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ABSTRACT. Three classes of locally connected continua which admit sufficiently many maps
onto non-metric arcs are investigated. It is proved that all continua in those classes are contin-

uous images of arcs and, therefore, have other quite nice properties.
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INTRODUCTION

Let C denote the class of all Hausdorff continuous images of ordered continua. In the last
three decades the class C has been studied extensively by a number of authors (see e.g. (2],
(4], [6-8], [11-13], [16-22], [26] and [27]). Two results from this study have suggested that the
investigation could naturally be extended to the larger class Ry of all rim-metrizable, locally
connected continua. Namely, (1) in [8] in 1967 Mardesi¢ proved that each element of C has
a basis of open F,-sets with metrizable boundaries, and (2) in [4] in 1991 Grispolakis, Nikiel,
Simone and Tymchatyn showed that if a set P is irreducible with respect to the property of

being a compact set which separates the element X of C, then P is metrizable.
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In his 1989 thesis [23] and two subsequent papers (24] and [25] Tuncali began an investigation
of the class Ry and continuous images of elements of that class. He showed that Treybig’s
product theorem of [18] which holds in C is no longer valid in Rp. However, he proved that
Mardesié’s theorem for C on preservation of weight by light mappings is true in Ry, [25]). He
also considered the class Rg of all rim-scattered, locally connected continua, and the class R¢
of all rim-countable, locally connected continua. Later, Nikiel, Tuncali and Tymchatyn gave an
example to show that Rc is not a subclass of C, [15]. Then, recently the authors of this paper
showed the the continuous image of an element of R need not be in Ry, [14]. Furthermore,
Drozdovsky and Filippov proved in (3] that Rs is a larger class of spaces than Rc.

Also, in 1973 Heath, Lutzer and Zenor, (5], showed that every linearly ordered ordered
topological space and each of its Hausdorff continuous and closed images are monotonically
normal. In [10] in 1986 Nikiel asked if every monotonically normal compactum is the continuous
image of a compact ordered space. That problem still remains open. In what follows we let
Rmn denote the class of monotonically normal, locally connected continua. Qur first result is

the following:

THEOREM 1. If X € Ry URsURpmnN and for each pair of points a, b € X there exists
a continuous onto map f : X — [c,d] such that f(a) = ¢, f(b) = d and [c,d] is a non-metrizable
arc, then X € C.

We note that a large class of examples satisfying the properties of X above can be con-
structed as follows: In [1] in 1945 Arens studied the class £ of linear homogeneous continua, that
is the class of arcs which are order isomorphic to each of their subarcs. Arens showed, that up
to a homeomorphism, there exist at least ®; members of £, including the real numbers interval
[0,1]. Thus, some spaces X as in Theorem 1 could be obtained by pasting together copies of
any Z € L.

If a subset B of a space P contains no dense-in-itself, non-empty subset, we say that B is
scattered. ‘

In this paper the definition of monotone normality we use is an equivalent one given in
Lemma 2.2 (a) of [5]. It says that a space P is monotonically normal provided there is an
operator G which assigns to each ordered pair (S,T) of mutually separated subsets of P an
open set G(S5,T) such that

(i) SCG(S,T)C (G(S,T)) CP-T, and
(ii) if (S',T") is also a pair of mutually separated sets such that S ¢ §' and TV C T, then

G(5,T) Cc G(s',T").

PROOF OF THEOREM 1. Suppose that X is not hereditarily locally connected. Then,
there exists a subcontinuum C of X such that C fails to be connected im kleinen at the point
p. Utilizing the ideas in Theorem 11, p. 90, of Moore [9], there exists a connected open set U

containing p, a sequence R;, R;, R;, ... of connected open in X sets containing p, and a sequence
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Gi,G2,Gs,. .. of continua such that

() UDRDRDRDR; D ..

(2) GaN Ry #0and GnNRpy1 =0 forn=1,2,3,..;

(3) each G, is a component of U N C and G, Nbd(U) # @ for n = 1,2,3,...; and

(4) GaNGp = 0if n # m, and there exist mutually exclusive open sets Vi, V3, Vj, ... such that

Gp CVpforn=1,23,...

For each positive integer n let H, be a component of G, — R; which intersects bd(R;)
and bd(U), and let s, € H, Nbd(R;) and t, € H, Nbd(U). Let Ho denote the limiting set
of the sequence H;, H,, Hj,...; which by definition is the set of all £ such that every open set
containing z intersects infinitely many sets H,.

Let L, (resp. L3) denote the limiting set of {s;}, {s2}, {s3}, -.. (resp. {1}, {t2}, {ts}, ..-)-
There exists (s,t) € Ly x L2 so that if V is a neighborhood of s and W is a neighborhood of t,
then (s,,t,) belongs to V' x W for infinitely many n.

We shall show that some component of Hy contains {s,t}. If not, then Hy is the union of
two mutually separated sets S and T such that s € S and t € T. There exist disjoint open sets
V and W so that S C V and T C W. Then (sn,tn) belongs to V x W for infinitely many n.
Since each H, is a continuum, H, N (X — (V U W)) # @ for infinitely many n. It follows that
some point of Hy lies in X — (V U W), a contradiction.

Let f : X — [c,d] be a continuous map onto a non-metrizable arc [c,d], where f(s) = ¢
and f(t) = d. There is an increasing sequence n,n2,n3, ... of positive integers such that
(1) f(3n) 2 f(Snys) a0d f(tn;) € ftneys) fori=1,2,.. 5
(2) f(sn,) = cand f(ta;) — d; and
(3) [f(sn:), f(tn;)] is not metrizable for i =1,2,...

Let ¢’ = f(3a,) and d' = f(t,,).

Qur proof now divides into three cases.

CASE 1. X € Ry. For each n > 2 let M, denote a metrizable closed set lying in
X - U:=1 Hj such that if 1 < i < j < n, then H, and H, are se[:;arated in X by M,. Let
D,, denote a countable set dense in M, for n = 2,3,... We intend to show that f ( Uiz Dg) is
dense in [c,d], which would mean that [c,d] is separable, and therefore metric, a contradiction.

Let z €]c,d[ and let ¢ < u < z < v < d in the natural ordering of [c,d]. The components
of f~1(Ju,v[) which have limit points in both f~!(u) and f~!(v) can be labeled Py, P,, ..., Pn,.
Let Ny be an integer such that if 1 > Ng then sn, € f~*([c,u[) and tn, € f~!(Jv,d]). There
exist two of No, No+1,...,Ng+no, say i and j, such that H,, and Hy,, both intersect the same
Py, which must then intersect some Dy,. Therefore, | Jz=, f(D:) intersects Ju,v|.

CASE 2. X € Ryn. Foreachi=1,2,...let Q; denote a component of Hn,Nf~*([c,d'])
which intersects f~!(c') and f~!(d'), and let Qo denote the limiting set of @1,Q2,Qs,... We
note that some component of Q, intersects both f~!(¢') and f~!(d’) since every map onto an

arc is weakly confluent.
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By Remark 2.3 (c) of [5], Z = 7=, @~ is monotonically normal; so let G be a monotone
normality operator on Z as in the earlier definition. For each closed set F in [¢',d'] let Qf =
{z: f(z) € Fand z € Z— Qqg}, and let Rp = {z : f(z) € [¢,d'] — F and z € Qo}.
Now, Qr and Rfr are mutually separated subsets of Z; so for each positive integer n, let
T(F,n) = {y € [c,d]:y = f(z) for some z € Q» NG(QF,RF)}. It can be shown that T is a
stratification for [, d']. Since each stratifiable compact space is metrizable, [¢’, d'] is metrizable,
a contradiction.

CASE 3. X € Rs. Foreachi=1,2,3,...let K, denote a component of Hn, Nf ([, d"])
which intersects f~1(c’) and f~!(d').

We have to consider some subcases.

CASE 3A. [¢',d'] contains uncountably many mutually exclusive open sets.

CASE 3A,. [¢,d'] does not satisfy the first axiom of countability. Thus, without loss of
generality, assume that there is a subset {ds : @ < w1} of [¢',d'] such that a; < a, implies that
do, < dg, in [c',d'], and d, — d'.

Let K, denote the limiting set of K;, K7, K3,... Let @ denote a component of K, which
intersects both f~1(¢') and f~*(d’). For each a < w; let W, denote a connected open set such
that W, contains a point z, of QN f~!(]dy,do+1(), and Wy C f~!(Jda, da+1[)-

There exists a positive integer no and a cofinal subsequence {dq,} of do such that W, N
Kn, # 0 for all ag. For each v < w; let L, denote the closure of the set {Jg5, Wa,. Let
L =(\,<., Ly- Observe that if y € L, then each open neighborhood of y intersects uncountably
many sets W,,. Let W be a component of L. Note that WNK,, # 0 # QNW and W C f~1(d').
Thus, W is a non-degenerate continuum.

Let My and M, be connected open sets such that My NM; = @ and M,NW # @ fori =0,1.
Let Gy = {My, M, }.

Now suppose that G, has been chosen and consists of 2" mutually exclusive connected open
sets such that if G,G' € G, and G # G', then GNG =Pand GNW # 0 # G'NW. For
each G’ € G, let G}, and G/ be mutually exclusive connected open sets such that Gy N G}, = 0,
GoUG, C G and GoNnW # 0 # G, NW. Let Goys = {F: F = G} or F = G, for some
G' € Gn}. Foreachn let H, =|JGn and let H = (oo, Hi.

There exists §y < w; such that G' N f~1(ds,) # @ for each G’ € U;’?_,l G,. There exists a
closed scattered set S in X which separates f~!([c,ds,]) from f~1(d'). However, SN H contains
a perfect set because SN H can be mapped onto a Cantor set, and it is well known that a
scattered set cannot be mapped continuously onto a perfect set. This is a contradiction.

CASE 3A,. [¢,d'] satisfies the first axiom of countability at each point. Let {Jcq,dal:
a< wl} denote an uncountable collection of mutually exclusive open intervals in |¢', d’[. Using
the local connectivity of X we find that for each a there exists only a finite number, say nq, of
components of f~*(Jcq,dy[) Which have limit points in both f~!(co) and f~!(ds). Some integer

Nj = n, repeats for uncountably many a’s; so we may suppose without loss of generality that
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ne = Ny for each a < wy.

There exists a closed scattered set S such that S separates K, from K, for each pair i,
such that 1 < ¢ < j < Np + 1. Thus, since for each a, each set K, where 1 < i < Ng + 1 has
the property that some component of K, N f~!(]cq, do[) has limit points in both f~!(c,) and
f~1(da), it follows that S must intersect each f~!(Jca,dal).

Since [¢/,d'] is first countable, there exist collections G,;,G,,Gs, ... such that (1) each G,
consists of 2" mutually exclusive closed intervals in [¢’,d'], and (2) each element of each G,
contains exactly two elements of G,4; and contains uncountably many elements of {]ca,da[:
a<w}.

For each positive integer n let L), = |JGn, and let L' = (or, L},. We find that SN f~1(L')
contains a perfect set, a contradiction.

CASE 3B. [¢,d'] is not metrizable and does not contain uncountably many mutually
exclusive open sets (i.e., it is a Souslin line). Thus, [¢’, d'] satisfies the first axiom of countability.
If there exists a collection of metrizable open intervals whose union is dense in [¢,d'], we find
that [, d'] is metrizable since it is separable. Hence, without loss of generality we may assume
that [¢',d'] contains no metrizable subinterval.

Similarly as above, for each |z,y[C [¢/,d'] we let n,, denote the number of components of
f~*(Jz,y[) with limit points in both f~(z) and f~!(y).

CASE 3B;. Suppose there exists a positive integer Ny and a subinterval |z, y[ of [¢',d']
such that if 2 < z < w < y, then n;y, < Np. Let S be a closed scattered set such that if
1<t < j < Ng+1,then S separates K, from K,. Using the ideas from Case 3A; we find that
if z <z <w<y,then SN f1(Jz,w]) # 0. Therefore, f(S) D [z,y], which contradicts the
well-known fact that a scattered compactum can not be mapped onto a perfect set.

CASE 3B;. Assume that for every |z, y[ C [/, d'] there exists an interval |z, w[ C ]z, y[ such
that n.y > ngy.

For each positive integer n let G, be maximal relative to the property of being a collection of
mutually exclusive open intervals lying in (¢, d'] such that if ]z, y[€ Gn then n;y = n. Note that
each G, is at most countable. Let S, denote the set of all end-points of intervals which belong
to Gn. We are going to show that | Jo—, Sn is dense in [¢’,d'], and thus obtain a contradiction.

Let Jz,y[C [¢/,d']. There exists |z, w[C ]z, y[ such that n,, > ngy. Thus, z # z or y # w.
By maximality of Gn,,, there exists ]s,t[€ Gn,, such that ]s,¢[N]z,w[# 0. But |s,t[B]z,4[,

(=]

and so s € Jz,y[ or t €]z,y[. Therefore, the set | J;—, Sa is dense in [¢/,d’], a contradiction.

The consideration of subcases 1, 2 and 3 is concluded and we return now to the main proof.

Since X is hereditarily locally connected, it is the continuous image of an arc by [12].
THEOREM 2. If X is as in Theorem 1, then

(a) X is rim-finite,

(b) every subcontinuum G of X has the property that some point or a pair of points separates
G, and
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(c) each closed set irreducible with respect to the property of being a compact set which sepa-

rates X is metrizable.

PROOF. The claims (a), (b) and (c) follow from [19], [18] and [4], respectively, because
X contains no non-degenerate metric continuum.

Given a locally connected continuum X, for each pair of distinct points a, b of X let [X,a, b]
denote the class of all continuous maps f : X — P such that P = f(X) is a non-metric arc
with end-points ¢ and d and f(a) = ¢ and f(b) = d. Also, introduce a relation ~ on X in the

following way: a ~ b if and only if a = b or [X, a,b] = 0.

THEOREM 3. Suppose that X is a locally connected continuum. Then ~ is an equiv-
alence relation on X, and if X also satisfies the first axiom of countability, then equivalence
classes of ~ are closed and the set € of equivalence classes of ~ is upper semi-continuous.

PROOF. ~ is easily seen to be reflexive and symmetric, so suppose that a ~ b and b ~ ¢
hold, but that there exists f € [X,a,c] such that f(X) is a non-metric arc [d, ¢] with f(a) =d
and f(c) =e.

CASE 1. f(b) =d. Then f € [X,b,c|, a contradiction.

CASE 2. f(b) = e - analogous to Case 1.

CASE 3. d < f(b) < e. Then one of the arcs [d, f(b)] and [f(b), €] is non-metric, so
suppose [d, f(})] is non-metric. Define r : [d,e] — [d, f(b)] so that r(z) = z if z € [d, f(b)] and
r(z) = f(b) if z € [f(b), ¢]. Clearly, ro f € [X, a, b], a contradiction.

Let us now show that each equivalence class G € € is closed if X is first countable. Let G € £
and suppose that z € G — G. There exists a countable basis U;, Uz, . .. of open neighborhoods
of z in X and a sequence z;,z3,... of points of G such that z, € U, for i = 1,2,... Let
f:X — [c,d] be a continuous map onto a non-metric arc [c,d], where f(z;) = c and f(z) =d.
Since each [f(z1), f(zi)] is a metric subarc of [c,d], it follows that [c,d] is the closure of a
countable union of metric arcs. Consequently, [c,d] is separable, and therefore metrizable, a
contradiction. Thus G is closed in X.

It remains to show that £ is upper semi-continuous if X is first countable. Let the element
G of £ be a subset of an open set U. Suppose that for each open set V such that G C V C U,
there is an element Gy of € so that VN Gy # 0 and Gy ¢ U. Thus, for some point z of G
there is a countable basis U, Us,. .. of open neighborhoods of z such that for each U, there is
an element G, of £ with the property that G,NU, #0 # G; N (X = U).

There is a point y of X — U so that every neighborhood of y intersects G; for infinitely
many i. We may assume without loss of generality that there exists y, € G, N (X — U) for each
i, and that the points y; converge to y. Let z, e U; NG, fori =1,2,...

There exists f € (X, z,y] such that f : X — [c,d], where [c,d] is a non-metric arc, f(z) =¢
and f(y) = d. Since the points f(z,) converge to c, and the points f(y;) converge to d, and each

arc [f(z,), f(v,)] is metric, we find that [c,d] is metric - a contradiction.
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THEOREM 4. Suppose that X € Ry URs U Rpn and X is first countable. Let H be
the family of all components of sets in £. Then X/H is the continuous image of an arc.

PROQOF. Since £ is upper semi-continuous, H is upper semi-continuous as well (see e.g.
[28]). Thus, H is an upper semi-continuous decomposition of X into closed sets and the quotient
space X/H is a locally connected continuum.

If X/H is hereditarily locally connected, we apply the main result of [12] to obtain the
desired conclusion.

Otherwise, in X/H there is a subcontinuum C such that C fails to be connected im kleinen
at a point P. There is thus an open set W in X/H such that P € W but the component of
W N C containing P contains no relatively open subset of C containing P. Let Q denote the
element of £ containing P. There is a closed subset S of X such that S C YW - Q and S
separates P from bd(|JW) in X. Let ¢ : X — X/H denote the natural map and let B = ¢(5).
Let U denote the component of X/H — B which contains P. Using the facts that ~ is upper
semi-continuous and that QNS = 0, welet Ry, Ry,...;G1,Ga,...; Vi, V, ... be subsets of X/H
similarly as in the proof of Theorem 1, except for the additional condition that no element of £
intersects cl(|J R;) and bd(|J U).

Now, let s1,s2,... and t;,t,,... be such that s, € ((JG,) N (Ubd(R;)) and ¢, € (UG,) N
(Ubd(U)) for i = 1,2,... Since X is first countable, we may assume without loss of generality
that the points s, converge to some point s, and the points t, converge to some point ¢, and the
limiting set L of |JG1, UGz, UG3, ... is a continuum containing s and ¢.

Thereis an f € [X, s,t] such that f(X) is a non-metric arc [c,d] with f(s) = cand f(t) =d.

We may now obtain a contradiction as in the proof of Theorem 1.
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