LOCAL CONNECTIVITY AND MAPS ONTO NON-METRIZABLE ARCS

J. NIKIEL

American University of Beirut
Beirut, Lebanon
nikiel@layla.aub.ac.lb
and
L.B. TREYBIG

Texas A \& M University
College Station, Texas 77843-3368, USA
treybig@math.tamu.edu
and
H.M. TUNCALI

Nipissing University
North Bay, Ontario, Canada P1B 8L7
muratt@einstein.unipissing.ca
(Received December 15, 1995 and in revised form July 6, 1996)

Abstract

Three classes of locally connected continua which admit sufficiently many maps onto non-metric arcs are investigated. It is proved that all continua in those classes are continuous images of arcs and, therefore, have other quite nice properties.

KEY WORDS AND PHRASES: arc, locally connected continuum, monotonically normal, rim-countable, rim-finite, rim-metrizable, rim-scattered

1991 AMS SUBJECT CLASSIFICATION CODES: Primary 54F15, Secondary 54C05 54F05

INTRODUCTION

Let \mathcal{C} denote the class of all Hausdorff continuous images of ordered continua. In the last three decades the class \mathcal{C} has been studied extensively by a number of authors (see e.g. [2], [4], [6-8], [11-13], [16-22], [26] and [27]). Two results from this study have suggested that the investigation could naturally be extended to the larger class \mathcal{R}_{M} of all rim-metrizable, locally connected continua. Namely, (1) in [8] in 1967 Mardesić proved that each element of \mathcal{C} has a basis of open F_{σ}-sets with metrizable boundaries, and (2) in [4] in 1991 Grispolakis, Nikiel, Simone and Tymchatyn showed that if a set P is irreducible with respect to the property of being a compact set which separates the element X of \mathcal{C}, then P is metrizable.

In his 1989 thesis [23] and two subsequent papers [24] and [25] Tuncali began an investigation of the class \mathcal{R}_{M} and continuous images of elements of that class. He showed that Treybig's product theorem of [18] which holds in \mathcal{C} is no longer valid in \mathcal{R}_{M}. However, he proved that Mardesić's theorem for \mathcal{C} on preservation of weight by light mappings is true in \mathcal{R}_{M}, [25]. He also considered the class \mathcal{R}_{S} of all rim-scattered, locally connected continua, and the class \mathcal{R}_{C} of all rim-countable, locally connected continua. Later, Nikiel, Tuncali and Tymchatyn gave an example to show that \mathcal{R}_{C} is not a subclass of \mathcal{C}, [15]. Then, recently the authors of this paper showed the the continuous image of an element of \mathcal{R}_{M} need not be in \mathcal{R}_{M}, [14]. Furthermore, Drozdovsky and Filippov proved in [3] that \mathcal{R}_{S} is a larger class of spaces than \mathcal{R}_{C}.

Also, in 1973 Heath, Lutzer and Zenor, [5], showed that every linearly ordered ordered topological space and each of its Hausdorff continuous and closed images are monotonically normal. In [10] in 1986 Nikiel asked if every monotonically normal compactum is the continuous image of a compact ordered space. That problem still remains open. In what follows we let $\mathcal{R}_{M N}$ denote the class of monotonically normal, locally connected continua. Our first result is the following:

THEOREM 1. If $X \in \mathcal{R}_{M} \cup \mathcal{R}_{S} \cup \mathcal{R}_{M N}$ and for each pair of points $a, b \in X$ there exists a continuous onto map $f: X \rightarrow[c, d]$ such that $f(a)=c, f(b)=d$ and $[c, d]$ is a non-metrizable arc, then $X \in \mathcal{C}$.

We note that a large class of examples satisfying the properties of X above can be constructed as follows: In [1] in 1945 Arens studied the class \mathcal{L} of linear homogeneous continua, that is the class of arcs which are order isomorphic to each of their subarcs. Arens showed, that up to a homeomorphism, there exist at least \aleph_{1} members of \mathcal{L}, including the real numbers interval $[0,1]$. Thus, some spaces X as in Theorem 1 could be obtained by pasting together copies of any $Z \in \mathcal{L}$.

If a subset B of a space P contains no dense-in-itself, non-empty subset, we say that B is scattered.

In this paper the definition of monotone normality we use is an equivalent one given in Lemma 2.2 (a) of [5]. It says that a space P is monotonically normal provided there is an operator G which assigns to each ordered pair (S, T) of mutually separated subsets of P an open set $G(S, T)$ such that
(i) $S \subset G(S, T) \subset \operatorname{cl}(G(S, T)) \subset P-T$, and
(ii) if (S^{\prime}, T^{\prime}) is also a pair of mutually separated sets such that $S \subset S^{\prime}$ and $T^{\prime} \subset T$, then $G(S, T) \subset G\left(S^{\prime}, T^{\prime}\right)$.
PROOF OF THEOREM 1. Suppose that X is not hereditarily locally connected. Then, there exists a subcontinuum C of X such that C fails to be connected im kleinen at the point p. Utilizing the ideas in Theorem 11, p. 90, of Moore [9], there exists a connected open set U containing p, a sequence $R_{1}, R_{2}, R_{3}, \ldots$ of connected open in X sets containing p, and a sequence
$G_{1}, G_{2}, G_{3}, \ldots$ of continua such that
(1) $U \supset \overline{R_{1}} \supset R_{1} \supset \overline{R_{2}} \supset R_{2} \supset \ldots$;
(2) $G_{n} \cap R_{n} \neq \emptyset$ and $G_{n} \cap R_{n+1}=\emptyset$ for $n=1,2,3, \ldots$;
(3) each G_{n} is a component of $\bar{U} \cap C$ and $G_{n} \cap \mathrm{bd}(U) \neq \emptyset$ for $n=1,2,3, \ldots$; and
(4) $G_{n} \cap G_{m}=\emptyset$ if $n \neq m$, and there exist mutually exclusive open sets $V_{1}, V_{2}, V_{3}, \ldots$ such that $G_{n} \subset V_{n}$ for $n=1,2,3, \ldots$
For each positive integer n let H_{n} be a component of $G_{n}-R_{1}$ which intersects bd $\left(R_{1}\right)$ and $\operatorname{bd}(U)$, and let $s_{n} \in H_{n} \cap \mathrm{bd}\left(R_{1}\right)$ and $t_{n} \in H_{n} \cap \mathrm{bd}(U)$. Let H_{0} denote the limiting set of the sequence $H_{1}, H_{2}, H_{3}, \ldots$, which by definition is the set of all x such that every open set containing x intersects infinitely many sets H_{n}.

Let $L_{1}\left(\right.$ resp. $\left.L_{2}\right)$ denote the limiting set of $\left\{s_{1}\right\},\left\{s_{2}\right\},\left\{s_{3}\right\}, \ldots$ (resp. $\left\{t_{1}\right\},\left\{t_{2}\right\},\left\{t_{3}\right\}, \ldots$). There exists $(s, t) \in L_{1} \times L_{2}$ so that if V is a neighborhood of s and W is a neighborhood of t, then $\left(s_{n}, t_{n}\right)$ belongs to $V \times W$ for infinitely many n.

We shall show that some component of H_{0} contains $\{s, t\}$. If not, then H_{0} is the union of two mutually separated sets S and T such that $s \in S$ and $t \in T$. There exist disjoint open sets V and W so that $S \subset V$ and $T \subset W$. Then $\left(s_{n}, t_{n}\right)$ belongs to $V \times W$ for infinitely many n. Since each H_{n} is a continuum, $H_{n} \cap(X-(V \cup W)) \neq \emptyset$ for infinitely many n. It follows that some point of H_{0} lies in $X-(V \cup W)$, a contradiction.

Let $f: X \rightarrow[c, d]$ be a continuous map onto a non-metrizable arc $[c, d]$, where $f(s)=c$ and $f(t)=d$. There is an increasing sequence $n_{1}, n_{2}, n_{3}, \ldots$ of positive integers such that
(1) $f\left(s_{n_{i}}\right) \geq f\left(s_{n_{1+1}}\right)$ and $f\left(t_{n_{i}}\right) \leq f\left(t_{n_{i+1}}\right)$ for $i=1,2, \ldots$;
(2) $f\left(s_{n_{i}}\right) \rightarrow c$ and $f\left(t_{n_{i}}\right) \rightarrow d$; and
(3) $\left[f\left(s_{n_{i}}\right), f\left(t_{n_{i}}\right)\right]$ is not metrizable for $i=1,2, \ldots$

Let $c^{\prime}=f\left(s_{n_{1}}\right)$ and $d^{\prime}=f\left(t_{n_{1}}\right)$.
Our proof now divides into three cases.
CASE 1. $X \in \mathcal{R}_{M}$. For each $n \geq 2$ let M_{n} denote a metrizable closed set lying in $X-\bigcup_{k=1}^{n} H_{k}$ such that if $1 \leq i<j \leq n$, then H_{i} and H, are separated in X by M_{n}. Let D_{n} denote a countable set dense in M_{n} for $n=2,3, \ldots$ We intend to show that $f\left(\bigcup_{k=2}^{\infty} D_{k}\right)$ is dense in $[c, d]$, which would mean that $[c, d]$ is separable, and therefore metric, a contradiction.

Let $x \in] c, d[$ and let $c<u<x<v<d$ in the natural ordering of $[c, d]$. The components of $f^{-1}(] u, v[)$ which have limit points in both $f^{-1}(u)$ and $f^{-1}(v)$ can be labeled $P_{1}, P_{2}, \ldots, P_{n_{0}}$. Let N_{0} be an integer such that if $i \geq N_{0}$ then $s_{n_{1}} \in f^{-1}\left(\left[c, u[)\right.\right.$ and $\left.\left.t_{n_{1}} \in f^{-1}(] v, d\right]\right)$. There exist two of $N_{0}, N_{0}+1, \ldots, N_{0}+n_{0}$, say i and j, such that H_{n}, and H_{n}, both intersect the same P_{ℓ}, which must then intersect some D_{m}. Therefore, $\bigcup_{k=2}^{\infty} f\left(D_{k}\right)$ intersects $] u, v[$.

CASE 2. $X \in \mathcal{R}_{M N}$. For each $i=1,2, \ldots$ let Q_{i} denote a component of $H_{n_{i}} \cap f^{-1}\left(\left[c^{\prime}, d^{\prime}\right]\right)$ which intersects $f^{-1}\left(c^{\prime}\right)$ and $f^{-1}\left(d^{\prime}\right)$, and let Q_{0} denote the limiting set of $Q_{1}, Q_{2}, Q_{3}, \ldots$ We note that some component of Q_{0} intersects both $f^{-1}\left(c^{\prime}\right)$ and $f^{-1}\left(d^{\prime}\right)$ since every map onto an arc is weakly confluent.

By Remark 2.3 (c) of [5], $Z=\bigcup_{n=0}^{\infty} Q_{n}$ is monotonically normal; so let \mathcal{G} be a monotone normality operator on Z as in the earlier definition. For each closed set F in $\left[c^{\prime}, d^{\prime}\right]$ let $Q_{F}=$ $\left\{x: f(x) \in F\right.$ and $\left.x \in Z-Q_{0}\right\}$, and let $R_{F}=\left\{x: f(x) \in\left[c^{\prime}, d^{\prime}\right]-F\right.$ and $\left.x \in Q_{0}\right\}$. Now, Q_{F} and R_{F} are mutually separated subsets of Z; so for each positive integer n, let $T(F, n)=\left\{y \in\left[c^{\prime}, d^{\prime}\right]: y=f(x)\right.$ for some $\left.x \in Q_{n} \cap \mathcal{G}\left(Q_{F}, R_{F}\right)\right\}$. It can be shown that T is a stratification for $\left[c^{\prime}, d^{\prime}\right]$. Since each stratifiable compact space is metrizable, $\left[c^{\prime}, d^{\prime}\right]$ is metrizable, a contradiction.

CASE 3. $X \in \mathcal{R}_{S}$. For each $i=1,2,3, \ldots$ let K_{\imath} denote a component of $H_{n} \cap f^{-1}\left(\left[c^{\prime}, d^{\prime}\right]\right)$ which intersects $f^{-1}\left(c^{\prime}\right)$ and $f^{-1}\left(d^{\prime}\right)$.

We have to consider some subcases.
CASE 3A. $\left[c^{\prime}, d^{\prime}\right]$ contains uncountably many mutually exclusive open sets.
CASE $\mathbf{3 A}_{1} .\left[c^{\prime}, d^{\prime}\right]$ does not satisfy the first axiom of countability. Thus, without loss of generality, assume that there is a subset $\left\{d_{\alpha}: \alpha<\omega_{1}\right\}$ of $\left[c^{\prime}, d^{\prime}\right]$ such that $\alpha_{1}<\alpha_{2}$ implies that $d_{\alpha_{1}}<d_{\alpha_{2}}$ in $\left[c^{\prime}, d^{\prime}\right]$, and $d_{\alpha} \rightarrow d^{\prime}$.

Let K_{0} denote the limiting set of $K_{1}, K_{2}, K_{3}, \ldots$ Let Q denote a component of K_{0} which intersects both $f^{-1}\left(c^{\prime}\right)$ and $f^{-1}\left(d^{\prime}\right)$. For each $\alpha<\omega_{1}$ let W_{α} denote a connected open set such that W_{α} contains a point x_{α} of $Q \cap f^{-1}\left(\mathrm{~J} d_{\alpha}, d_{\alpha+1}[)\right.$, and $\overline{W_{\alpha}} \subset f^{-1}\left(\mathrm{~J} d_{\alpha}, d_{\alpha+1}[)\right.$.

There exists a positive integer n_{0} and a cofinal subsequence $\left\{d_{\alpha_{\beta}}\right\}$ of d_{α} such that $W_{\alpha \beta} \cap$ $K_{n_{0}} \neq \emptyset$ for all α_{β}. For each $\gamma<\omega_{1}$ let L_{γ} denote the closure of the set $\bigcup_{\beta \geq \gamma} W_{\alpha \beta}$. Let $L=\bigcap_{\gamma<\omega_{1}} L_{\gamma}$. Observe that if $y \in L$, then each open neighborhood of y intersects uncountably many sets $W_{\alpha_{\rho}}$. Let W be a component of L. Note that $W \cap K_{n_{0}} \neq \emptyset \neq Q \cap W$ and $W \subset f^{-1}\left(d^{\prime}\right)$. Thus, W is a non-degenerate continuum.

Let M_{0} and M_{1} be connected open sets such that $\overline{M_{0}} \cap \overline{M_{1}}=\emptyset$ and $M_{i} \cap W \neq \emptyset$ for $i=0,1$. Let $\mathcal{G}_{1}=\left\{M_{0}, M_{1}\right\}$.

Now suppose that \mathcal{G}_{n} has been chosen and consists of 2^{n} mutually exclusive connected open sets such that if $G, G^{\prime} \in \mathcal{G}_{n}$ and $G \neq G^{\prime}$, then $\bar{G} \cap \overline{G^{\prime}}=\emptyset$ and $G \cap W \neq \emptyset \neq G^{\prime} \cap W$. For each $G^{\prime} \in \mathcal{G}_{n}$ let G_{0}^{\prime} and G_{1}^{\prime} be mutually exclusive connected open sets such that $\overline{G_{0}^{\prime}} \cap \overline{G_{1}^{\prime}}=\emptyset$, $\overline{G_{0}^{\prime}} \cup \overline{G_{1}^{\prime}} \subset G^{\prime}$ and $G_{0}^{\prime} \cap W \neq \emptyset \neq G_{1}^{\prime} \cap W$. Let $\mathcal{G}_{n+1}=\left\{F: F=G_{0}^{\prime}\right.$ or $F=G_{1}^{\prime}$ for some $\left.G^{\prime} \in \mathcal{G}_{n}\right\}$. For each n let $H_{n}^{\prime}=\bigcup \mathcal{G}_{n}$ and let $H=\bigcap_{n=1}^{\infty} H_{n}^{\prime}$.

There exists $\delta_{0}<\omega_{1}$ such that $G^{\prime} \cap f^{-1}\left(d_{\delta_{0}}\right) \neq \emptyset$ for each $G^{\prime} \in \bigcup_{j=1}^{\infty} \mathcal{G}$. There exists a closed scattered set S in X which separates $f^{-1}\left(\left[c, d_{\delta_{0}}\right]\right)$ from $f^{-1}\left(d^{\prime}\right)$. However, $S \cap H$ contains a perfect set because $S \cap H$ can be mapped onto a Cantor set, and it is well known that a scattered set cannot be mapped continuously onto a perfect set. This is a contradiction.

CASE 3A $\mathbf{2}_{2}$. $\left[c^{\prime}, d^{\prime}\right]$ satisfies the first axiom of countability at each point. Let $\left] c_{\alpha}, d_{\alpha}[\right.$: $\left.\alpha<\omega_{1}\right\}$ denote an uncountable collection of mutually exclusive open intervals in $\mid c^{\prime}, d^{\prime}[$. Using the local connectivity of X we find that for each α there exists only a finite number, say n_{α}, of components of $f^{-1}(]_{\alpha}, d_{\alpha}[)$ which have limit points in both $f^{-1}\left(c_{\alpha}\right)$ and $f^{-1}\left(d_{\alpha}\right)$. Some integer $N_{0}=n_{\alpha}$ repeats for uncountably many α 's; so we may suppose without loss of generality that
$n_{\alpha}=N_{0}$ for each $\alpha<\omega_{1}$.
There exists a closed scattered set S such that S separates $K_{\text {i }}$ from K, for each pair i, j such that $1 \leq i<j \leq N_{0}+1$. Thus, since for each α, each set K_{i} where $1 \leq i \leq N_{0}+1$ has the property that some component of $K_{\mathrm{i}} \cap f^{-1}\left(\mathrm{j} c_{\alpha}, d_{\alpha}[)\right.$ has limit points in both $f^{-1}\left(c_{\alpha}\right)$ and $f^{-1}\left(d_{\alpha}\right)$, it follows that S must intersect each $f^{-1}\left(\mathrm{l} c_{\alpha}, d_{\alpha}[)\right.$.

Since $\left[c^{\prime}, d^{\prime}\right]$ is first countable, there exist collections $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \ldots$ such that (1) each \mathcal{G}_{n} consists of 2^{n} mutually exclusive closed intervals in $\left[c^{\prime}, d^{\prime}\right]$, and (2) each element of each $\mathcal{G}_{\boldsymbol{n}}$ contains exactly two elements of \mathcal{G}_{n+1} and contains uncountably many elements of $\left\} c_{\alpha}, d_{\alpha} l\right.$: $\left.\alpha<\omega_{1}\right\}$.

For each positive integer n let $L_{n}^{\prime}=\bigcup \mathcal{G}_{n}$, and let $L^{\prime}=\bigcap_{n=1}^{\infty} L_{n}^{\prime}$. We find that $S \cap f^{-1}\left(L^{\prime}\right)$ contains a perfect set, a contradiction.

CASE 3B. $\left[c^{\prime}, d^{\prime}\right]$ is not metrizable and does not contain uncountably many mutually exclusive open sets (i.e., it is a Souslin line). Thus, $\left[c^{\prime}, d^{\prime}\right]$ satisfies the first axiom of countability. If there exists a collection of metrizable open intervals whose union is dense in $\left[c^{\prime}, d^{\prime}\right]$, we find that $\left[c^{\prime}, d^{\prime}\right]$ is metrizable since it is separable. Hence, without loss of generality we may assume that $\left[c^{\prime}, d^{\prime}\right]$ contains no metrizable subinterval.

Similarly as above, for each $] x, y\left[\subset\left[c^{\prime}, d^{\prime}\right]\right.$ we let $n_{x y}$ denote the number of components of $f^{-1}(] x, y[)$ with limit points in both $f^{-1}(x)$ and $f^{-1}(y)$.

CASE 3B $\mathbf{1}_{1}$. Suppose there exists a positive integer N_{0} and a subinterval $] x, y$ [of $\left[c^{\prime}, d^{\prime}\right]$ such that if $x \leq z<w \leq y$, then $n_{z w} \leq N_{0}$. Let S be a closed scattered set such that if $1 \leq i<j \leq N_{0}+1$, then S separates K_{1} from K_{j}. Using the ideas from Case $3 \mathrm{~A}_{2}$ we find that if $x \leq z<w \leq y$, then $S \cap f^{-1}(] z, w[) \neq \emptyset$. Therefore, $f(S) \supset[x, y]$, which contradicts the well-known fact that a scattered compactum can not be mapped onto a perfect set.

CASE 3B2. Assume that for every $] x, y\left[\subset\left[c^{\prime}, d^{\prime}\right]\right.$ there exists an interval $] z, w[\subset] x, y[$ such that $n_{z w}>n_{x y}$.

For each positive integer n let \mathcal{G}_{n} be maximal relative to the property of being a collection of mutually exclusive open intervals lying in $\left[c^{\prime}, d^{\prime}\right]$ such that if $] x, y\left[\in \mathcal{G}_{n}\right.$ then $n_{x y}=n$. Note that each \mathcal{G}_{n} is at most countable. Let S_{n} denote the set of all end-points of intervals which belong to \mathcal{G}_{n}. We are going to show that $\bigcup_{n=1}^{\infty} S_{n}$ is dense in $\left[c^{\prime}, d^{\prime}\right]$, and thus obtain a contradiction.

Let $] x, y\left[\subset\left[c^{\prime}, d^{\prime}\right]\right.$. There exists $] z, w[\subset] x, y\left[\right.$ such that $n_{z w}>n_{x y}$. Thus, $x \neq z$ or $y \neq w$. By maximality of $\mathcal{G}_{n_{s w}}$, there exists $] s, t\left[\in \mathcal{G}_{n_{s w}}\right.$ such that $] s, t[\cap] z, w[\neq \emptyset$. But $] s, t[\not \supset] x, y[$, and so $s \in] x, y[$ or $t \in] x, y\left[\right.$. Therefore, the set $\bigcup_{n=1}^{\infty} S_{n}$ is dense in $\left[c^{\prime}, d^{\prime}\right]$, a contradiction.

The consideration of subcases 1,2 and 3 is concluded and we return now to the main proof. Since X is hereditarily locally connected, it is the continuous image of an arc by [12].

THEOREM 2. If X is as in Theorem 1, then
(a) X is rim-finite,
(b) every subcontinuum G of X has the property that some point or a pair of points separates G, and
(c) each closed set irreducible with respect to the property of being a compact set which separates X is metrizable.
PROOF. The claims (a), (b) and (c) follow from [19], [18] and [4], respectively, because X contains no non-degenerate metric continuum.

Given a locally connected continuum X, for each pair of distinct points a, b of X let $[X, a, b]$ denote the class of all continuous maps $f: X \rightarrow P$ such that $P=f(X)$ is a non-metric arc with end-points c and d and $f(a)=c$ and $f(b)=d$. Also, introduce a relation \sim on X in the following way: $a \sim b$ if and only if $a=b$ or $[X, a, b]=\emptyset$.

THEOREM 3. Suppose that X is a locally connected continuum. Then \sim is an equivalence relation on X, and if X also satisfies the first axiom of countability, then equivalence classes of \sim are closed and the set \mathcal{E} of equivalence classes of \sim is upper semi-continuous.

PROOF. \sim is easily seen to be reflexive and symmetric, so suppose that $a \sim b$ and $b \sim c$ hold, but that there exists $f \in[X, a, c]$ such that $f(X)$ is a non-metric $\operatorname{arc}[d, e]$ with $f(a)=d$ and $f(c)=e$.

CASE 1. $f(b)=d$. Then $f \in[X, b, c]$, a contradiction.
CASE 2. $f(b)=e$ - analogous to Case 1 .
CASE 3. $d<f(b)<e$. Then one of the arcs $[d, f(b)]$ and $[f(b), e]$ is non-metric, so suppose $[d, f(b)]$ is non-metric. Define $r:[d, e] \rightarrow[d, f(b)]$ so that $r(x)=x$ if $x \in[d, f(b)]$ and $r(x)=f(b)$ if $x \in[f(b), e]$. Clearly, $r \circ f \in[X, a, b]$, a contradiction.

Let us now show that each equivalence class $G \in \mathcal{E}$ is closed if X is first countable. Let $G \in \mathcal{E}$ and suppose that $x \in \bar{G}-G$. There exists a countable basis U_{1}, U_{2}, \ldots of open neighborhoods of x in X and a sequence x_{1}, x_{2}, \ldots of points of G such that $x_{i} \in U_{i}$ for $i=1,2, \ldots$ Let $f: X \rightarrow[c, d]$ be a continuous map onto a non-metric $\operatorname{arc}[c, d]$, where $f\left(x_{1}\right)=c$ and $f(x)=d$. Since each $\left[f\left(x_{1}\right), f\left(x_{i}\right)\right]$ is a metric subarc of $[c, d]$, it follows that $[c, d]$ is the closure of a countable union of metric arcs. Consequently, $[c, d]$ is separable, and therefore metrizable, a contradiction. Thus G is closed in X.

It remains to show that \mathcal{E} is upper semi-continuous if X is first countable. Let the element G of \mathcal{E} be a subset of an open set U. Suppose that for each open set V such that $G \subset V \subset U$, there is an element G_{V} of \mathcal{E} so that $V \cap G_{V} \neq \emptyset$ and $G_{V} \not \subset U$. Thus, for some point x of G there is a countable basis U_{1}, U_{2}, \ldots of open neighborhoods of x such that for each U_{2} there is an element G_{i} of \mathcal{E} with the property that $G_{i} \cap U_{i} \neq \emptyset \neq G_{i} \cap(X-U)$.

There is a point y of $X-U$ so that every neighborhood of y intersects G_{i} for infinitely many i. We may assume without loss of generality that there exists $y_{\mathrm{i}} \in G_{\mathrm{i}} \cap(X-U)$ for each i, and that the points y_{i} converge to y. Let $z_{i} \in U_{i} \cap G_{i}$ for $i=1,2, \ldots$

There exists $f \in[X, x, y]$ such that $f: X \rightarrow[c, d]$, where $[c, d]$ is a non-metric arc, $f(x)=c$ and $f(y)=d$. Since the points $f\left(z_{i}\right)$ converge to c, and the points $f\left(y_{i}\right)$ converge to d, and each $\operatorname{arc}\left[f\left(z_{i}\right), f\left(y_{i}\right)\right]$ is metric, we find that $[c, d]$ is metric - a contradiction.

THEOREM 4. Suppose that $X \in \mathcal{R}_{M} \cup \mathcal{R}_{S} \cup \mathcal{R}_{M N}$ and X is first countable. Let \mathcal{H} be the family of all components of sets in \mathcal{E}. Then X / \mathcal{H} is the continuous image of an arc.

PROOF. Since \mathcal{E} is upper semi-continuous, \mathcal{H} is upper semi-continuous as well (see e.g. [28]). Thus, \mathcal{H} is an upper semi-continuous decomposition of X into closed sets and the quotient space X / \mathcal{H} is a locally connected continuum.

If X / \mathcal{H} is hereditarily locally connected, we apply the main result of [12] to obtain the desired conclusion.

Otherwise, in X / \mathcal{H} there is a subcontinuum C such that C fails to be connected im kleinen at a point P. There is thus an open set W in X / \mathcal{H} such that $P \in W$ but the component of $W \cap C$ containing P contains no relatively open subset of C containing P. Let Q denote the element of \mathcal{E} containing P. There is a closed subset S of X such that $S \subset \cup W-Q$ and S separates P from $\operatorname{bd}(\bigcup W)$ in X. Let $\phi: X \rightarrow X / \mathcal{H}$ denote the natural map and let $B=\phi(S)$. Let U denote the component of $X / \mathcal{H}-B$ which contains P. Using the facts that \sim is upper semi-continuous and that $Q \cap S=\emptyset$, we let $R_{1}, R_{2}, \ldots ; G_{1}, G_{2}, \ldots ; V_{1}, V_{2} \ldots$ be subsets of X / \mathcal{H} similarly as in the proof of Theorem 1, except for the additional condition that no element of \mathcal{E} intersects $\mathrm{cl}\left(\bigcup R_{1}\right)$ and $\mathrm{bd}(\bigcup U)$.

Now, let s_{1}, s_{2}, \ldots and t_{1}, t_{2}, \ldots be such that $s_{2} \in\left(\bigcup G_{i}\right) \cap\left(\bigcup \operatorname{bd}\left(R_{1}\right)\right)$ and $t_{2} \in\left(\bigcup G_{1}\right) \cap$ $(\bigcup \operatorname{bd}(U))$ for $i=1,2, \ldots$ Since X is first countable, we may assume without loss of generality that the points s_{2} converge to some point s, and the points t_{2} converge to some point t, and the limiting set L of $\bigcup G_{1}, \bigcup G_{2}, \bigcup G_{3}, \ldots$ is a continuum containing s and t.

There is an $f \in[X, s, t]$ such that $f(X)$ is a non-metric $\operatorname{arc}[c, d]$ with $f(s)=c$ and $f(t)=d$. We may now obtain a contradiction as in the proof of Theorem 1.

ACKNOWLEDGMENT. H.M. Tuncali was partially supported by an NSREC grant.

REFERENCES

[1] Arens, R., "On the construction of linear homogeneous continua," Bol. Soc. Mat. Mexicana 2 (1945), 33-36.
[2] Cornette, J.L., "Image of a Hausdorff arc is cyclically extensible and reducible," Trans. Amer. Math. Soc. 199 (1974), 255-267.
[3] Drozdovsky S.A. and Filippov, V.V., "An example of a rim-scattered locally connectedcontinuum which is not rim-countable (in Russian)," Mat. Sbornik 185, No. 10 (1994), 27-38.
[4] Grispolakis, J., Nikiel, J., Simone J.N. and Tymchatyn, E.D., "Separators in continuous images of ordered continua and hereditarily locally connected continua," Canadian Math. Bull. 36 (1993), 154-163.
[5] Heath, R.W., Lutzer D.J. and Zenor, P.L., "Monotonically normal spaces," Trans. Amer. Math. Soc. 178 (1973), 481-493.
[6] Mardesić, S., "On the Hahn-Mazurkiewicz theorem in non-metric spaces," Proc. Amer. Math. Soc. 11 (1960), 929-937.
[7] Mardesić, S., "Mapping ordered continua onto product spaces," Glasnik Mat. 15 (1960), 85-89.
[8] Mardesić, S., "Images of ordered compacta are locally peripherally metric," Pacific J. Math. 23 (1967), 557-568.
[9] Moore, R.L., "Foundations of point set topology" (rev. ed.), Amer. Math. Soc. Colloquium Publications, vol. 13, Providence, RI, 1962.
[10] Nikiel, J., "Some problems on continuous images of compact ordered spaces," Questions Answers Gen. Topology 4 (1986/87), 117-128.
[11] Nikiel, J., "Images of arcs - a nonseparable version of the Hahn-Mazurkiewicz theorem," Fund. Math. 129 (1988), 91-120.
[12] Nikiel, J., "The Hahn-Mazurkiewicz theorem for hereditarily locally connected continua," Topology Appl. 32 (1989), 307-323.
[13] Nikiel, J., "On continuous images of arcs and compact orderable spaces," Topology Proc. 14 (1989), 163-193 and 279-280.
[14] Nikiel, J., Treybig, L.B. and Tuncali, H.M., "A rim-metrizable continuum," Proc. Amer. Math. Soc. 123 (1995), 281-286.
[15] Nikiel, J., Tuncali, H.M. and Tymchatyn, E.D., "A locally connected rim-countable continuum which is the continuous image of no arc," Topology Appl. 42 (1991), 83-93.
[16] Pearson, B.J., "Mapping an arc onto a dendritic continuum," Colloq. Math. 30 (1974), 237-243.
[17] Simone, J.N., "Metric components of continuous images of ordered compacta," Pacific J. Math. 69 (1977), 269-274.
[18] Treybig, L.B., "Concerning continuous images of compact ordered spaces," Proc. Amer. Math. Soc. 15 (1964), 866-871.
[19] Treybig, L.B., "Concerning continua which are continuous images of compact ordered spaces," Duke Math. J. 32 (1965), 417-422.
[20] Treybig, L.B., "Separation by finite sets in connected, continuous images of ordered compacta," Proc. Amer. Math. Soc. 74 (1979), 326-328.
[21] Treybig, L.B., "A characterization of spaces that are the continuous image of an arc," Topology Appl. 24 (1986), 229-239.
[22] Treybig, L.B. and Ward, Jr., L.E., "The Hahn-Mazurkiewicz problem," in: Topology and order structures I, Math. Centre Tracts, vol. 142, Amsterdam, 1981, p. 95-105.
[23] Tuncali, H.M., "Some generalizations of the Hahn-Mazurkiewicz theorem," Ph.D. Thesis, University of Saskatchewan, Saskatoon, 1989.
[24] Tuncali, H.M., "Analogues of Treybig's product theorem," Proc. Amer. Math. Soc. 108 (1990), 855-858.
[25] Tuncali, H.M., "Concerning continuous images of rim-metrizable continua," Proc. Amer. Math. Soc. 113 (1991), 461-470.
[26] Ward, Jr., L.E., "A generalization of the Hahn-Mazurkiewicz theorem," Proc. Amer. Math. Soc. 58 (1976), 369-374.
[27] Ward, A.J., "Some properties of images of ordered compacta with special reference to topological limits," unpublished.
[28] Whyburn, G.T., "Analytic topology," Amer. Math. Soc. Colloquium Publications, vol. 28, Providence, RI, 1942.

