SUBRINGS OF I-RINGS AND S-RINGS

MAMADOU SANGHARE
Département de Mathématiques et Informatiques
Faculté des Sciences et Techniques
UCAD
DAKAR (SENEGAL)
e-mail sanghare@ucad.refer.sn

(Received May 6, 1993 and in revised form February 13, 1997)

Abstract

Let R be a non-commutative associative ring with unity $1 \neq 0$, a left R-module is said to satisfy property (I) (resp. (S)) if every injective (resp. surjective) endomorphism of M is an automorphism of M. It is well known that every Artinian (resp. Noetherian) module satisfies property (I) (resp. (S)) and that the converse is not true. A ring R is called a left I-ring (resp. S-ring) if every left R-module with property (I) (resp (S)) is Artinian (resp. Noetherian). It is known that a subring B of a left I-ring (resp. S-ring) R is not in general a left I-ring (resp. S-ring) even if R is a finitely generated B-module, for example the ring $M_{3}(K)$ of 3×3 matrices over a field K is a left I-ring (resp S-ring), whereas its subring

$$
B=\left\{\left[\begin{array}{lll}
\alpha & 0 & 0 \\
\beta & \alpha & 0 \\
\gamma & 0 & \alpha
\end{array}\right] / \alpha, \beta, \gamma \in K\right\}
$$

which is a commutative ring with a non-principal Jacobson radical

$$
J=K \cdot\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+K \cdot\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

is not an I-ring (resp. S-ring) (see [4], theorem 8). We recall that commutative I-rings (resp S-rings) are characterized as those whose modules are a direct sum of cyclic modules, these rings are exactly commutative, Artinian, principal ideal rings (see [1]). Some classes of non-commutative I-rings and Srings have been studied in [2] and [3]. A ring R is of finite representation type if it is left and right Artinian and has (up to isomorphism) only a finite number of finitely generated indecomposable left modules. In the case of commutative rings or finite-dimensional algebras over an algebraically closed field, the classes of left I-rings, left S-rings and rings of finite representation type are identical (see [1] and [4]) A ring R is said to be a ring with polynomial identity (P . I-ring) if there exists a polynomial $f\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 2$, in the non-commuting indeterminates $X_{1}, X_{2}, \ldots, X_{n}$ over the center Z of R such that one of the monomials of f of highest total degree has coefficient 1 , and $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for all $a_{1}, a_{2}, \ldots, a_{n}$ in R. Throughout this paper all rings considered are associative rings with unity, and by a module M over a ring R we always understand a unitary left R-module. We use M_{R} to emphasize that M is a unitary right R-module.

KEY WORDS AND PHRASES: Left I-ring, left S-ring, ring with polynomial identity, ring of finite representation type.
1991 AMS SUBJECT CLASSIFICATION CODES: 16D70, 16P10, 16L60.

1. THE MAIN RESULT

THEOREM. Let R be a left I-ring (resp. S-ring), and B be a sub-ring of R contained in the center Z of R Suppose that R is a finitely generated flat B-module Then B is an I-ring (resp S-ring)

To prove this theorem we need some results.
It is easy to see that
LEMMA 1. Every homomorphic image of a left I-ring (resp S-ring) is a left I-ring (resp S-ring)
LEMMA 2. Let P_{1} and P_{2} be two prime ideals of a ring R. If P_{1} is not contained in P_{2} then $\operatorname{Hom}_{R}\left(R / P_{1}, R / P_{2}\right)=\{0\}$

PROOF. Let $f: R / P_{1} \rightarrow R / P_{2}$ be an R-homomorphism, and set $f\left(1+P_{1}\right)=t+P_{2}$, where $t \in R$. Let $x \in P_{1} \backslash P_{2}$, and let r be any element in R. We have $P_{2}=f\left(x r+P_{1}\right)=x r t+P_{2}$ Thus $x R t \in P_{2}$. Since P_{2} is prime, we have $t \in P_{2}$, and hence $f=0$.

LEMMA 3. Let R be a prime ring with polynomial identity. If R is a left I-ring (resp. S-ring), then R is simple Artinian.

PROOF. Let R^{\prime} be the total ring of fractions of R [5]. It is known that R^{\prime} is simple Artinian [5], so the R-module R^{\prime} satisfies (I) (resp. (S)). Since R is a left I-ring (resp. S-ring), then R^{\prime} is an Artinian (resp. Noetherian) R-module and hence $R^{\prime}=R$.

LEMMA 4. Let R be a semi-prime ring with polynomial identity. If R is a left I-ring (resp S-ring), then R is semi-simple Artinian.

PROOF. Let $\left(P_{\ell}\right)_{\ell \in L}$ be a family pairwise distinct minimal prime ideals of R such that

$$
\bigcap_{\ell \in L} P_{\ell}=\{0\}
$$

By Lemma 1 the quotient rings $R / P_{\ell}(\ell \in L)$ are left I-rings (resp. S-rings) with polynomial identity Then it follows from Lemma 3 that the rings $R / P_{\ell}(\ell \in L)$ are simple Artinian, so the left R-modules $R / P_{\ell}\left(\ell \in L\right.$) satisfy (I) (resp (S)). Following Lemma $1, \operatorname{Hom}_{R}\left(R / P_{\ell}, R / P_{\ell}\right)=\{0\}$ for $\ell \neq \ell^{\prime}$, so the left R-module $M=\oplus_{\ell \in L} R / P_{\ell}$ satisfies (I) (resp. (S)). Since R is a left I-ring (resp. S-ring), then M is Artinian. But R regarded as left R-module is isomorphic to a submodule of the semi-simple Artinian left R-module M, hence R is semi-simple Artinian.

PROPOSITION 5. Let R be a ring with polynomial identity. If R is a left S -ring (resp. I-ring), then R is left Artinian.

PROOF. Suppose that R is a left S-ring (resp. I-ring) then the quotient ring $R / \operatorname{rad}(R)$, where $\operatorname{rad}(R)$ is the prime radical of R, is a left S-ring (resp. I-ring), so, following Lemma 4, the ring $R / \operatorname{rad}(R)$ is semi-simple Artinian This fact implies that R is semi-perfect and hence $\operatorname{rad}(R)=J(R)$, where $J(R)$ is the Jacobson radical of R. Let e be a primitive idempotent of R. Since the endomorphism ring of the R-module $R e$ is isomorphic to the local ring eRe with a nil Jacobson radical $e J(R) e$, then the R-module $R e$ satisfies property (I) (resp (S)). It follows that the R-module $R e$ is Noetherian (resp. Artinian). Since R regarded as R-module is a direct sum of finitely many left R-modules of the form $R e$, where e is a primitive idempotent of R, then R is Noetherian. Let P now be a prime ideal of R. Since the prime ring R / P is simple in virtue of Lemma 3, then R is left Artinian.

PROOF OF THE MAIN THEOREM. Since R is a finitely generated Z-module, then R is a ring with polynomial identity (see [6]). So by Proposition $5 R$ is a left Artinian ring. Thus by [7] the ring B is Artinian. Let e_{1}, \ldots, e_{n} be primitive idempotents of B such that $B=\oplus_{i=1}^{n} e_{i} B e i \quad$ For every i, $1 \leq i \leq n, B_{2}=e_{2} B e_{2}$ is a local Artinian ring. To show that B is a left I-ring (resp. S-ring) it is enough to show that for every $i, 1 \leq i \leq n, B_{\imath}$ is a left I-ring (resp. S-ring). We have $A=\oplus_{\imath=1}^{n} A_{i}$, where $A_{2}=e_{2} A e_{i}, 1 \leq i \leq n$. By hypothesis the left B-module $\oplus_{2=1}^{n} A_{2}=A$ is flat and finitely generated, so the B_{i}-module

$$
A_{2}=e_{2} A e_{2} \cong e_{i} A e_{2} \otimes_{B} B=A \otimes_{b} e_{2} B e_{2}=A \otimes_{B} B_{2}
$$

is also flat and finitely generated Since B_{\imath} is an Artinian local ring then the B_{\imath}-module A_{i} is faithfully flat (see [8] proposition 1, p. 44)

Suppose now that B_{\imath} is not an I-ring (resp. S-ring) for some $i, 1 \leq i \leq n$ Then by Proposition 2 of [2], there exists a B_{2}-module M of infinite length such that, for every integer $n \geq 1$, the B_{1}-module M^{n} satisfies both properties (I) and (S) Following [8] (corollary 2, p. 107), the B_{2}-module A_{1} is a free module. Let $M^{\prime}=M \otimes_{B_{1}} A_{2}$. Since the B_{i}-module M is of infinite length and A_{i} is a faithfully flat B_{i}-module, then M^{\prime} is an A_{2}-module of infinite length. On the other hand, since A_{2} is a free B_{2}-module, there exists an integer $s \geq 1$ such that $A_{2}=B_{2}^{s}$. We have then the B_{2}-module isomorphism

$$
M^{\prime}=M \otimes_{B_{1}} A_{2}=M \otimes_{B_{1}} B_{2}^{s} \cong M^{s} .
$$

Hence the B_{\imath}-module $M^{\prime} \cong M^{s}$ satisfies both properties (I) and (S) and therefore M^{\prime}, regarded as A_{2}-module, satisfies properties (I) and (S) This fact implies that the homomorphic image A_{2} of the left Iring (resp. S-ring) A is not a left I-ring (resp. S-ring), in contradiction with Lemma 1.

COROLLARY. Let R be a left I-ring (resp. S-ring). If R is a finitely generated flat module over its center Z, then Z is an I -ring (resp. S-ring).

The following example shows that the converse of the theorem above is not true Let K be a field The commutative ring $A=K[X, Y] /\left(X^{2}, X Y, Y^{2}\right)$ is not an I-ring (resp. S-ring) because its Jacobson radical $J=K \bar{X}+K \bar{Y}$ is not principal (see [1], theorem 8). On the other hand K is an I-ring (resp S -ring) and A is a finite-dimensional K-vector space

ACKNOWLEDGEMENT. The author would like to thank the referee for his valuable suggestions and numerous very useful remarks about the text.

REFERENCES

[1] KAIDI, A.M. and SANGHARE, M., Une caractérisation des anneaux artiniens à idéaux principaux, Lec. Notes in Math., Vol. 1328, Springer-Verlag, Berlin (1988), 245-254.
[2] SANGHARE, M., Sur quelques classes d'anneaux liées au lemme de Fitting, Rend. Sem. Math. Padova, 87 (1992), 29-37.
[3] SANGHARE, M., On S-duo-rings, Comm. in Algebra 20 (8) (1992), 2183-2189
[4] SANGHARE, M., Characterizations of algebras whose modules with Fitting's property are of finite length, Ext. Mat. 7 (2) (1992), 1-2.
[5] POSNER, E.C., Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc. 11 (1960), 180-183.
[6] RENAULT, G., Algèbre non-commutative, Gauthier-Villars, Paris (1975).
[7] EISENBUD, E., Subrings of Artinian and Noetherian rings, Math. Ann. 185 (1970), 247-249
[8] BOURBAKI, N., Algèbre commutative chap. I, Hermann, Paris (1961).

