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ABSTRACT. Let R be a non-commutative associative ring with unity 1 :f: 0, a left R-module is said to

satisfy property (I) (resp. (S)) if every injective (resp. surjective) endomorphism of M is an

automorphism ofM. It is well known that every Artinian (resp. Noetherian) module satisfies property (I)
(resp. (S)) and that the converse is not true. A ring R is called a left I-ring (resp. S-ring) if every left

R-module with property (I) (resp (S)) is Artinian (resp. Noetherian). It is known that a subring B of a
left I-ring (resp. S-ring) R is not in general a left I-ring (resp. S-ring) even if R is a finitely generated
B-module, for example the ring M3(K) of 3 x 3 matrices over a field K is a left I-ring (resp S-ring),
whereas its subring

B= a 0

7 0

which is a commutative ring with a non-principal Jacobson radical

J=K. 1 0 +K. 0 0 0
00 100

is not an I-ring (resp. S-ring) (see [4], theorem 8). We recall that commutative I-rings (resp S-tings) are

characterized as those whose modules are a direct sum of cyclic modules, these tings are exactly

commutative, Artinian, principal ideal rings (see [1]). Some classes of non-’commutative I-tings and S-

tings have been studied in [2] and [3]. A ring R is of finite representation type if it is left and fight

Artinian and has (up to isomorphism) only a finite number of finitely generated indecomposable left

modules. In the case of commutative tings or finite-dimensional algebras over an algebraically closed

field, the classes of left I-tings, left S-tings and tings offinite representation type are identical (see [1] and

[4]) A ring R is said to be a ring with polynomial identity (P. I-ring) if there exists a polynomial

f(X1,X2,...,X,), r > 2, in the non-commuting indeterminates X1,X2,...,X, over the center ,7 of R
such that one of the monomials of f of highest total degree has coefficient 1, and f(al, a2, a) 0

for all al, a2, a in R. Throughout this paper all rings considered are associative rings with unity, and

by a module M over a ring R we always understand a unitary left R-module. We use MR to emphasize

that M is a unitary fight R-module.

KEY WORDS AND PHRASES: Left I-ring, left S-ring, ring with polynomial idemity, ring of finite

representation type.

1991 AMS SUBJECT CLASSIFICATION CODES: 16D70, 16P10, 16L60.



826 M. SANOHARE

1. THE MAIN RESULT
THEOREM. Let R be a left I-ring (resp. S-ring), and B be a sub-ring of R contained in the center

Z ofR Suppose that R is a finitely generated fiat B-module Then B is an I-ring (resp S-ring)
To prove this theorem we need some results.
It is easy to see that

LEMMA 1. Every homomorphic image of a left I-ring (resp S-ring) is a left I-ring (resp S-ring)
LEMMA 2. Let Px and P2 be two prime ideals of a ring R. If P1 is not contained in P2 then

Hom(R/P, R/P2) {0}
PROOF. Let f- R/P1 R/P2 be an R-homomorphism, and set f(1 + P1 + P2, where

E R. Let x E P1 \P2, and let r be any element in R. We have P2 f(xr + PI) xrt + P_ Thus

xRt P2. Since P2 is prime, we have 6 P2, and hence f 0.

LEMMA 3. Let R be a prime ring with polynomial identity. IfR is a left I-ring (resp. S-ring), then

R is simple Artinian.

PROOF. Let R’ be the total ring offractions ofR [5]. It is known that R’ is simple Artinian [5], so

the R-module R’ satisfies (I) (resp. (S)). Since R is a left I-ring (resp. S-ring), then R’ is an Artinian

(resp. Noetherian) R-module and hence R R.
LEMMA 4. Let R be a semi-prime ring with polynomial identity. IfR is a left I-ring (resp S-ring),

then R is semi-simple Artinian.

PROOF. Let (Pt)te. be a family pairwise distinct minimal prime ideals ofR such that

teL

By Lemma the quotient tings R/Pt(g L) are left I-tings (resp. S-rings) with polynomial identity

Then it follows from Lemma 3 that the tings R/Pe( L) are simple Artinian, so the left R-modules

R/Pt(g L) satisfy (I) (resp (S)). Following Lernma 1, HomR(R/Pt, RIPe) {0} for ", so the

left R-module M tet.R/Pt satisfies (I) (resp. (S)). Since R is a left I-ring (resp. S-ring), then M is

Artinian. But R regarded as left R-module is isomorphic to a submodule ofthe semi-simple Artinian left

R-module M, hence R is semi-simple A.,’tinian.

PROPOSITION 5. Let R be a ring with polynomial identity. If R is a left S-ring (resp. I-ring),

then R is left Artinian.

PROOF. Suppose that R is a left S-ring (resp. I-ring) then the quotient ring R/rad(R), where

tad(R) is the prime radical of R, is a left S-ring (resp. I-ring), so, follqwing Lemma 4, the ring

R/rad(R) is semi-simple Artinian This fact implies that R is semi-perfect and hence tad(R) J(R),
where J(R) is the Jacobson radical of R. Let e be a primitive idempotent of R. Since the

endomorphism ring of the R-module Re is isomorphic to the local ring ere with a nil Jacobson radical

eJ(R)e, then the R-module Re satisfies property (I) (resp (S)). It follows that the R-module Re is

Noetherian (resp. Artinian). Since R regarded as R-module is direct sum of finitely many left

R-modules ofthe form Re, where e is a primitive idempotent of R, then R is Noetherian. Let P now be

a prime ideal of R. Since the prime ring R/P is simple in virtue ofLemma 3, then R is left Artinian.

PROOF OF THE MAIN THEOREM. Since R is a finitely generated Z-module, then R is a ring

with polynomial identity (see [6]). So by Proposition 5 R is a left Artinian ring. Thus by [7] the ring B
is Artinian. Let el ,e, be primitive idempotents of B such that B =e,Bei For every i,

1 <_ <_ n, B, e,Be, is a local Arfinian ring. To show that B is a left I-ring (resp. S-ring) it is enough

to show that for every i, 1 < _< n, B, is a left I-ring (resp. S-ring). We have A $=IAi, where

A, e,Ae,, 1 _< _< n. By hypothesis the left B-module =1A, A is flat and finitely generated, so

the Bi-module

A eAe, - eiAe (R)BB A (R),e,Be A
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is also flat and finitely generated Since B, is an Artinian local ring then the B,-module A, is faithfully
flat (see [8] proposition 1, p. 44)

Suppose now that B, is not an I-ring (resp. S-ring) for some i, 1 _< _< n Then by Proposition 2 of

[2], there exists a B,-module M of infinite length such that, for every integer n _> 1, the B,-module M
satisfies both properties (I) and (S) Following [$] (corollary 2, p. 107), the B,-module A, is a free

module. Let M’ M (R)B,A,. Since the Bi-module M is of infinite length and A, is a faithfully flat

Bi-module, then M’ is an A,-module of infinite length. On the other hand, since A, is a free B,-module,
there exists an integer s _> I such that A, B. We have then the B,-module isomorphism

M’ M (R)B,A M (R)B,Bt - M’.

Hence the B,-module M’ M satisfies both properties (I) and (S) and therefore M’, regarded as

A,-module, satisfies properties (I) and (S) This fact implies that the homomorphic image A, ofthe left I-

ring (resp. S-ring) A is not a left I-ring (resp. S-ring), in contradiction with Lemma 1.

COROLLARY. Let R be a left I-ring (resp. S-ring). If R is a finitely generated flat module over

its center Z, then Z is an I-ring (resp. S-ring).
The following example shows that the converse of the theorem above is not true" Let K be a field

The commutative ring A K[X,Y]/(X2,XY, Y2) is not an I-ring (resp. S-ring) because its Jacobson

radical 3’ KX + KY is not principal (see [1], theorem 8). On the other hand K is an I-ring (resp

S-ring) and A is a finite-dimensional K-vector space
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