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ABSTRACT. Let G be a simple graph of order at least three. We show that G is Hamiltonian-

connected if and only if its strong closure is Hamiltonian-connected. We also give an efficient

algorithm to compute the strong closure of G.
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1. INTRODUCTION.
Let G (V,E) be a simple graph, n i1( > 3) and m EI. C is led Hamiltonian-

connected if every two vertices of G are connected by a Hamiltonian path. If G is Hamiltonian-

n _> 4, then rn >_ 1/2 (3n + 1) (see [2], p. 61).connected and

In this paper, we define the strong closure sc(G) of a simple graph G. We also show that G
is Hamiltonian-connected if and only if its strong closure sc(G) is Harniltonian-connected

(Theorem 2.3). It follows immediately that if sc(G) is a complete graph, then G is Hamiltonian-

connected (Corollary 2.4). As in the case of Hamiltonian graphs, there is no characterization of

Hamiltonian-connected graphs. If we compute the strong closure of G and find it is complete,
then G is Hamiltonian-connected. As another application, a result of O. Ore also follows from

Corollary 2.4 (see Corolla 2.5).
In section 3, we give an efficient algorithm to compute the strong closure sc(G) of any simple

graph G. This algorithm can be executed in O(n[K[) time, where [K’[ 1/2 (n n 2rn).
2. HAMILTONIAN-CONNECTED GRAPHS.

For each vertex v of G, let D(v)= {u e V(G): u is adjacent to v}. Then d(v)= D(v) is the

degree of v in G.
We have the main result of this paper.
THF_.REM 2.1. Suppose that u is not adjacent to v in G and d(u) + d(v) > n + 1. Then G

is Hamiltonian-connected if and only if G + (u, v) is Hamiltonian-connected.

PROOF. Suppose that G + (u,v) is Hamiltonian-connected, but G is not. Since G is not

Harniltonian-connected, there exist two vertices x and y such that there is no Hamiltonian x-y

path in G. Since G + (u,v) is Hamiltonian-connected, there is a Hamiltonian u-v path in

G+(u,v) and hence in G. Therefore it follows that (x,y)# (u,v). Let P= {w,,w2,...,w,} be

a Harniltonian x y path in G + (u, v), where x wl and y
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CASE 1. Assume that z # u and y # v. Since P is a Hamiltonian z-/path in G + (u, v)
and P is not a Hamiltonian z- path in G,(u,v) must be an edge of P in G + (u. v). Therefore

u=w. and v=w,+l for some l<k<n-1. (k#n-1; for otherwise k+l=n and

v w, V). Since (u,v)is not an edge of G,u,v D(u) and u,v . D(v). Suppose w, E D(u),
where # k and # n. \ Since u( w,) and v( w, + 1) are not in D(u), it follows that # k

and # k + 1. We show that wt +1 - D(v). Suppose that this is not true, then wt + is adjacent

to v. If <k-1, then the path (=w), w=,---,w,wk(=u), wk_l, w_2,--.,w+l,

v( wk + 1), wk + , ., /( w,,) is a Hamiltonian z V path in G. If > k + 1, then the path

z( wl), w,. ., w( u), w,, w,_ ,. .,w + 1( v), w, + 1, w, + 2," ", g( w,) is a Hamiltonian

z- path in G. This is impossible. Therefore, w, +1 D(v). Since # k- and # n, it follows

that there are at least d(u) 2 vertices to which v is not adjacent. Since u, v D(v), we have

d() < ( 2) (d() 2) ().

Therefore d(u) + d(v) < n, which is a contradiction. Therefore Case is impossible.

CASE 2. Assume that v=(= w,). Since (z,y)# (u,v), it follows that u # z and so

u =w,,_l. Let wt ED(u), where t#n-2. Then by the same argument as in Case 1,

wt + - D(v). Hence

d(v) <_ (n 2) (d(u) 1) rt d(u)

had so d(u)+ d(v)< n-1, which is impossible. Therefore G is tiamiltonian-connected. The

converse of the theorem is clearly true. This completes the proof of the theorem.

Theorem 2.1 motivates the following definition.

The stron closure of G is the graph obtained from G by recursively joining pairs of

nonadjacent vertices whose degree sum is at least n + until no such pair remains. We denote

the strong closure of G by sc(G).
REMARK. The closure c(G) of G is defined and studied in [2] and [4]. t is usefu in the

study of tiamiltonian graphs. The definition of sc(G) is similar to that of c(G).
LEMMA 2.2. sc(G) is well-defined.

PROOF. This follows from the proof of ([2], p. 56, Lemma 4.4.2).
THEOREM 2.3. A graph is tiamiltonian-connected if and only if its strong closure is

ttarniltonian-connected.
PROOF. This follows immediately from Theorem 2.1 and Lemma 2.2.

Theorem 2.3 gives some interesting results.

COROLLARY 2.4. If sc(G) is a complete graph, then G is ttamiltonian-connected.

PROOF. If sc(G) is complete, then it is Hamiltonian-connected and so by Theorem 2.3, G
is also ttamiltonian-connected.

The following result was obtained by O. Ore (see [1], p. 136, Theorem 11.3 or [5]).
COROLLARY 2.5. If d(u)+ d(v)> n + for every pair of nonadjacent vertices u and v,

then G is tiamiltonian-connected.

PROOF. Since d(u) + d(v) > n + for every pair of nonadjacent vertices u and v, it follows

that Sc(G) is a complete graph. Therefore by Corollary 2.4, G is ttamiltonian-connected.

If G has vertices vl,v2,’" .,v,, the sequence (d(v,),d(v2),..-,d(v,)) is called a degree
sequence of G. The following result is similar to a result obtained by Chv/tal (see [2], p 57,
Theorem 4.5).
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COROLLARY 2.6. Let (dl,d2,---,d,) be a degree sequence of G such that

dl <_ d <_ <_ d,. Suppose that there is no value of p less than 1/2 (n + 1) for which dp_ _< p
and d, _p < n- (p- 1). Then G is Hamiltonian-connected.

PROOF. By a similar argument as in the proof of ([2], p. 57, Theorem 4.5), we can show

that sc(G) is a complete graph. Therefore by Corollary 2.4, G is Hamiltonian-connected.

3. AN ALGORITHM FOR FINDING STRONG CLOSURE.
In this section, we give an algorithm to find sc(G). Let V(G)= {u, u2,’’’, u,}.

STEP1. Forl_<i<j_<n, let

f(i,j) {(u,) + d(v,), if u, q D(v,)
ifu, 6 D(v)

STEP 2. Choose f(I,J)= max {f(i,j):l <_ < j <_ n}.
If f(I,J) < n + 1, then go to Step 4.

STEP 3. f(I, J) 0.

If f(p,I) # O, then f(p,I)-f(p,I)+ 1(1 _< p < I).
If/(I, p) # O, then/(I, p)-:(1, p)+ 1(I < p < n).
If f(q,J) # O, then f(q,J),--f(q,J)+ 1(1 _< q < J).
If f(J,q) # O, then f(J,q)f(J,q)+ l(J < q _< n).
Go to Step 2.

STEP 4. Form sc(G) by joining u, to uv if f(i, 3) 0 (1 < < j _< n).
Let G be represented by an adjacency matrix. Steps and 4 can be implemented in O(n2)

time. Clearly, Step 3 runs in O(n) time. Let g {(i, j): f(i, j)# 0 <_ < j < n}. Then

IKI +2+.-. +(n-1)-m=1/2(n2-n-2m).
By using F-heaps data structure [3], find max{f(i,j)} takes O(log2 KI) O(log2n) time. Hence
Steps 2 and 3 take o(Igl(n+log2n)) O(nlgl). Thus overall we have an O(nlgl)
algorithm.

LEMMA 3.1. If n _> 4 and d(u) _< 2 in G, then d(u) _< 2 in sc(G).
PROOF. Let v be a vertex of G which is not adjacent to u. Then d(v)< n- 2. Hence

d(u) + d(v) <_ 2 + (n 2) n and so Lemma 3.1 is true.

Lemma 3.1 allows us not to consider u in the computation of sc(G) if d(u) < 2 in G.
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