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ABSTRACT. In this paper we study those n-color partitions of Agarwal and Andrews, 1987, in which

each pair of parts has weighted difference equal to 2 Results obtained in this paper for these

partitions include several combinatorial identities, recurrence relations, generating functions, relationships
with the divisor function and computer produced tables. By using these partitions an explicit expression
for the sum of the divisors of odd integers is given It is shown how these partitions arise in the study of

conjugate and self-conjugate n-color partitions A combinatorial identity for self-conjugate n-color

partitions is also obtained. We conclude by posing several open problems in the last section
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1. INTRODUCTION, DEFINITIONS AND NOTATIONS
n-color partitions (also called partitions with "n copies of n") were imroduced by Agarwal and

Andrews in [2]. These are the partitions in which a part of size n, can come in n different colors denoted

by subscripts nl, n2, n,. Thus, for example, the n-color partitions of 3 are

31 32 33
2111 211
111111

If P(v) denote the number ofn-color partitions of v, then it was shown in [2] that

1 +E P()q H (I q)-. (I I)
v=l n=l

It was pointed out in [2] that since the fight hand side of (l.l) is also a generating function for the

MacMahon’s plane partition function so the number of n-color partitions of v equals the number of plane

partitions of v In terms of n-color partitions a class ofnew Rogers-Rarnanujam type identities was given

in the same paper. Further Rogers-Karnanujam Type identities using n-color partitions were found in

This was one of the advantages of studying n-color partitions as there are no Roers-Karnanujam Type
identities for plane partitions In this paper we define conjugate and self-conjugate n-color partitions and

obtain various combinatorial identities using these definitions. This will give another advantage of

studying n-color partitions since there are no self-conjugate plane partitions. It is worthwhile to remark



760 A K AGARWAL AND R BALASUBRANANIAN

here that conjugate and self-conjugate d(n)-color partitions, where d(n) is the numer of positive divisors

ofn have been studied by Agarwal and Mullen in [3]
We now give some definitions which we shall use in this paper
DEFINITION 1. Let H (al)b: + (a2)b2 + + (a)b be an n-color partition of We call

(a,),_b,+l the conjugate of (a,)b An n-color partition of obtained from 17 by replacing each of its

parts by its conjugate will be called the conjugate of H and will be denoted by lI For example, if we

consider YI 52 + 3, an n-color partition of 8, then l’I 55-2+1 + 33-+ 54 + 33
DEFINITION 2. We shall call an n-color partition to be self-conjugate if it is identical with its

conjugate I’V Thus 53 + 32 + 1 is a self-conjugate n-color partition of 9.

DEFINITION 3 (see [2]). The weighted difference of any pair of parts m,,n is defined by
m-i-n-j.

Throughout this paper A() will denote the number of n-color partitions of positive integer u where

the weighted difference of each pair of parts is 2 Thus A(,) 0 if _< 0. A(m, ) will denote the

number of partitions of enumerated by A() with the added restriction that there be exactly m parts

Obviously, A(m, ) 0 for < m
We shall also use nearest integer functions We define as follows

[zj r, (1.2)

whore r is the unique integer such that

1 1
x---<r<x-F-.

2- 2

2. COMBINATORIAL IDENTITIES
In this section we shall prove several combinatorial identities Our first identity is an easy

consequence ofthe definition of conjugacy

TItEOREM 2.1. Let B(,) denote the number of n-color partitions of u such that in each pair of

parts m,, n3(m > n) n is the arithmetic mean ofthe subscripts and j. Then

A(u) B(u),

EXAMPLE. A(5) 11 The relevant partitions in this case are 51,52,53, 54,55,4411,3122, 321,

331111, 2211 llll, 1111111111.
B(5) is also equal to 11, since in this case the relevant partitions are 51,52,53, 54,5s, 4111,3321,

3222,31111, 2111111, 1111111111
PROOF. Conjugacy is the natural bijection between the two classes. To see this, let 17 bca

partition enumerated by A(v). That is, each pair ofparts m, n3 in H satisfies the condition

m-n-i-j= -2. (21)

We claim that each pair of parts pq, r in II satisfies the condition

We see that
2

: Pp-q+l, rr-s+l 1"I
=, p- (p- q + l) r (r s + l) -2,
(by (2.1))

which is the same as (2.2).
To see the reverse implication let a be a partition enumerated by B(v) That is, each pair of parts

pq, r E a satisfies (2.2) We want to prove that each pair of parts m,, n in cr" satisfies (2 1)

Now
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)’)’)n E (yc :: PrI,m_+l)nn_2+ ( O"

(m- i-+- 1) / (n- 3 / 1)
which is the same as 2.1 This completes,,the,lro,o,f ofTheorern2

To illustrate the bijection ofTheorem 2.1, we provide the example for v 6

Partitions enumerated
by A(6)

61
62
63
64
65
66
5511
4222
4321
441111
3131
33111111
212121
2211111111
111111111111

Conjugacy Partitions enumerated
by/3(6)

66
65

63

61
5111
4321
4222
411111
3333
31111111
222222
2111111111
111111111111

REMARK. Using the idea of conjugacy, partition identities have been obtained for ordinary

partitions [4, Theorem 343, p. 274] and for d(n)-color partitions [3, Theorem 4 1, p 128] Following

the method ofproof ofTheorem 2 1, one can prove its following generalization
TIEOREM 2.2. Let Ak(v) denote the number of n-color partitions of v such that each pair of

parts has a weighted difference equal to k 2 Let Bk(v) denote the number of n-color partitions of

such that each pair of parts m,, n satisfies the condition + j 2n k Then A () Bk (v)
REMARK. Theorem 2.1 is a particular case k 0 of Theorem 2.2.

Theorem 2 is a combinatorial identity between two n-color partition functions Our next theorem

is a combinatorial identity between an n-color partition function on one side and an ordinary partition
function on the other side

TItEOREM 2.3. Let C(m, v) denote the number of ordinary partitio.ns of all numbers < v with

minimum part m and the differences between parts 0 or m 1 Then

A(m, v) C(m, ). (2 3)

EXAMPLE. Consider the case in which v 11 and rn 3 We see that A(3, 11) 5, since the

relevant partitions are 991111, 762121, 643122, 533131, 414132; also C(3,11)=5; in this case the

relevant partitions are: 3, 3 + 3, 3 + 5, 3 + 3 + 3, 3 + 3 + 5.

PROOF. For rn 1, the theorem is obviously true since A(1, v) v, the relevant partitions are

1, v2, v also C(1, v) v, in this case the relevant partitions are

1, 1+1, 1+1+1 1/1+...+1.

Now we consider the case when rn > 2. In this case we shall first prove that

A(rn, v) A(m,v- m)+ A(m,v- 2m + 1)- A(rn, v- 3rn / 1) + 1. (2 4)
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To prove (2 4), we split the partitions enumerated by A(m, v) into three classes

(i) those that do not contain kk(k >_ 1) as a part,

(ii) those that contain 11 as a pan, and

(iii) those that contain kk, (k > 1) as a part but not 11
We now transform the partitions in class (i) by deleting 1 from each pan ignoring the subscripts

Obviously, the transformed partition still satisfies the weighted difference condition so it will be a

partition enumerated by A(m,v m). In class (ii) we observe that 11 can appear only with kk(k >_ 1) in

order to satisfy the weighted difference condition. Also, no two pans kk and It with k > 1 and > I can

appear together This implies that corresponding to each value of rn(m > 1), there is one and only one

partition in class (ii) Finally, we transform the partitions in class (iii) by replacing kk by (k +
and then subtracting 2 from each part This will give a partition of u- 2m + 1 into m parts with

(k-1)k_ as a pan. Therefore, the actual number of panitions which belong to class (iii) is

A(m,- 2m + 1)- A(m, ,- 3m + 1), where A(m,- 3m + 1) is the number of panitions of

v- 2m + 1 into m pans which are free from the pans like kk(k > 1). The above transformations

clearly prove (2 4)
Now we set

Then

Next, we set

Then

Hence

D(m,v) A(m,v) A(rn, v- m), Vv. (25)

l" 0 if u < mD(rn,,t,,) D(m,t,,_ 2m + l) + l, if_>m
(26)

E(rn, v) D(m, v) D(rn, v 2m + 1), Vv. (2 7)

0 if , < m (2.8)E(m, 1
1 if t,>m

qm
1--q

Using the extreme of the foregoing string of equations in (2 7) and then the resulting equation in

(2 5), we get

(2 9)

comparing the coefficients ofq", we get

A(m,,)=C(m,u) for 2<m<u.

This completes the proofofTheorem 2 3.
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NOTE. We remark here that the first part of (2.9) can, alternatively, be proved by using (2 4)
Since if fm (q) ] A(m, v)q" then (2 4) yields

v--2

fro(q) qmfm(q) q- qm-lfm(q) q3m-lfm(q) H- qm(1 q)-I

GENERATING FUNCTIONS
Our discussion in the preceding section leads us to the following
TItEOREM 3.1.

(i) ’ A(I’ v)q
(1 q)2=1

(ii) E A(m’v)qV=
qm

v=2 (1 q)(1 qm)(1 q2m-1)’
rn >_ 2

(iii) A(m)q
v--1

qmq
+(1-q)2 (1-q)(1--qm)(1-q2m-1)

4. AN EXPLICIT FORMULA
In this section we given an explicit formula for A(m, v) We prove the following
THEOREM 4.1. Let r be the quotient of and denotes the nearest integer function defined by

(1 2) above Then

{r via1 if m >_ W--
---A(m, v)

if m < v+l
2m-1

2=0

v+lPROOF. Ifm > ---, then clearly A(m,v) 1 since the only relevant partition is

(v m + 1)v_m+
m-1 parts

v+lso we consider the case when m < -T-- In (2.6) above we write

v k(2m- 1) +g.

Then

D(m, k(2m 1) + e) D(m, (k 1)(2m 1) + g) + 1

D(m, (k 2)(2m 1) + g) + 2

D(m, g) + k

={k+l if e>m
k ifg<m

Hence

(4 1)

(2.5) in view of (4.1) can be written as

0 if u<m
A(m,v)= A(m,-m)+[ 2-_ if v_>m

In (4.2) we write v rm + s, then
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A(m, rm + s) a(m, (r-1)m + s) +]

-t-)r -I-9-)

r-1

2rn-1
1=0

This proves Theorem 4

5. A RELATIONSHIP WITH DIVISOR FUNCTION
In this section we shall prove a relationship between A(v) and d(v) where d(v) denotes the number

of positive divisors of v
THEOREM 5.1. Let a sequence {b} be defined by bl 1, b d(2v- 1)-d(i) 1, v _> 2

Let B be the sequence ofthe partial sums ofb Then

b=A(v)-2A(v-1)+A(v-2), v>_l (5 1)

hence,

B. A(v)- A(v-1), v>l. (52)

PROOF. From Theorem 3 (iii), we have

q2
(1 -q)

q2

Now writing the even m’s and odd m’s separately in c(q), we get

q21+ q2t
c(q) t> l q2e + e> 1- q2e-1

q2+1E f : -q-2e + b(q) e(q) + b(q), say

q2tq-le(q)
1 q2e" Replacing q by V/’, we get

q-e(q) e>x l qe Z d(n)q’
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Hence

Thus

Now

"(q) =E d(rt’)q2n+l --E d(m-1) qm"
n>_l m>_l

2

m>_l
2

qm E q(2m-1)(k-1)
m=l

1 q2m-1
m=l k>_l

E q2mk-m-k+l

Hence

Hence

q-la(q2) E q4mk-2m-2k-4-1__ E q(2m-1)(2k-1)
m,k m>_l,k>l- d(n)qn E d(2rn-1)q2m-1

odd m>l

a(q2) E d(2m- l)q2m

a(q) E d(2m- l)qm.
m>_l

Putting these results together, we get,

(l q)2 E A(v)q - d(2rn 1)q, E d(rn -1)q,
rn>_l

2

E (d(2m-1)-d(m-1))qm-Eqm.
m>_2

q2
(l-q)

p b B A()
1 1 1 1
2 1 2 3
3 0 2 5
4 1 3 8
5 0 3 11
6 1 4 15
7 1 3 18
8 3 6 24
9 2 4 28

10 1 5 33
11 1 6 39
12 1 7 46

A(v) The procedure is illustrated in the following table

On comparing the coefficients of q" in the last equation, we are led to (5 1) (5 2) follows from (5 1)

immediately once we note that the fight-hand side of (5.2) is the nth partial um ofthe right-hand side of

(5.1) This completes the proof of Theorem 5 1.

REMARK. We remark here that from Theorem 5 1, we get an algorithm to compute the values of
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From the table it is clear that each A(,) equals the sum of the number immediately above it in the table

and the number in the same row in the preceding column.

6. n-COLOR PARTITIONS WITH WEIGHTED DIFFERENCES :2 AND

kk (k _> 1) AS A PART.

It is easily seen that D(m, ,) defined by (2 5)above is the number of those partitions which are

enumerated by A(m,v,) and have kk(k >_ 1) as a part Let D(,) equal D(m,,) Following the

methods of preceding sections we can easily prove the following results:

THEOREM 6.1. Let F(m, ,) denote the number of ordinary partitions of all numers _< , into

parts where the lowest part is m which does not repeat and the differences between parts are 0 or m 1

Then

D(m, ,) V(m, ,).

EXAMPLE. Consider the case when rn 2 and v 11. We see that D(2, 11) 4, since the

relevant partitions are 101011, 9r22, 8433, 7144, also, F(2,11)= 4, since in this case the relevant

partitions are

2,2+3,2+3+3,2+3+3+3.

THEOREM 6.2.

q
(i) D(I’ u)q’

1 q

(ii) D(m; ,)q’
qm

(1 --q)(l _q2m-l)

(iii) E D(’)q’
(1 q)

b’--1
q)( qm-)"

THEOREM 6.3.

THEOREM 6.4. Let k be the quotient of Then

k-1

A(m, ,) Z D(m, , mj).
3=1

TItEOREM 6.5.

1
D(,)- D(,- 1) d(2,-

if ,=1

1)-1 if ,> 1"

Using Theorems 6.3 and 6.5, we shall now prove the following explicit expression for the sum of the

divisors of odd numbers:

THEOREM 6.6.

d(2j-1) [ 2--- 1"
.7=1

PROOF. Replacing , by 1, 2 t/in Theorem 6 5 and then adding all equations, we get
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that is

D(v) d(2j- 1)- (v- 1),
3=1

m_>2 3=1

This proves Theorem 6.6 by Theorem 6.3

7. A COMBINATORIAL IDENTITY FOR SELF-CONJUGATE r-COLOR PARTITIONS
In this section we shall prove a combinatorial identity which involves self-conjugate n-color

partitions defined in Section above.

TttEOREM 7.1. Let F(v) denote the number of self-conjugate n-color partitions of v and G(v)
denote those n-color partitions of v where each pair of parts has weighted difference greater than and

even parts appear with even subscripts and odd with odd Then F(v) G(v) for all

EXAMPLE. F(7) 5; the relevant partitions are

74, 53 + 11 + 11, 32 +

G(7) 5, in this case the relevant partitions are

PROOF. We observe that if an n-oder partition is self-conjugate then in each part m, of it, m must

be odd Because, m m,_+l = m 2i 1. Thus if we ignore the subscripts of all parts in a self-

conjugate n-color partition of v, we get a unique ordinary partition of v into odd parts. Conversely, ifwe

consider an ordinary partition of v into odd parts and replace each part 2a 1 by (2a 1)a We get a

unique self-conjugate n-color partition of v. This bijection shows that the number of self-conjugate n-

color partitions of v equals the number of ordinary partitions ofv into odd parts. That is,

1 + F(v)q" H 1

v=l n=l
1 q2n-1

Now an appeal to the following theorem 1, Theorem 1.4, p. 301]
"Let R(v) denote the number of n-color partitions of v such that each pair of parts has weighted

difference greater than 1 and even parts appear with even subscripts and odd with odd Let S(v) denote

the number of ordinary partitions of v into distinct parts. Then

R() S()"

proves Theorem 7.1.

$. A TABLE FOR A(m,
In this section we give a brief table of A(m, v) which was obtained on computer by using the

recurrence relation (2 4) above. The following observations can serve as a check on the table

Observation A(1, v) v,

Observation 2 A(m, v) 1, if m >
Observation 3 A(m, 2m) 2

Observation 4 A(m, 2m + 1) 2

We remark here that Observation was proved in the proof of Theorem 2 3 while Observation 2 in

the proof of Theorem 4.1 Observations 3 and 4 follow immediately once we note that the only partitions

enumerated by A(m, 2m) are

(rr + 1)m+i
m-1
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and those enumerated by A(m, 2m + 1) are

4
5
6
7
8
9

10
11
12
13
14
15

(mq-2)m+2 and 32.
m-1 m-1

1 2 3 4 5 6 7 8 9 10 11 "12 13 14 15
1
2 1
3 1 1
4 2 1 1
5 3 1 1 1
6 4 2 1 1 1
7 5 2 1 1 1 1
8 7 3 2 1 1 1 1
9 8 4 2 1 1 1 1 1
10 10 4 2 2 1 1 1 1 1
11 12 5 3 2 1 1 1 1 1 1
12 14 6 4 2 2 1 1 1 1 1 1
13 16 7 4 2 2 1 1 1 1 1 1 1
14 19 8 4 3 2 2 1 1 1 1 1 1 1
15 21 9 5 4 2 2 1 1 1 1 1 1 1 1

9: CONCLUSION
The most obvious questions arising from this work are:

1. Do the combinatorial identities of this paper have their analytic counterparts9 Our main hope in

pursuing the analytic aspects of these results is that we shall find q-identities resembling Euler’s

identities [4, p 277] or Rogers-Ramanujan identities [4, p 290] which will shed light on how to

proceed with further study ofthe identities ofthis paper.
2 Is it possible to prove the identities ofthis paper graphically9

3. By using n-color partitions we have given an explicit expression for d(2j- 1) Is it possible to

find similar expressions for d(2j)?
3=1
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