong closure $s c(G)$ of a simple graph G. We also show that G is Hamiltonian-connected if and only if its strong closure $\operatorname{sc}(G)$ is Hamiltonian-connected (Theorem 2.3). It follows immediately that if $s c(G)$ is a complete graph, then G is Hamiltonianconnected (Corollary 2.4). As in the case of Hamiltonian graphs, there is no characterization of Hamiltonian-connected graphs. If we compute the strong closure of G and find it is complete, then G is Hamiltonian-connected. As another application, a result of O. Ore also follows from Corollary 2.4 (see Corollary 2.5).

In section 3, we give an efficient algorithm to compute the strong closure $s c(G)$ of any simple graph G. This algorithm can be executed in $O(n|K|)$ time, where $\left|K^{\prime}\right|=\frac{1}{2}\left(n^{2}-n-2 m\right)$.

2. HAMILTONIAN-CONNECTED GRAPHS.

For each vertex v of G, let $D(v)=\{u \in V(G): u$ is adjacent to $v\}$. Then $d(v)=|D(v)|$ is the degree of v in G.

We have the main result of this paper.
THEOREM 2.1. Suppose that u is not adjacent to v in G and $d(u)+d(v) \geq n+1$. Then G is Hamiltonian-connected if and only if $G+(u, v)$ is Hamiltonian-connected.

PROOF. Suppose that $G+(u, v)$ is Hamiltonian-connected, but G is not. Since G is not Hamiltonian-connected, there exist two vertices x and y such that there is no Hamiltonian $x-y$ path in G. Since $G+(u, v)$ is Hamiltonian-connected, there is a Hamiltonian $u-v$ path in $G+(u, v)$ and hence in G. Therefore it follows that $(x, y) \neq(u, v)$. Let $P=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ be a Hamiltonian $x-y$ path in $G+(u, v)$, where $x=w_{1}$ and $y=w_{n}$.

CASE 1. Assume that $x \neq u$ and $y \neq v$. Since P is a Hamiltonian $x-y$ path in $G+(u, v)$ and P is not a Hamiltonian $x-y$ path in $G,(u, v)$ must be an edge of P in $G+(u, v)$. Therefore $u=w_{k}$ and $v=w_{k+1}$ for some $1<k<n-1 . \quad(k \neq n-1 ;$ for otherwise $k+1=n$ and $v=w_{n}=y$). Since (u, v) is not an edge of $G, u, v \notin D(u)$ and $u, v \notin D(v)$. Suppose $w_{t} \in D(u)$, where $t \neq k-1$ and $t \neq n$. \backslash Since $u\left(=w_{k}\right)$ and $v\left(=w_{k+1}\right)$ are not in $D(u)$, it follows that $t \neq k$ and $t \neq k+1$. We show that $w_{t+1} \notin D(v)$. Suppose that this is not true, then w_{t+1} is adjacent to v. If $t<k-1$, then the path $\left(=w_{1}\right), \quad w_{2}, \cdots, w_{t}, w_{k}(=u), \quad w_{k-1}, \quad w_{k-2}, \cdots, w_{t+1}$, $v\left(=w_{k+1}\right), w_{k+2}, \cdots, y\left(=w_{n}\right)$ is a Hamiltonian $x-y$ path in G. If $t>k+1$, then the path $x\left(=w_{1}\right), w_{2}, \cdots, w_{k}(=u), w_{t}, w_{t-1}, \cdots, w_{k+1}(=v), w_{t+1}, w_{t+2}, \cdots, y\left(=w_{n}\right)$ is a Hamiltonian $x-y$ path in G. This is impossible. Therefore, $w_{t+1} \notin D(v)$. Since $t \neq k-1$ and $t \neq n$, it follows that there are at least $d(u)-2$ vertices to which v is not adjacent. Since $u, v \notin D(v)$, we have

$$
d(v) \leq(n-2)-(d(u)-2)=n-d(u)
$$

Therefore $d(u)+d(v) \leq n$, which is a contradiction. Therefore Case 1 is impossible.
CASE 2. Assume that $v=y\left(=w_{n}\right)$. Since $(x, y) \neq(u, v)$, it follows that $u \neq x$ and so $u=w_{n-1}$. Let $w_{t} \in D(u)$, where $t \neq n-2$. Then by the same argument as in Case 1 , $w_{t+1} \notin D(v)$. Hence

$$
d(v) \leq(n-2)-(d(u)-1)=n-d(u)-1
$$

and so $d(u)+d(v) \leq n-1$, which is impossible. Therefore G is Hamiltonian-connected. The converse of the theorem is clearly true. This completes the proof of the theorem.

Theorem 2.1 motivates the following definition.
The strong closure of G is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least $n+1$ until no such pair remains. We denote the strong closure of G by $s c(G)$.

REMARK. The closure $c(G)$ of G is defined and studied in [2] and [4]. It is useful in the study of Hamiltonian graphs. The definition of $s c(G)$ is similar to that of $c(G)$.

LEMMA 2.2. $s c(G)$ is well-defined.
PROOF. This follows from the proof of ([2], p. 56, Lemma 4.4.2).
THEOREM 2.3. A graph is Hamiltonian-connected if and only if its strong closure is Hamiltonian-connected.

PROOF. This follows immediately from Theorem 2.1 and Lemma 2.2.
Theorem 2.3 gives some interesting results.
COROLLARY 2.4. If $s c(G)$ is a complete graph, then G is Hamiltonian-connected.
PROOF. If $s c(G)$ is complete, then it is Hamiltonian-connected and so by Theorem 2.3, G is also Hamiltonian-connected.

The following result was obtained by O. Ore (see [1], p. 136, Theorem 11.3 or [5]).
COROLLARY 2.5. If $d(u)+d(v) \geq n+1$ for every pair of nonadjacent vertices u and v, then G is Hamiltonian-connected.

PROOF. Since $d(u)+d(v) \geq n+1$ for every pair of nonadjacent vertices u and v, it follows that $S c(G)$ is a complete graph. Therefore by Corollary 2.4, G is Hamiltonian-connected.

If G has vertices $v_{1}, v_{2}, \cdots, v_{n}$, the sequence $\left(d\left(v_{1}\right), d\left(v_{2}\right), \cdots, d\left(v_{n}\right)\right)$ is called a degree sequence of G. The following result is similar to a result obtained by Chvátal (see [2], p 57, Theorem 4.5).

COROLLARY 2.6. Let $\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ be a degree sequence of G such that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$. Suppose that there is no value of p less than $\frac{1}{2}(n+1)$ for which $d_{p-1} \leq p$ and $d_{n-p}<n-(p-1)$. Then G is Hamiltonian-connected.

PROOF. By a similar argument as in the proof of ([2], p. 57, Theorem 4.5), we can show that $s c(G)$ is a complete graph. Therefore by Corollary $2.4, G$ is Hamiltonian-connected.

3. AN ALGORITHM FOR FINDING STRONG CLOSURE.

In this section, we give an algorithm to find $s c(G)$. Let $V(G)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$.
STEP 1. For $1 \leq i<j \leq n$, let

$$
f(i, j)=\left\{\begin{array}{ll}
d\left(u_{\mathrm{t}}\right)+d\left(v_{\jmath}\right), & \text { if } u_{\mathrm{t}} \notin D\left(v_{\jmath}\right) \\
0 & ,
\end{array} \text { if } u_{\mathrm{t}} \in D\left(v_{\jmath}\right)\right.
$$

STEP 2. Choose $f(I, J)=\max \{f(i, j): 1 \leq i<j \leq n\}$.
If $f(I, J)<n+1$, then go to Step 4.
STEP 3. $f(I, J) \leftarrow 0$.
If $f(p, I) \neq 0$, then $f(p, I) \leftarrow f(p, I)+1(1 \leq p<I)$.
If $f(I, p) \neq 0$, then $f(I, p) \leftarrow f(I, p)+1(I<p \leq n)$.
If $f(q, J) \neq 0$, then $f(q, J) \leftarrow f(q, J)+1(1 \leq q<J)$.
If $f(J, q) \neq 0$, then $f(J, q) \leftarrow f(J, q)+1(J<q \leq n)$.
Go to Step 2.
STEP 4. Form $s c(G)$ by joining u_{t} to $u_{,}$, if $f(i, j)=0(1 \leq i<j \leq n)$.
Let G be represented by an adjacency matrix. Steps 1 and 4 can be implemented in $O\left(n^{2}\right)$ time. Clearly, Step 3 runs in $O(n)$ time. Let $K=\{(i, j): f(i, j) \neq 0 \quad 1 \leq i<j \leq n\}$. Then

$$
|K|=1+2+\cdots+(n-1)-m=\frac{1}{2}\left(n^{2}-n-2 m\right) .
$$

By using F-heaps data structure [3], find $\max \{f(i, j)\}$ takes $O\left(\log _{2}|K|\right)=O\left(\log _{2} n\right)$ time. Hence Steps 2 and 3 take $O\left(|K|\left(n+\log _{2} n\right)\right)=O(n|K|)$. Thus overall we have an $O(n|K|)$ algorithm.

LEMMA 3.1. If $n \geq 4$ and $d(u) \leq 2$ in G, then $d(u) \leq 2$ in $s c(G)$.
PROOF. Let v be a vertex of G which is not adjacent to u. Then $d(v) \leq n-2$. Hence $d(u)+d(v) \leq 2+(n-2)=n$ and so Lemma 3.1 is true.

Lemma 3.1 allows us not to consider u in the computation of $s c(G)$ if $d(u) \leq 2$ in G.

REFERENCES

1. BEHZAD, M. and CHARTRAND, G., Introduction to the Theory of Graphs, Allyn and Bacon Inc., Boston, 1971.
2. BONDY, J.A. and MURTY, U.S.R., Graph Theory with Applications, North-Holland, New York, 1976.
3. FREDMAN, M.L. and TARJAN, R.E., Fibonacci heaps and their uses in improved network optimization algorithms, J. ACM 34 (1987), 596-615.
4. GONDRAN, M. and MINOUX, M., Graph and Algorithms, Wiley, New York, 1984.
5. ORE, O., Hamilton connected graphs, J. Math. Pures. Appl. 42 (1963), 21-27.
6. WONG, P.K., On the closure of a graph with cut vertices, Ars Combinatoria 35 (1993), 253-256.
