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ABSTRACT. Three classes of locally connected continua which admit sufficiently many maps

onto non-metric arcs are investigated. It is proved that all continua in those classes are contin-

uous images of arcs and, therefore, have other quite nice properties.
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INTRODUCTION

Let C denote the class of all Hausdorif continuous images of ordered continua. In the last

three decades the class C has been studied extensively by a number of authors (see e.g. [2],
[4], [6-8], [11-13], [16-22], [26] and [27]). Two results from this study have suggested that the

investigation could naturally be extended to the larger class TiM of all rim-metrizable, locally

connected continua. Namely, (1) in [8] in 1967 Mardeid proved that each element of C has

a basis of open Fa-sets with metrizable boundaries, and (2) in [4] in 1991 Grispolakis, Nikiel,

Simone and Tymchatyn showed that if a set P is irreducible with respect to the property of

being a compact set which separates the element X of C, then P is metrizable.
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I his 1989 thesis [23] and two subsequent papers [24] and [25] Tuncali began an investigation

of the class 7M and continuous images of elements of that class. He showed that Treybig’s

product theorem of [18] which holds in C is no longer valid in RM. However, he proved that

Mardeid’s theorem for C on preservation of weight by light mappings is true in RM, [25]. He

also considered the class T.s of all rim-scattered, locally connected continua, and the class Rc
of all tim-countable, locally connected continua. Later, Nikiel, Tuncali and Tymchatyn gave an

example to show that R.c is not a subclass of t?, [15]. Then, recently the authors of this paper

showed the the continuous image of an element of 7ZM need not be in R.M, [14]. Furthermore,

Drozdovsky and Filippov proved in [3] that Rs is a larger class of spaces than/Zc.

Also, in 1973 Heath, Lutzer and Zenor, [5], showed that every linearly ordered ordered

topologic space and each of its Hausdorff continuous and closed images are monotonically

normal. In [10] in 1986 Nikiel asked if every monotonically normal compactum is the continuous

image of a compact ordered space. That problem still remains open. In what follows we let

R.MN denote the class of monotonically normal, locally connected continua. Our first result is

th,e following:

THEOREM 1. If X E M JS U .MN and for each pair of points a, b E X there exists

a continuous onto map f: X [c, d] such that f(a) c, f(b) d and [c, d] is a non-metrizable

arc, then X ?.

We note that a large class of examples satisfying the properties of X above can be con-

structed as follows: In [1] in 1945 Arens studied the class of linear homogeneous continua, that

is the class of arcs which are order isomorphic to each of their subarcs. Arens showed, that up

to a homeomorphism, there exist at least R1 members of , including the real numbers interv

[0,1]. Thus, some spaces X as in Theorem 1 could be obtained by pasting together copies of

any Z.
If a subset B of a space P contains no dense-in-itself, non-empty subset, we say that B is

scattered.

In this paper the definition of monotone normality we use is an equivalent one given in

Lemma 2.2 (a) of [5]. It says that a space P is monotonically normal provided there is an

operator G which assigns to ear ordered pair (S, T) of mutually separated subsets of P an

open set G(S, T) such that

(i) S C G(S,T) C cl(G(S,T)) C P- T, and

(ii) if (S’,T’) is also a pair of mutually separated sets such that S C S’ and T’ C T, then

G(S, T) c (S’, T’).

PROOF OF THEOREM 1. Suppose that X is not hereditarily locally connected. Then,

there exists a subcontinuum C of X such that C fails to be connected im kleinen at the point

p. Utilizing the ideas in Theorem 11, p. 90, of Moore [9], there exists a connected open set U

containing p, a sequence R1, R2, R3,... of connected open in X sets containing p, and a sequence
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G1, G2, G3,... of continua such that

(2) G.R, #and G,R.+x =@ for n 1,2,3

(3) each G, is a component of U [3 C and G, (3 bd(U) y for n 1, 2, 3,...; and

(4) G. f’l Gm= 1 if n rn, and there exist mutually exclusive open sets V1, V2, Vs,. such that

G, C V,, for n 1,2,3,...

For each positive integer n let H, be a component of G, R which intersects bd(Rl)

and bd(U), and let s. H. Iq bd(R1) and t, H, N bd(U). Let H0 denote the limiting set

of the sequence H, H2, H3,...; which by definition is the set of all x such that every open set

containing x intersects infinitely many sets H,.

Let L (resp. L2)denote the limiting set of {sl}, {s2}, {3}, (resp. {t}, {t2}, {t3}, ...).

There exists (s, t) L x L2 so that if V is a neighborhood of s and W is a neighborhood of t,

then (s., t.) belongs to V x W for infinitely many n.

We shall show that some component of H0 contains s, }. If not, then H0 is the union of

two mutually separated sets S and T such that s S and T. There exist disjoint open sets

V and W so that S C V and T C W. Then (sn, t,) belongs to V x W for infinitely many n.

Since each H. is a continuum, H, gl (X (V U W)) 1 for infinitely many n. It follows that

some point of H0 lies in X (V U W), a contradiction.

Let f" X [c,d] be a continuous map onto a non-metrizable arc [c,d], where f(s) c

and f(t) d. There is an increasing sequence nl, n2, n3 of positive integers such that

(1) f(s.,) >_ f(s..+,) and f(t.,) <_ f(t.,+,) for 1,2,...;

(2) f(s,.) c and f(t,,) d; and

(3) [f(s., ), f(t,,)] is not metrizable for 1, 2

Let c’= f(snt) and d’= f(t,t).
Our proof now divides into three cases.

CASE 1. X 7M. For each n > 2 let M, denote a metrizable closed set lying in

X- Urn--1 Ht such that if 1 < < j < n, then H, and Hj are selarated in X by M,. Let

D. denote a countable set dense in M, for n 2, 3,... We intend to show that f 0=2 Dr) is

dense in [c, d], which would mean that [c, d] is separable, and therefore metric, a contradiction.

Let x (5 ]c, d[ and let c < u < x < v < d in the natural ordering of [c, d]. The components

of f-(]u, vD which have limit points in both f-(u) and f-(v) can be labeled P,P2,... ,P,o.
Let No be an integer such that if >_ No then s,, f-l([c,u[) and t,, f-(]v,d]). There

exist two of No,No + 1,... ,No + no, say and j, such that Ha. and Ha, both intersect the same

Pt, which must then intersect some D,.. Therefore, 0=2 f(D) intersects ]u, v[.
CASE 2. X 7MN. For eaz.h 1,2,... let Qi denote a component of Hn, CIf- ([c’,d’])

which intersects f-(c’) and f-(d’), and let Q0 denote the limiting set of Q, Q2, Q3,... We

note that some component of Q0 intersects both f-(c’) and f-l(d’) since every map onto an

arc is weakly confluent.
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By Remark 2.3 (c) of [5], Z [,.J,__0 Q,, is monotonically normal; so let be a monotone

normality operator on Z as in the earlier definition. For each closed set F in [c, d] let QF

{x f(x) 6- F and x 6- Z- Q0}, and let RF {x f(x) 6- [c’,d’]- F and x 6- Q0}.

Now, QF and RE are mutually separated subsets of Z; so for each positive integer n, let

T(F,n) {y 6_ [c’,d’] y f(x) for some x 6- Q, Cl(QF,RF)}. It can be shown that T is

stratification for [c’, d’]. Since each stratifiable compact space is metrizable, [c’, d’] is metrizable,

a contradiction.

CASE 3. X 6- Ts. For each/= 1, 2,3,... let K, denote a component of H,. fir-1 ([c’, d’])
which intersects f-1 (c,) and f-1 (d’).

We have to consider some subcases.

CASE 3A. [c’, d’] contains uncountably many mutually exclusive open sets.

CASE 3A1. [c’,d’] does not satisfy the first axiom of countability. Thus, without loss of

generality, assume that there is a subset {da a < w of [c’, d’] such that a < a2 implies that

da, < da2 in [c’, d’], and da d’.

Let K0 denote the limiting set of K1, K2, K3,... Let Q denote a component of K0 which

intersects both f-(c’) and f-(d’). For each a < Wl let Wa denote a connected open set such

that Wa contains a point Xa of Qcl f-(]da, da+[), and Wa c f-(]da, do,+[).
There exists a positive integer no and a cofinal subsequence {dan } of da such that

Kn0 # @ for all a0. For each 7 < wx let L, denote the closure of the set 0_>, Wa. Let

L -<,01 Lv. Observe that if y 6- L, then each open neighborhood of y intersects uncountably

many sets War. Let W be a component of L. Note that WClK, # 0 # QclW and W C f-(d’).
Thus, W is a non-degenerate continuum.

Let M0 and M1 be connected open sets such that 00N M---’" 0 and M, Cl W # 0 for 0,1.

Let {Mo,M }.
Now suppose that , has been chosen and consists of 2 mutually exclusive connected open

sets such that if G,G’ q , and G # G’, then C G’’7 1 and G Cl I # l # G’ N W. For

each G’ 6- , let G and G be mutually exclusive connected open sets such that Go Cl G1
GUG C G’ and GW # 0 # G W. Let ,+ {F- F G or F G for some

G’ 6- g,}. For each n let H: n and let H [n=l gn"

There exists $0 < w such that G’ Cl f-(do for each G’ 6- U=. There exists a

closed scattered set c in X which separates f- ([c, d0] from f-(d’). However, CglH contains

a perfect set because c Cl H can be mapped onto a Cantor set, and it is well known that a

scattered set cannot be mapped continuously onto a perfect set. This is a contradiction.

CASE 3A2. [c’, d’] satisfies the first axiom of countability at each point. Let {]ca,
a < w } denote an uncountable collection of mutually exclusive open intervals in ]c’, d’[. Using

the local connectivity of X we find that for each a there exists only a finite number, say ha, of

components of f- (]ca, da[) which have limit points in both f-(ca) and f-l(d,,). Some integer

No n= repeats for uncountably many a,’s; so we may suppose without loss of generality that
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n,, No for each a < w.
There exists a closed scattered set S such that S separates K, from Kj for each pair i,

such that 1 _< < j _< No + 1. Thus, since for each a, each set K, where 1 _< _< No + has

the property that some component of K, N f-l(]ca, d,[) has limit points in both f-’(ca) and

f-l(d,), it follows that S must intersect each f-1 (]ca, da[).
Since [c’, d’] is first countable, there exist collections 1, 2, g3,--- such that (1) each

consists of 2 mutually exclusive closed intervals in [c’,d’], and (2) each element of each

contains exactly two elements of ,,+1 and contains uncountably many elements of {]ca,d[:
<wl}.

For each positive integer n let L’, [.J,,, and let L’ --1L. We find that S f-(L’)
contains a perfect set, a contradiction.

CASE 3B. [c,d] is not metrizable and does not contain uncountably many mutually

exclusive open sets (i.e., it is a Souslin line). Thus, [c’, d’] satisfies the first axiom of countability.

If there exists a collection of metrizable open intervals whose union is dense in [c, d], we find

that [c’, d] is metrizable since it is separable. Hence, without loss of generality we may assume

that [c, d’] contains no metrizable subinterval.

Similarly as above, for each Ix, y[ C [d, d’] we let nz denote the number of components of

f-(]z,y[) with limit points in both f-(x) and f-(y).

CASE 3B. Suppose there exists a positive integer No and a subinterval Ix, y[ of

such that ifx _< z < w _< y, then n, _< No. Let S be aclosed scattered set such that if

1 _< < j _< No + 1, then S separates K, from Kj. Using the ideas from Case 3A we find that

if x _< z < w _< y, then S ]’-(]z, w[) # . Therefore, f(,.S) :3 Ix, y], which contradicts the

well-known fact that a scattered compactum can not be mapped onto a perfect set.

CASE 3B2. Assume that for every Ix, y[ C [c’, d’] there exists an interval ]z, w[ C Ix, y[ such

that n,o > n=.
For each positive integer n let ,, be maximal relative to the property of being a collection of

mutually exclusive open intervals lying in [d, d’] such that if Ix, y[ ,, then nffi n. Note that

each ,, is at most countable. Let S,, denote the set of all end-points of intervals which belong

to ,,. We are going to show that U,,__ Sn is dense in [c’, d’], and thus obtain a contradiction.

Let Ix, y[ C [d, d]. There exists ]z, w[ C Ix, y[ such that n > nz. Thus, x # z or y # w.

By maximality of ,,,, there exists Is, t[ e ,,, such that ]s, t[ g ]z, w[ # }. But Is, t[ ]x, y[,

and so s e Ix, y[ or e Ix, y[. Therefore, the set U,,__ s,, is dense in [c’, d’], a contradiction.

The consideration of subcases 1, 2 and 3 is concluded and we return now to the main proof.

Since X is hereditarily locally connected, it is the continuous image of an arc by [12].
THEOREM 2. If X is as in Theorem 1, then

(a) X is rim-finite,

(b) every subcontinuum G of X has the property that some point or a pair of points separates

G, and
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(c) each closed set irreducible with respect to the property of being a compact set which sepa-

rates X is metrizable.

PROOF. The claims (a), (b) and (c) follow from [19], [18] and [4], respectively, because

X contains no non-degenerate metric continuum.

Given a locally connected continuum X, for each pair of distinct points a, b of X let IX, a, b]
denote the class of all continuous maps f X P such that P f(X) is a non-metric arc

with end-points c and d and f(a) c and f(b) d. Also, introduce a relation on X in the

following way: a b if and only if a b or [X, a, b] .
THEOREM 3. Suppose that X is a locally connected continuum. Then is an equiv-

alence relation on X, and if X also satisfies the first axiom of countability, then equivalence

classes of are closed and the set ’ of equivalence classes of is upper semi-continuous.

PROOF. is easily seen to be reflexive and symmetric, so suppose that a b and b c

hold, but that there exists f E IX, a, c] such that f(X) is a non-metric arc [d, e] with f(a) d

and f(c) e.

CASE 1. f(b) d. Then f E IX, b, c], a contradiction.

CASE 2. f(b) e analogous to Case 1.

CSE 3. d < y(b) < . T o of t5 [d,y(b)] d [y(b),] is non-mettle, so

suppose [d, f(b)] is non-mettle. Define r "[d,e] [d, y(b)] o that () if x E [d, f(b)] and

r(z) f(b) if z If(b), el. Clearly, r o f . [X,a, hi, a contradiction.

Let us now show that each equivalence class G

and suppose that x E - G. There exists a countable basis U1, U,... of open neighborhoods

of x in X and a sequence x,z2,.., of points of G such that x, U, for 1,2,... Let

f" X --, [c,d] be a continuous map onto a non-metric arc [c,d], where f(zl) c and f(z) d.

Since each [y(),y(z)] is a metric subarc of [c,d], it follows that [c,d] is the closure of a

countable union of mettle ares. Consequently, [c,d] is separable, and therefore mettlzable, a

contradiction. Thus G is closed in X.

It remains to show that is upper semi-continuous if X is first countable. Let the element

G of ’ be a subset of an open set U. Suppose that for each open set V such that G C V C U,

there is an element Gv of so that V Iq Gv l and Gv . U. Thus, for some point x of G

there is a countable basis U, U,... of open neighborhoods of z such that for each U, there is

an element G, of " with the property that G, fq U, } Gi tq (X U).

There is a point y of X U so that every neighborhood of y intersects Gi for infinitely

many i. We may assume without loss of generality that there exists y, G, [q (X U) for each

i, and that the points yi converge to y. Let z, E Ui f’l G, for 1, 2,...

There exists f [X,z, y] such that f X [c,d], where [c, d] is a non-metric arc, f(x) c

and f(y) d. Since the points f(z,) converge to c, and the points f(yi) converge to d, and each

arc If(z,), f(y,)] is metric, we find that [c,d] is metric a contradiction.
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THEOREM 4. Suppose that X E ’’M [..J ’S [,..J TMN and X is first countable. Let be

the family of all components of sets in ’. Then X/TI is the continuous image of an arc.

PROOF. Since c is upper semi-continuous, 7"/is upper semi-continuous as well (see e.g.

[28]). Thus, 7 is a upper semi-continuous decomposition of X into closed sets and the quotient

space X/TI is a locally connected continuum.

If X/TI is hereditarily locally connected, we apply the main result of [12] to obtain the

desired conclusion.

Otherwise, in X/7"t there is a subcontinuum C such that C fails to be connected im kleinen

at a point P. There is thus an open set W in X/7"I such that P E W but the component of

W N C containing P contains no relatively open subset of C containing P. Let Q denote the

element of c containing P. There is a closed subset S of X such that S C [J W- Q and S

separates P from bd([J W) in X. Let :X X/7"I denote the natural map and let B (S).
Let U denote the component of X/TI- B which contains P. Using the facts that is upper

semi-continuous and that Q N S }, we let R1, R2,... G1, G2,... V, V2 be subsets of X/7"I

,similarly as in the proof of Theorem 1, except for the additional condition that no element of ’
intersects cl([,J R) and bd([,J U).

Now, let s,s2,.., and t,t2,.., be such that s, E ([.J G,)g (Ubd(R1)) and t, E (UG,)

( bd(U)) for 1, 2,... Since X is first countable, we may assume without loss of generality

that the points s, converge to some point s, and the points t, converge to some point t, and the

limiting set L of [.J G, U G, G3, is a continuum containing s and t.

There is an f e [X,s,t] such that f(X)is a non-metric arc [c,d] with f(s) cand f(t) d.

We may now obtain a contradiction as in the proof of Theorem 1.
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