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1. INTRODUCTION AND PRELIMINARIES

The following concept of complete convergence was given by Hsu and Robbins [1].
DEFINITION 1.1. A sequence {X,, n > 1} of random variables converges completly to the

constant C if

The main result of Hsu and Robbins [1] states that for a sequence {X,, n > } of i.i.d, random
variables with zero expectation and EX2i < cxz, we have

P[lS’.l>ne] <, re>O, (1.1)

where Sn =1X, i.e. the sequence of arithmetic means ’n/n, n

_
1, completly convergence

to 0. Erds [2] proved the converse statement.

Extensions and generalizations of those results were summarized by A. Gut [3]. Extensions

of (1.1) to randomly indexed sums of i.i.d, random variables one can find in Szynal [4], Gut
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[5], Zhidong and Chun [6], Adler [7] and Klesov [8]. Some results concerning complete conver-

gence for randomly indexed sums of nonidenticaly distributed random variables were given by
Kuczmaszewska and Szynal [9], [10].
In this note we extend results on the complete convergence for randomly indexed sums in spirit
of Gut [5] and Klesov [8] to nonidentical distributed random variables.

We use the following concept of regular cover of the distribution of a random variable.

DEFINITION 1.2. (See Pruss [11]). Let X1,... ,X, be random variables and let be a random

variable possible defined on a different probability space. Then X1,..., X, are said to be a

regular cover of (the distribution of) provided we have

k--1

for any measurable function G for which both sides make sense. If X,..., X, are in addition

independent, then we say they form an independent regular cover of .
2. RESULTS.

l’he following theorem contains as a particular case the main result of Klesov [8].

THEOPM 2.1. Let {X,k, n > 1, k > 1} be an array of rowwise independent random
variables with EX,k O, EIX,,,:I" < o, for some r > 1, and n > 1, k > 1, such that

X,i,X,.,2,...,X,,n > 1, k > 1, form an independent regular cover of a random variable

with E 0,EII < oo, for some r > 1. Suppose that {v, k > 1} is a sequence of positive

integer-valued random variables Then for S. "=X, we have:

E n’"-P[ S.I _> ev] < x, V > O, (2.1)

for a > 1/2, ar > 1 and fl > 1, whenever

E n""-2P[v’ < n] < o0, (2.2)

and (2.1) holds true for a > 1/2, ar > 1, and 0 < < 1, whenever additionally with (2.2) the
condition

E n""-P[maxlX"kl > ev] < oo, Ve > 0 (2.3)

is satisfied.

PROOF. Firstly we prove that (2.2) and (2.3) with a > $, ar > 1, and 3 > 0 imply (2.1).
Taking into account

we see that we need only to show that

(2.4)
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Let J > (-)

(cf. Klesov [8])"

(1+5)< 7 < 1 and q be a positive integer such that q > (mr-l)"

q

B2) [q at least q indices

B(a)-- [1 Xr,l[IX,.,:l < r’’]] _> ’R],
q

where I[A] is the indicator function of an event A. Taking into account that

Define the sets

[IS. > -] B(1) B(’) B)

we note that (2.4) will be proved if we show that

1,2,3. (2.5)

For we have

E n"-P[B(I) 63 [r,, _> n]] _< E n"’-2P[2k < u,.," IXl 2 (u)/q]
rim1 n=l

In the case 2 we state that

E rt’"-2P[B2) C/[v, > nfl]

E

3--1

EIX,al"...EIX,k,{"I[v, j,u, >_ n]

3=1

n=l j=l k=q

kq --1 k2 --1

kq_.=q-1 kx=l

Now using the assumption (1.2) we get

’-’’ E  lxo ,l
n=l 1=1 kq=q k_=q-1 k=l

n=l j=l kq=q

k --1 ks --1

kq_=q-1 k=2
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n=l

as > -,7> andq> r--1

To prove (2.5) for 3 we write

<k<j,j> landn>l.

Then we see that

(2.6)

for every s > 0 and a positive constant c.

We note that the second term in the last inequality is finite as

(2.7)

for s > a(a-7)-a.-a"
Now we can write

But the Fuk-Nagv equty (cf. Fuk and Nagaev [12])"
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< 2(E P[ X, > qz] + (qz) lu ’dFx,(u)+ ezp(-
t=l

allows us to show thatwhere > 2, /= t--4-,

Now we see that

= [1 = :=

for s > (1-)"

Moreover, using the assumption on a regular cover (of. Deflation 1.2), we have

,= j>[] =:

,= _>[,.,1 k=

’= J_>[l

< constEll" Ej-=s+c+a(s-r)+l < o0

3=1

c+2fors> .(:-a)

Further on, we note that

E "=r-2 E j-as zS-lex,p(__ (l--r/)2z2

,=l >[] 2et E=, E(Y)
)dz

n=l ?>_[n$] k--1

n=l j_>[n] k=l

(2.9)

(2.10)

(2.11)

(2.12)
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Assume now that r > 2. Then we have

rt=l 3>[nO] k=l rt=l j>[rt]

< const j-as+c+s/2 < oo

j--1

for s > c+-1/-"
Similarly it can be proved that for r < 2

(2.13)

n’.-‘ j-o*(E EYa)’/2<_ const j-.[,.-I/2-o(2-,.,/2]+.< oo (2.14)

c@l <,. 2o--1whenever s > o--1/2+-x(2--r)/2 and " is such that "Z 2-

Collecting the estimates (2.7) (2.14) we see that the series in (2.6) converges which completes
the proof of (2.1) for/3 > 0.

But for the stronger reqrement/ _> 1 we note that the condition (2.3) is fulfilled under the

assumption EIX,.,,I" < oo, r >_ 1, k >_ 1, n >_ 1.

Indeed, we see that

<_v,

r--I r,’-I

E n"-2P[maxlX’’’l >
<v,

r-’-I

< const y (2m)’’-Ip max_.v,,,

_< const (2")’- P[ max IXv..t > e’, (2)a < ’. < (23+1)]

< const (2m)’-z P[ max
,,=z j=

_<(v+)

_< const E P[ max lX2-kl > (2")"] -(21)’’-
m=l k=l

_< const E (2m)o"-lP[,<(2,+,),
< const E (2")-1 P[IX2-l > (2")"]

m= <(2+)

m=x <(+)

m=l
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for/3 > 1, which gives (2.3) and ends the proof of Theorem 2.1.

Now we note that the condition (2.3) (0 < < 1) is fulfilled under a stronger moment condition

than that of Theorem 2.1.

COROLLARY. Let {X,;+, n > 1, k > 1} be an array of rowwise independent random variables

such that X,+I,X,.,2,...,X,+k, n > 1, k > 1, form an independent regular cover of a random
o,--1+,8

variable , and assume that EXnk O, EIXn: "’ < oo, n > 1, k > 1, E 0, and

If {v,, n > } is a sequence of positive integer-valued random variables such that

then for any given > 0

PROOF. It is enough to see that under the considered case the condition (2.3) is satisfied.

Since

<v.

then we need only to note that

< co=t 7: 2"+)’-P "= IX- > ,_ - > (2)’]
m=l

const (2m)ar- P[m IX,-! > e2 (2’) <u, < (2’+)z]+u

< const P[ m= IX2-+i > (2)"] (2+)(+)
=1

m=l

const (2m)ar- P[IX=-+I (2)]
m=a (+)

Note that the moment condition of Coronary is dose to optimM which shows the foowing
statement.
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TItEOREM 2.2. Let {X,k, n > 1, k > 1} be an array of rowwise independent random variables

such that X=I,Xr,.,...,X,.,k, n > 1, k > 1, form an independent regular cover of a random

variable , and assume that EX,.,: O.
Then for r > 1, a > 1/2, ar > 1, 3 > 0, the convergence of the series

(2.15)

implies E[
PROOF. Let /z, be a median of S,, i.e. #, {t P[S, < t] > 1/2}. By the standard

symmetrization inequalities (cf. LoSve [13]) we have

which by (2.15) gives

>l_p
2 S[,,][ _> 2na] > P[IS[,]- #[,,11 _> 2na]

>l_p
4 [S[,]- #[,] > 2n’*]

’ rtC’"-2P[H[n]- #[na] > 2fna] < o. (2.1fi)

We note that T, sup{T "P[ > T] > 4-)" We note that T= > T,--I, and

(2.17)

a,.-x+
If the T, are all negative then P I < 0] so E(+) 0 < o. Thus, assume that for n

sufficiently large we have r, _> O. Moreover, we note that by (2.17)

(2.18)

< nP[ > T,] riB(1 P[ < Tn]) < 1.
4

Furthemore, for k E {1,..., In’I} define {pn, 1 < k < [n]} with

p,: sup{p P[St,a X,.,: > p] > -}.
Then we have

2

Using the independence S[,] X, and X,,k, (2.18) and (2.19) we get

(2.19)

P [St,, < r, + p,k] _> P[X,.,. <_ T., S[,1- X, < p,]

Now using

<_ <_

(1- P[XnI > Tn])P[S[n]- Xni, < Pn.] > 1__.
2

T,, [X, > 2n’ + r,], R,, := [S[,,z]- X,,k > p,]
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we see that

In

[n

>- Z P T. rl o T_. rl T, o R,.,,]
k-1

[n
> Z{P[T,.,. N .R.,.,,] P[(T,.,1 U... U T,.,_I) f3 R.,.,,] }

Having r,, _> 0 for sufficiently large n we get

< nP[, > 2en’ + r,] nt(1 P[ < 2ent + r,]) < 1

4’
where we have used the covering identity (1.1) as well as (2.17).
Thus, (2.20) implies that

P[S[,0] >_ 2en’t + ,u[,.]] >_ l[nt]P[( > 2en’’ +
for n sufficiently large.
Hence, by (2.16) we conclude that

which is equivalent to

Z (2’)’-+P[ > 2e(2") + r2,-] <cx.

Similarly as in Pruss [11] (cf. Lemma 4) we can show that for m sufficiently large we have

(2.20)

(2.21)

Assume that M is a positive integer number such that

r+, <_ 2(2") + -, for m>M.

Iterating this inequality for m > M we obtain

r-, < 2e(2’)’ +
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which gives 2(2") + ’2" < 4(2")
Therefore, using (2.21), we have

(2")"-1+P[ > 4(2")a + r..] < o

which proves that

> n’"-2+P[ > 4ena + r2M]

>- Z na-2+P[ > (4 + r2.)n"t] _> constE(+)

a,--x+t

Similarly one can show that E(-) o0 < o, which completes the proof of Theorem 2.2.
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