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ABSTRACT. Let X be a Hausdorff compact space, E a topological vector space on which E"

separates points, F X 2E an upper semicontinuous multifunction with compact acyclic

values, and g: X E a continuous function such that g(X) is convex and g-1 (y) is acyclic for

each y e g(X). Then either (1) there exists an x0 E X such that gxo . Fxo or (2) there exist

an (x0, z0) on the graph of F and a continuous seminorm p on E such that

O < p(gzo zo) <_ p(y- zo) for all y g(X).

A generalization of this result and its application to coincidence theorems are obtained. Our

aim in this paper is to unify and improve almost fifty known theorems of others.

KEY WORDS AND PHRASES: multifunction, upper semicontinuous (u.s.c.), acyclic, convex

space, admissible class, best approximation, metric projection, inward [outward] set.

1991 AMS SUBJECT CLASSIFICATION CODES: 41A65, 47H10, 54C60, 54H25, 55M20.

1. INTRODUCTION

One of the most interesting extensions of Ky Fan’s best approxi,rnation theorems [1] was

due to Prolla [2] for two functions. Subsequently, a number of its generalizations or variations

followed, and some applications to coincidence theory were also given. See [3-8].
On the other hand, recently there have appeared some best approximation or fixed point

theorems for maps whose domains and ranges have different topologies for example, see [9-17].
Moreover, there have also appeared some generalizations of such results for two maps and two

different space settings for example [3,18].
Usually, those results are obtained for single-valued maps or convex-valued upper semicontin-

uous multifunctions. However, more recently, the author [11, 13, 19] showed that some of such

best approximation and fixed point theorems can be extended for a large "admissible" class of

multifunctions.

In the present paper, we obtain best approximation and coincidence theorems for such large

class of multifunctions and two different space settings. Our new results are general enough to

subsume more than fifty known results of other authors as particular cases.



690 S. ARK

2. PRELIMINARIES

A multifunction or set-valued map (simply, map) F X 2Y is a function with nonempty

set-values Fx C Y for each x E X. The set (x, y) y Fx} is called either the graph of F or,

simply, F. So (x, y) E F if and only if y Fx.

For topological spaces X and Y, a map F X 2Y is upper semzcontinuous (u.s.c.) if, for

each closed set B C Y, F-I(B) {x X Fx C B :p- q)} is closed in X. It is veil-known that

if Y is compact Hausdorff and Fx is closed for each x E X, then F is u.s.c, if and only if the

graph of F is closed in X x Y. A nonempty topological space is acyclic if all of its reduced (ech

homology groups over rationals vanish.

A convex space C is a nonempty convex set with any topology that induces the Euclidean

topology on the convex hulls of its finite subsets. Such convex hulls are called polytopes.

Given a class X of maps, X(X, Y) denotes the set of all maps F X 2" belonging to

and )c the set of all finite composites of maps in X.

A class 9.l of maps is one satisfying the following:

(i) 9.1 contains the class C of (single-valued) continuous functions;

(ii) each F E 92c is u.s.c, and compact-valued; and

(iii) for any polytope P, each f E 92(P, P) has a fixed point.

Examples of 9.1 are C, the Kakutani maps K (with convex values in convex spaces), the acyclic

maps V (with acyclic values), the approachable maps A in topological vector spaces [20-22],
admissible maps in the sense of G6rniewicz [23], permissible maps in Dzedzej [24], and others.

Moreover, we define

F 92(X,Y) == for any a-compact subset K of X, there is a F 92(K,Y) such that

Fx C Fx for each x K.

F 92’(X,Y) for any compact subset K of X, there is a F 92c(K,Y) such that

Fx C Fx for each x K.

A class 92 is said to be admissible. Note that 92 C 92 C 92 C 92. Examples of 92 are

due to Lassonde [25] and V due to Park et al. [26]. Note that IK includes classes K, R, and "IF

in [25]. The approximable maps recently due to Ben-E1-Mechaiekh and Itzik [27] belong to

Therefore, any compact-valued u.s.c, map F X 2E, where E is a locally convex t.v.s, and

X C E, belongs to 92 if its values are all convex, contractible, decomposable, or oo-proximally

connected. See [27].
Let E (E, v) be a topological vector space, E" its topologiqal dual, and S(E) S(E, 7-)

the family of all continuous seminorms on (E, v). Let w denote the weak topology of E. We

say that E" separates points of E if for each x E with x 0, there exists a E" such that

b(x) 0; that is, if x 0, then p(x) > 0 for some p E S(E, w) C S(E, T) by taking p(x) [(x)[
for all x E E.

The following is due to the author [19, II]:

THEOREM 2.1. Let X be a compact convex subset of a topological vector space E on which

E" separates points. Then any F 92(X,X) has a fixed point.

Let C be a nonempty subset of a Hausdorff topological vector space E and p S(E). For

each y E E, define dp(y, C) inf{p(y- x) x E C} and the set of best approximations to y E E
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from C by Qp(y) {x 6 C’p(y- x) dp(y, C)}. The multifunction Qp thus defined is called

the metric projection onto C if Q(y) @ for each y 6 E. It is well-known that if C is compact

convex, then the metric projection Q" E 2c belongs to IK(E, C).
In (E, T), let Bd, Int, and- denote the boundary, interior, and closure, respectively, with

respect to T.

The inward and outward sets of X C E at x 6 E, Ix(x) and Ox(x), are defined as follows:

I() { +( )- e x, > 0},

ox() {z + (- )- x, < 0}.

For a topological space X, a real function f X ]R is lower semicontinuous (1.s.c.) if

{xX’fx>r} is open for eachrR.

The following is well known:

LEMMA 2.2. Let X and Y be topological spaces, h" X x Y ]R 1.s.c. and F" X 2" a

compact-valued u.s.c, multifunction. Then x inf{h(x, y) "y Fx} is 1.s.c. on X.

3. MAIN RESULTS

From Theorem 2.1, we obtain the following generalization of many best approximation and

fixed point theorems:

THEOREM 3.1. Let X be a Hausdorff compact convex space, E (E, r) a topological vector

space on which E" separates points, F 6 9/:(X, (E, w)), and g C(X, (E, w)) such that g(X)
is convex. Suppose that either

(I) g-’ (y) is convex for y 6 g(X) and ]K(g(X),X) C (g(X),X); or

(II) g-’(y) is acyclic for y 6 g(X) and V(g(X),X) C PI(g(X),X).
Then either

(1) there exists an x0 6 X such that gxo Fxo; or

(2) there exist an (x0, z0) 6 F and a p e S(E, w) such that gxo 6 Bd g(X) and

0 < p(gxo Zo) <_ p(y- Zo) for nil y 6 ]g(x)(gxo).

PROOF. Since X is compact, we may assume that F 6 9/c(X, (E, w)). Since the graph of

g-1 g(X) 2x is closed in g(X) x X and X is compact Hausdorff, we know that g-1 is

u.s.c, and g-’(y) is closed for each y 6 g(X). Therefore, either (I) g- 6 ]K(g(X),X) if g-’ is

convex-valued; or (II) g-* e V(g(X), X) if g-* is acyclic-valued. Let p 6 S(E, w). Consider the

composite of multifunctions

g-1
g(X) X F_. (E, w) g(X).

Since g(X) is a weakly compact convex subset of a Hausdorff topological vector space (E, w),
the metric projection Q; belongs to IK((E, w),g(X)). Hence, in any case we have

QFg-’ e fa:(g(X),g(X)),
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which has a fixed point yo g(X) by Theorem 2.1. Then yo (QpF)Xo for some x0 g-’(Y0);

and hence gxo Qpzo for some zo Fxo, which is equivalent to

p(gxo Zo) <_ p(y- zo) for all y g(X).

This inequality holds for all y Ig(x)(gxo) by the method in [6,7,11-13,19,28,29]. If gxo

Intg(X), then Ig(x)(gxo) E. Therefore, by putting y z0 in the above inequality, we have

p(gzo Zo O.

Suppose that (2) does not hold. Then for each p S(E, w), there exists an (z, z) F such

that p(gx- z) -0; that is,

F[p] {x X" d,(gx, Fx) 0} #- .
Considering (g(X),E) instead of (X, Y) in Lemma 2.2, put

h(9, z) (- ) for x e X, z E.

Then z g(gx, Fx) is 1.s.c. Therefore, F[p] is closed in X. Moreover, for a finite subset

{P,,P2, ,P,} of S(E, w), we have p E=, P, S(E, w) and F[p] FIE=, p,] c 5, F[p,].
Therefore, {F[p]’p S(E,w)} is a family of closed subsets of X with the finite intersection

property. Since X is compact, there exists a u {F[p]’p S(E,w)}. Now we claim that

9u Fu.

Suppose that gu Fu. Then the origin 0 does not belong to the compact set K gu Fu

of (E, w). Let z K. Since E" separates points of (E, w), there exists a 4 E" (E, w)" such

that (z) - 0. By putting pz (x) 14(x)l for x E, we know that pz S(E, w) and p, (z) > 0.

Since p, is continuous on K, there exists an open neighborhood U, of z in K such that p, (y) > 0

for every y Uz. Let {Uz,,..., Uz } be a finite subcover of the cover {U, }zero of g and let p

P*, S(E, w) Since PIK is continuous it attains its infimum on K. Since the infimum

can not be zero, we have d,(gu, Fu) > 0. This contradicts u {F[p]’p S(E, w)} #- @.
This completes our proof.

REMARKS 3.1. 1. In Theorem 3.1, F (X, (E, w)) and g" X (E, w) can be replaced

by F P/(X, (E, T)) and g" X (E, T), respectively, without affectir,g the conclusion.

2. If F’ P.I:(X, (E, w)), where F’ is defined by F’z 2gx Fx for z X, then the inward

set in the conclusion (2) of Theorem 3.1 can be replaced by the corresponding outward set.

3. In Theorem 3.1, we assumed that g" X (E, w) satisfies

(i) g(Z) is convex and g-(y) is convex [or acyclic] for y g(X). [18].
Particular forms of (i) were appeared in the literature as follows:

(ii) g-l([y,z]) is convex for any y,z g(X), where [y,z] {Ay + (1 A)z" 0 _< A _< 1}. [18]
(iii) g is affine (that is, g(Az, + (1 A)x2) Agx, + (1 A)gx2 with 0 < A < 1). [3]
(iv) g-l(C) is convex (or empty) for any closed convex subset C of E. [30]
Note that (iv) == (ii) and (iii) === (ii). Now, we show that (ii) == (i)"
In fact, for any y [y,y] g(X), g-’(y) g-*([y,y]) is convex by (ii). We claim that

g(X) is convex. For any gxl,gx= g(X), by (ii), g-l([gx,,gx:]) is convex and contains x, and

x2. Therefore, [x,,x2] C g-([gxl,gx]) or g([x,x]) C [gx,,gx]. This implies [gx,,gx]

g([x,,x_]) C g(X) since X is convex and g is continuous on the closed interval [x,,x2].
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Consider two more conditions on g X (E, w) with respect to p E S(E, w) as [ollows

(v) g is almost p-quasiconvex if

p(g(rx + (1 r)y) u) <_ max{p(gx u),p(gy u)};

(vi) g is almost p-a]flne if

p(g(rx + (1 r)y) u) < rp(gx u) + (1 r)p(gy- u)

for x,y X, u E, and r 6 (0, 1).
Those concepts were appeared in [2, 4, 14, 31]. Note that (iii)= (vi) = (v), and if p is a

norm and if g(X) is convex, then (v) = (i).

PARTICULAR FORMS 3.1. Theorem generalizes, unifies, and improves many of well-

known best approximation and fixed point theorems. We list some major particular forms in

the chronological order.

1. Fan [1, Theorem 1]: Let E be locally convex, X a nonempty compact convex subset of E,
F f C(X,E), and g x the identity map.

2. Fan [1, Theorem 2]: E is a normed vector space in the above.

3. Halpern [32, Theorem 20]: X is a subset of a Banach space E, g lx, and F 6 V(X, E)
under some restrictions.

4. Kapoor [10, Theorem 2]: X is a nonempty weakly compact convex subset of a normed

vector space E, F f e C((X, w), (E, I1" II)) [that is, strongly continuous], and g lx.
5. Fitzpatrick and Petryshyn [33, Theorem 3(i)]: X is a subset of a strictly convex Banach

space E, g 1x, and F E V(X, E).
6. Reich [34, Theorems and 2]: X is a subset of a locally convex Hausdorff topological

vector space, g lx, and F ]K(X, E).
7. Prolla [2, Theorem]: X is a subset of a normed vector space E, F f C(X, E), and

g C(X, X) is an almost affine surjection.

8. Sehgal and Singh [15, Theorem 1 and Corollary 1], Sehgal et al. [16, Corollary 1]: X is a

nonempty weakly compact convex subset of a real locally convex Hausdorff topological vector

space (E,T), F= f C((X, w), (E, T)) [that is, strongly continuous], and g-- lx.
9. Ha [18, Theorem 3]: X is a compact convex subset of a Hausdorff topological vector space,

E a locally convex Hausdorff topological vector space, and F f, g E C(X, E) such that g(X)
and g-l(y) are convex for y e g(X).

10. Ha [35, Theorem 3]: X is a nonempty compact convex subset of a locally convex Hausdorff

topological vector space E, g x, and F ]K(X, E).
11. Park [6, Theorem 2.1]: X is a subset of a normed vector space E, and F f, g C(X,E)

such that g(X) X and g is almost affine.

12. Lin [3, Theorem 1]: X is a nonempty weakly compact convex subset of a locally convex

Hausdorff topological vector space, (E, -) is locally convex, F f C(X, (E, r)) [that is,

strongly continuous], and g e C(X, (E, w)) [that is, weakly continuous] satisfies (ii)instead of

(i).
13. Carbone [4, Theorem 1]: X is a subset of a normed vector space E, g C(X,X) is an

almost quasiconvex surjection, and f 6 C(X, E).
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14. Carbone and Conti [5, Corollary 1]" X is a subset of a Banach space E, f C(X,E).
g C(X,X) is surjective, and g-(y) is acyclic for each y X.

15. Sessa and Singh [8, Theorem 4]: X is a subset of a normed linear space E, f C(X,E).
and g e C(X, E) such that g(X) and g-t(y) are convex for y y(X).

16. Sessa and Singh [8, Corollary 1]" X is a nonempty weakly compact convex subset of a

normed linear space (E, [[-][), F f C((X, w), (E, [[. [[)), and g C((X, w), (E, w)) such that

g-l([y, z]) is convex for any y, z e g(X).
17. Sessa and Singh [8, Corollary 2]: X is a subset of a normed linear space E, and F

f,g C(X, E) such that g-([y,z]) is convex for any y,z g(X).
18. Ding and Tan [9, Theorem 4]" X is a weakly compact convex subset of a locally convex

Hausdorff topological vector space (E, r), g lx, and F K((X, w), (E, T)).
19. Park [29, Theorem 3]" X is a subset of E, g lx, and F "V(X,E).
20. Park [19, II, Theorem 4]: X is a subset of E, g l x, and F ’(X,E).
21. Park [13, Theorems 2(I) and 3]" X is a subset of (E, T) for (II).
22. Ding and Tarafdar [36, Theorems 3.3 and 3.3’]" F K(X, E).

From Theorem 3.1, we obtain the following coincidence theorem:

THEOREM 3.2. Let X be a Hausdorff compact convex space, E (E, T) a topological vector

space on which E" separates points, F P.I:(X, (E, w)), and g C(X, (E, w)) such that g(X)
is convex. Suppose that either (I) or (II) of Theorem 3.1 holds. Then there exists an x0 X
such that gxo Fxo whenever one of the following conditions holds:

For each x X with gx Bd g(X),
(0) for each z Fx and p S(E, w), p(gx z) > 0 implies

p(gx- z) > d,(z, Ig(x)(gx)).

(i) for each z Fx, there exists a number A (real or complex, depending on whether the

vector space E is real or complex) such that

[A[ < 1 and Agx + (1 A)z g(x)(gx).

(ii) Fx C I,(x)(gx).
(iii) for each z Fz, there exists a number A (as in (i)) such that

[A[ < and Agx + (1 A)z g(X).

(iv) Fx C IF,(x)(gx) {gx + c(u- gx) u g(X), Re(c) > 1/2}.
(v) Fx C g(X).

(vi) F(X)C g(X).

PROOF. (0) Clear from Theorem 3.1.

(i) For each p S(E, w) satisfying p(gx- z) > 0, put y := Agx + (1 A)z Ig(x)(gx). Then,

we have

(,(()) _< (- ) II(- ) < v(- ).

Therefore (0) holds.

(ii) If Fz C lg(x)(gx), then for each z Fz, we can choose A 0 in (i).
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(iii) Since g(X) C Ig(x)(gx), we clearly have (iii) == (i).

(iv) It is well known that (iv) (iii) [37].
(v) If Fx C g(X), then for each z Fx, we can choose A 0 in (iii).

(vi) Clearly. we have (vi) == (v).

REMARKS 3.2. 1. If F’ P.t[(X, (E, w)), where F’ is defined by F’x 2gx Fx for x X,
then the inward set in Theorem 3.2 can be replaced by the corresponding outward set.

2. If g Ix and P/ is replaced by K in Theorem 3.2(I), then the boundary conditions in

Theorem 3.2 can be replaced by more general ones. See [19].

PARTICULAR FORMS 3.2. We list major particular forms of Theorem 3.2.

1. If X is a subset of (E, T), F e ]K((X, ’), (X, -)), and g Ix, then the boundary condition

(vi) holds trivially. In this case, Theorems 2.1 and 3.2 include historically well-known fixed

point theorems of Brouwer (1912), Schauder (1927, 1930), Tychonoff (1935), Kakutani (1941),
Sohnenblust and Karlin (1950), Fan (1952, 1964), Glicksberg (1952), Granas and Liu (1986),
and many others. See [19].

2. Knaster et al. [38]: If X C is an n-cell in E IR, g lx, and f C(C, R") satisfies

f(Bd C) C C, then f has a fixed point in C.
3. Eilenberg and Montgomery [39, Theorem 6]: IfX C, E R, g x, and F

V(C, R) satisfies F(Bd C) C C, then F has a fixed point in C.
4. Halpern [40] and Browder [41, Theorem 1]: X is a subset of a locally convex Hausdorff

topological vector space E, g lx, and F f e C(X, E) such that fx Ix(x) [or fx Ox(x)]
for x (E X.

5. Halpern and Bergman [42, Theorems 4.1 and 4.3]" X is a subset of E, g lx, and

F f 6 C(X, E) such that fz
_
x(X) [or fx x(X)] for x 6 X.

6. Fan [1, Theorem 3]: X is a subset of E, E is locally convex, F f 6 C(X, E), and g x

such that the boundary condition (iii) holds.

7. Halpern [32, Corollaries 21 and 22]: X is a subset of a Banach space E, g x. and

F V(X,E) with Fx C ix(X) [or Fx C x(X)] for all x e X.

8. Reich [37, Theorem 1.7], [43, Theorem 3.1]: X is a subset of a iocaly convex Hausdorff

topological vector space E, g lx, and F
_
]K(X,E) such that Fx C IFx(x) {x +c(y-x)"

y X and Re(c)> 1/2}.
9. Fitzpatrick and Petryshyn [33, Corollary 1]" X is a subset of a strictly convex Banach

space E, g lx, and F (X,E) satisfies Fx C Ix(x) for all x 6 X.

10. Browder [44, Corollaries and 2]" X is a subset of a Banach space E, g x, and

F f C..(X,E) such that for each x 6 z with x fz, there exists a y Ix(x) satisfying

11. Sehgal and Singh [15, Corollary 2]: X is a weakly compact convex subset’ of a locally

convex Hausdorff topological vector space (E, T), g lx, and F f C((X, w), (E,’r)) [that
is, strongly continuous] with f(Bd X) C X.

12. Kaczynski [45, Theorems 1-4]: X is a subset of E, g lx, and F ]" 6 C(X, E) with

the condition (iii).
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13. Browder [46, Theorem 9]" X is a subset of a Banach space E, F 6 IK(X,E), and g lx
such that there is a continuous map p X [0, 1] such that for any x e X with x Fx we

have dist(x, Fx) > p(x) > dist(Fx, Ix(x)).
14. Arino et al. [47, Theorem 1]" X is a subset of a metrizable locally convex Hausdorff

topological vector space E, g lx, and F f e C((X, w), (E, w)) is weakly sequentially

continuous.

15. Ha [18, Theorem 4]: X is a compact convex subset of a Hausdorff topological vector

space, E a locally convex Hausdorff topological vector space, and F f, g 6 C(X, E) satisfying

the boundary condition (i) such that g(X) and g-’(y) are convex for y 6 g(Z).
16. Hadid [31, Theorem 3]" X is a subset of a normed vector space E, F f 6 C(X, E), and

g 6 C(X,X) is almost affine such that for each x 6 X with gx # fx the line segment [gx, fx]
contains at least two points of X.

17. Ha [35, Theorem 4]: X is a subset of a locally convex Hausdorff topological vector space

E, g lx, and F 6 K(X, E) with the condition (iii).
18. Roux and Singh [14, Theorem 5]: X is a subset of (E,r), g Ix, and F f 6

C((X, ’), (E, w)) with fx 6 -x(X) for all x 6 X.

19. Roux and Singh [14, Theorem 6]: X is a weakly compact convex subset of (E, T), g lx,

and F f E C((X, w), (E, r)) with fx 6 Ix(x) for all x 6 X.

20. Lin [3, Theorem 4]" X is a weakly compact convex subset of a locally convex Hausdorff

topological vector space, (E,-) locally convex, F f 6 C(X, (E, 7)), and g 6 C(X, (E,w))
with (ii).

21. Sehgal et al. [17, Corollary 6]: X is a weakly compact convex subset of a normed vector

space E, g x, and F f 6 C((X,w),E) such that for each x 6 X with z # fz, the line

segment Ix, fx] contains at least two points of X.

22. Ben-E1-Mechaiekh [48, Theorem 4.4]: X is a subset of E, E is locally convex, g x,

and F Kc(X, X).
23. Ben-EI-Mechaiekh and Deguire [21, Corollary 3.6], [22, Corollary 7.6]: X is a subset of

E, E is locally convex, g x, and F 6 %c(X,X).
24. Ding and Tan [9, Theorem 6]" X is a weakly compact convex subset of a locally convex

Hausdorff topological vector space (E, r), F 6 K((X, w), (E, r)), and g lx.
25. Park [29, Theorem 4]" X is a subset of E, g lx, and F 6 %r(X,E).
26. Park [19, II, Theorem 5]: X is a subset of E, g lx, and F 6 9.1(X,E).
27. Park [19, II, Corollary 5.1]" X is a subset of E, F f lx, and g 6 C(X,E) is affine

such that X C g(X) (which implies Agx + (1 A)fx x 6 X C g(X) C Ig(x)(gx) for A 0

and x 6 X).
28. Ding and Tarafdar [36, Theorems 3.4, 3.5, 3.4’, 3.5’]" F 6 K(X, E).

Finally, note that if g x, then Theorem 3.2(vi) reduces to Theorem 2.1. Therefore, in a

wide sense, Theorems 2.1, 3.1, and 3.2 are equivalent.
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