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ABSTRACT. In the paper we study the continuity properties of the solution set of upper

semicontinuous differential inclusions in both regularly and singularly perturbed case. Using a

kind of dissipative type of conditions introduced in [1] we obtain lower semicontinuous dependence

of the solution sets. Moreover new existence result for lower semicontinuous differential inclusions

is proved.
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1. INTRODUCTION
In the paper we consider the following regularly perturbed multivalued differential equation:

(t) 6_ F(x(t),a), x(0) x0; 6 [0,1] (1.1)

Where z 6 H (Hilbert space), a 6 D (metric space), F is a multi from, H x D into H and has

closed convex bounded images. Moreover F(.,a)is upper semicontinuous, F(z,.)is continuous in

the sense of graph. Let H H1 x H2, H, is Hilbert 1,2. The following Cauchy problem:

i() e (,, (ol , (o (.

called singularly perturbed is also considered. For 0 one h

0 e F(z,y), z(0) x0 (1.3)

The lt system is called reduced inclusion. The pair of AC x(.) and L-y(.) is a solution of (1.3),
when (1.3) holds for a.e.t. Suppose F is one side Lipschitz on x we prove that the solution set

Z(a) of (1.1) depends continuously on a in C(I,H). In the literature the continuous properties of

Z(.) are studied when F(., a) is Lipschitz (in that ce f(.)is continuous). So our results are new

also in ce of finite dimensional spies. For F(x, .) with convex graph the upper semicontinuous

properties of the solution set of (1.2) are studied in [2]. The lower semicontinuous properties of

the lt set are studied in [3] under different type of hypotheses then thse of [2]. The existnce
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of Lipschitz solution of (1.3) is proved in [4]. Using refined version of the lemma of Plis, Veliov

shows in [3] that the solution set of (1.2) is LSC at 0+ with respect to C(I,Rn) L2(I,R")
topology. In both papers F is assumed to be Lipschitz. In our paper the Lipschitz continuity

requirement of F is dispenced with. The LSC of the solution set for more general systems than

(1.1) is investigated in [1] for one side Lipschitz F. However F is assumed to be continuous. When
F is only USC it is difficult to show the existence of solutions when F does not satisfy additional

compactness hypotheses. Such a problem is considered in [5] when H" is uniformly convex Banach

space. Here we use the techniques developed there (we generalise theorem of [5]). In section

2 we extend the well known lemma of Plis [6]. In paragraph 3 as a trivial consequence of the

refined version of the last lemma we show the continuous dependence of Z(.) on o for (1.1). We
also obtain existence result for lower semicontinuous diffrential inclusions which do not satisfy
any compactness conditions. In the last section using similar ideas as in [3] we prove the LSC
dependence on e of the solution set of (1.2) at 0+. We note that the main results in the paper

can be proved also for Banach H with uniformly convex dual H’.
2. PRELIMINARIES.

In the paper I := [0, T] (commonly T 1), H (for system (1.2) H H1 x H2) is a Hilbert

space with scalar product < >, while a(x,A) is the support function supaeA < x,a >. The

graph of the multi F H Pf(H) (Nonempty closed convex bounded subsets of H) is the set

raphF := {(x,y) E H x H y E F(x)}. When this set is closed in g x H we say that F
has a closed graph. We denote by d(z,A) inf{[z- y[" y A}. The Hausdorff distance is

DH(A,B) := max{supeAd(a,B),supbesd(b,A)}. The multi F is called USC (LSC) at z, when

to > 0 there exists > 0 such that F(x)+eU D F(y));(F(x) C F(y)+eV) whenever Ix-y[ <_ .
Here V {x "Ix _< 1}. The multi F from I x E into Pf(E)is said to be almost upper (lower)
semicontinuous (AUSC) if to e > 0 there exists Ic with meas(I\Ic) > such that F is USC
(LSC) on/ x E. The Lipschitz function x with constant _< N will be callcd N-Lipschitz. For
the system (1.2) we will use the following hypotheses:

A1. F(.,.) is USC, closed convex valued bounded on bounded sets.

A2. (One side Lipschitz condition) There exist positive constants L1, L2, L3, #.

If (xl,y),(x2, y2)
_
H x H2 and f F(x,y), then there exists g

_
F(x2, y2) such that:

< xl x2, f" g* ><_ Llxx x212 + L2Ixl x2[ly

< yx Y2, f’-- g’ ><__ L3lx x2lly y2l- lyx y2[ 2.

Here f" and f’ are the projections of f on H1 and H2 respectively.
REMARK. Obviously if F(x,y) F(z,y) x F2(x,y) then A2 becomes:

a(z , F(,,))-(,- ,F(,)) <

Lllz z2] + L2lzl z2llyl

( ,F(,)) (, ,F(,)) <

L31xl x211y y21- lyl Y212-
A2 is a one-side Lipschitz condition combined with a stability-type condition. If the y part of

(1.1) has the form

f((t))+v(,(t))

then A2 is equivalent of f is dissipative, i.e.

< Y Y2, f(Yx)- f(Y2) >< -,ulYx Y2I
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and V(.) is Lipschitz. If f(x) Az (f is linear) and H is finite dimensional then A2 is fulfilled,
when the eigenvalues of the matrix A have negative real parts. Various prototypes of A2 are

common in the singular perturbation literature.

PROPOSITION 2.1. Let A1, A2 hold. then there exist constants k:,k" M such that

[x,(t)[ _( ks; [y,(t)[

_
k and [F(x,,y)[ M,t 6 I for every > 0 and every AC (x,y) with

a[(,,,,,),GphF]
PROOF. Using standard arguments [7], [3] one can show that there exist r,s such that

r ]x[,s [y,] and

c +c + c, (0) (0)l

D- + D, (0) ly(0)

where C1, C2, C3, D1 and D are positive constants. Since s _< I(Dr + D2) or < 0 one has that

<_ (C + CD/,)(C + (0)) _< (D + :)+ (0). ED.
REMARK. In view of proposition 2.1 we suppose [F(x,y)[ <_ M, since we consider only AC

functions (x, y), satisfying the conditions of proposition 2.1.

The following lemma extend the well known lemma of Plis [6]. Using similar arguments as in

[5] we relax the continuity and Lipschitz assumptions of [6] and refine the estimation as well.

LEMMA 2.1. Let d[(x,,y,,c,,eh),GraphF] <_ 5 and let y, be N-Lipschitz. Then for every
’A > 0 there exists a solution (x,y) of (1.2) such that Ix(t)- x,(t)l <_ rl(t) + A; ly(t)- y,(t)l <
r2(t) + A, where r and r2 are the solutions of the system:

i. 4Lr + Lr/L + C5 r(O) Ix,(O) x(O)l

;2 -1-1 {2Lar, -/r + C:6} r(O) [y,(O) y(O)[

where Cx and C2 are constants (depend on M and N, but not on (5).
PROOF. Fix > 0. We claim that there exist M- Lipschitz u(.) and M/e- Lipschitz v(.) such

that d[(u, v, i, el;), GraphF] <_ , and moreover the following inequalities hold:

lu(t) z,(t)l < re(t); I(t)- y,(t)l < n(t), where

n(t) 4L,m + L:n/L, + Cl(( + y), m(O) Iz,(O) u(O)l (2.1)

h(t) e-{2L3rn ln + C(6 + v)}, n(0) [y,(0) v(0)[. (2.2)

Obviously the claim holds for 0. Suppose that it also holds on [0, r] with r _> 0. If r < 1, then we

let by A2 (f(t),g(t)) 6 F(u(r), v(r)) to be strongly measurable such that for Ix-x,[ _< (5, [y-y,[ <
the following inequalities are valid:

< x u(r),&,(t)- f(t) >< Lllu(r)- x,(t)l + L=lu(r)- ,(t)ll,(t)- y,(t)l + c,61- ,()1.

< y v(T),l,(t) g(t) >< L3lu(r) x,(t)llv(r) y,(t)l- lv(r) y,(t)[ / C2Sly

The existence of such f(.),g(.) follows immediately by A2, when :,(.),,(.) are simple functions,

because F(u(r), v(r)) is fixed set. The general case is a trivial consequence of the fact that every

strongly measurable function is an uniform limit of simple functions. Since 1. -.1 and < > are

continuous there exists 7" > r such that denoting u(t) u(r) f’ f(s)ds;v(t) v(r)+l/e f’ g(s)ds,
one obtains

< x,(t)- u(t),Sc,(t)- (t) ><_ L, iu(t) x,(t)[ / Llu(t) x,(t)llv(t)-

-t-C,lx,(t)- u(t)l / 26M.

< y,(t) v(t),f,(t) i(t) >< ialu(t)- x,(t)llv(t) y,(t)l- lv(t)- y,(t)l

+C,Sly,(t)- v(t)[ + 2(5M.
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becauce u(.)is M- Lipschitz and v(.) is M/e-Lipschitz. Therefore:

d
lu(t x (t)l < Lllu(t)- z,(t)l + Llu(t)- z,(t)llv(t)- y,(t)l + cl(t + t,)M(1 + L)2 dt

ld
dSly(t)- v(t)[ < Lalu(t)- x(t)llv(t)- y,(t)l- #Iv(t)- y,(t)l + C=hIy v(r)l + C5

for a.e. E Iv, 7"]. If moreover Iv’- r] < t,, then d[(u,v,/,,6). GraphF] < t/. Thus the clai m

holds also on [0, r’] and hence on [0,1]. Consider now the sequences {A,}I, {(x,,y,)}l sucd
that denoting yl v;z u one has ]x,+(t) x,(t)l / ly,+(t) y,(t)l < A,. y, and y,+l are

N/e-Lipschitz. We prove that such sequences exist:

let d[(x,, y,, :i:,,,),), GraphF] < t,, for 1,2 and Ix,+ z,I < m,, lY,+x Y,I < n,, where

m,,n, satisfy (2.1) and (2.2) with ,5, t, replaced by t,,,t/,+l respectively and m,(0) n,(0) 0.

Obviously t,,, t,,+ can be chosen such that Im,(t)l / In,(t)l < A,. (if , is given). If ,--a A, <
then the sequences {z,},= and {y,},=l are Cauchy ones in C(1, H) and C(I,H:) respectively.
Obviously their cluster points x(.) and y(.) are solutions satisfying the conclusion of the lemma.
QED.

In the same fashion one can prove the next variant of lemma 2.1.

LEMMA 2.2. Let d[(z,,y,,,el,),GraphF] < ,5 on I H with measI > -5 anddt

d[(z,,y,,c,,el,),GraphF] < M on A H;A 1\1 For every A > 0 there exists a solution

of (1.2) such that Ix(t)- x,(t)l < rx(t)/ A; ly(t)- y,(t)l < r(t)/ A, where rl and r are the

solutions of the system:

/1 < 4Lrx + Lr/L1 + C,(5 + ((t)) rl(O) Ix,(O) x(O)l

/2 _< e-#- {2Lsr, -/r: + C=( + c(t))} r:(0) ly,(0) y(0)l

Here c(t)= M, e A; and c(t)= 0 otherwise.

The only differen step is to prove the existence of u(.) and v(.) such that

lu(t) x,(t)l <_ re(t), iv(t) y,(t)l <_ n(t), d[(u, v, i, e6), GraphF] <_ , and

rh <_ 4Llm + L:n/nl + c( + c(t) + m(O) lu(O)
h < e-lp-’ {2L3m 2n + C2( + c(t) + )} n(0) Iv(0) y(0)l.

The fashion however is the same and the proof is omitted. QED
Fix c and consider the system (1.1) under the assumptions:

C1. F(.)is USC closed convex valued bounded on the bounded sets.

C2. a(x- y,f(x))-a(x-y,f(y)) < Zlx-yl. Here F(x) gF(x,c).
COROLLARY 2.1. If y(.) is AC function such that d[(y,/)), GraphF] < e, then there

exists a solution x(.) of (1.1) such that Ix(t) y(t)] _< r(t) + A, where r(.) is the solution of

/(t) 4Lr + Ce, r(0) Ix(0) y(0)]. Here C depends on M (see proposition 2.1), but not on

REMARK. When H= P-,." one can replace A by zero.

:]. REGULARLY PERTURBED CASE.
Using lemma 2.1 and corollary 2.1 we will prove our main results, which are similar in the

regularly and singularly perturbed case.

Let M be metric space and let the parameter c M. Suppose that C1, C2 hold uniformly on

c. Let A C H be compact. Denote the restriction of F on A by FA and the solution set of (1.1)
by Z(c). The following theorem is valid.

THEOREM :.1. If lim,t..GraphFA(.,a GraphFa(.,l) for every compact A C H in the

sense of the Hausdorff distance, then Z(.)is LSC. I.e. to every solution z/ (.) of (1.1B) there exits
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a net x=(.)of solutions of (1.1a) such that x(.) converges uniformly to x(.) as o . Moreor
if lim,,.,GraphF(., o) GraphF(.,), then Z(.) is continuous.

PROOF. Let z(.) be a solution of (1.1Z). The set

A {z 6- H" St 6- I’z x(t)} is compact. Therefore

DH(Graph FA(.,a), GraphFA(.,D) 0 as a 4,8. The proof is complete thanks to corollary 2.1.

QED
If hm,.#$D(GraphFA(.,a), aaphFa(.,.tg)) O, where D+(C,D) supcec infeeo [c d[,

then Z(.)is LSC.
Consider now the following nonautonomous problem.

:(t) 6- F(t,x), x(O) Xo (3.1)

H1. For every x 6- H, F(.,z) admits a strongly measurable selector, F(t, .) has a closed graph,
F is convex compact valued and [F(t,z)[ <_ K(1 + Ix[).

H2. a(z y,F(t,z))- a(z y,F(t,y)) <_ L[z y], recall that H is a Hilbert space.

Consider also the discretized version of (3.1).

:(t) 6_ F(t,x(r,)), x(0) Xo, 6- [r,,r,+) (3.2)

Here r, ih, h 1/k. Denote by R(1) and R(2) the solution set of (3.1) and (3.2).
THEOREM :].2. Under HI- H2 the differential inclusion (3.1) admits nonempty compact

solution set. Moreover there exists a constant C with DH(R(1),R(2)) <_ Ch1/

PROOF.. First note that there exist g >_ IF(t,x)l and M _> Ix] when

k 6- F(t,x + U) + U, x(O)=xo

Let x(.) be a solution of (3.1). We construct y(.) on [r,,r,+a) as follows O(t) 6- F(t,y(ri))is such

that

< x(t)- y(r,),c(t)- )(t) >< LIx(t)- y(r,)l z. Therefore

< (t)- (t),(t)- i/(t) ><_ < z(t)- (,,),(t)- (t) > +
< y(r,) y(t),ic(t)- f(t) >< LIx(t)- y(r,)l + (t r,)NI/:(t)- )(t)l
<_ LIx(t)- y(t)l + 2MNLh.

If m Ix yl then re(t) <_ exp(2Lt)4MNLh, i.e. Ix(t) y(t)l _< 2exp(Lt)(MNL)/h/. That

is C 2exp(L)(MNL)/2. Let now y(.) be a solution of (3.2). Consider another partition of [0, 1]
on subintervals [ff, ri.,) r jh. Choose

(t) 6- F(t,x(r)) with < x(r) y(r,), (t)- (t) >< LIx(r) y(r,)l

Analogously following inequality holds

< x(t)- y(t),&(t)- 9(t) > Llx(t)- y(t)l + 2MNL(h + h)

Using the construction in the proof of lemma 2.1 one can show that for every such y(.) and every

so there exists a solution z(.) of (3.1) such that Iz(t)- y(t)l <_ Ch/ + . Here C is determined

above. Since F(.,.)is compact valued one has that the solution set R(2) of (3.2)is C(I,H)
compact and hence the solution set of (3.1) is compact. Thus can be replaced by 0. QED
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Obviously using the same fashion and more careful estimations one can prove the variant of

theorem 3.2 for Banach H with uniformly convex H’.
THEOREM 3.:. Under H1 and a(3(x-y),F(t,x))-a(3(x-y),F(t.y)) <_ Llx-y[ 2, where

j(x) := {e E H" :< e,z >= Ixl and [e[ Iz[}, the differential inclusion (3.1) admits nonempty

compact solution set such that limh,0+ DH(R(1),R(2)) O.

Using this result one can obtain interesting existence result for LSC differential inclusions.

Corollary :.1. Let G be closed valued almost LSC multi satisfying the inequality of theorem

3.3. Denote F(t,x):= fq,>oclco{u: u G(t,y): lY x[ < e}. If F satisfies H1 then the following
differential inclusion admits a solution

(t) G(t,x), x(O) xo (3.3)

PROOF. Let N be as in the proof of theorem 3.2. From theorem 2 of [8] we know that there

exists a Fg+l continuous selection g(t,z) G(t,z). Recall that f(.,.) is called Fg+l continuous

at (t,x) when f(t,,x,) f(t,x) whenever Iz,- zl < (N + 1)(t,- t) and t, t. An obvios

modification of the proof of theorem 6.1 of [9] shows the existence of solution of 5: g(t,x). QED.
REMARK. The question of the approximation of the solution set of (1.1) is studied in [10] for

general nonauthonomous systems. We note only that to the author’s knowledge all the existence

refults in the litherature use compactness conditions on G or the nonemptiness of the interior of

clcoG(.,.). (see e.g. 9, 10 of [9])
4. SINGULARLY PERTURBED CASE.

In this section we consider the differential inclusion (1.2). The next theorem shows the LSC
dependence of Z(e) at 0+ with respect to C L2 topology.
THEOREM 4.1. Suppose A1, A2 hold. Let (x,y) be solution of (1.3) and let y(.) be

continuous. If r (0.1) and if is fixed then there exists e() such that to every < e() we have

Ix(t)- x,(t)[ < and ly(t) y,(t)[L < 6 for some solution (x,,y,) of (1.2).
Proof. Fix A > 0 and > 0. Let z(.) be N-Lipschitz function such that ]z(t)- y(t)[ _< A.

Therefore d[(x,z, hc, ek),GraphF] <_ A + Ne, since d[(x,y,k,O),GraphF] 0. From lemma 2.2

there exists a solution (x,,y) of (1.2) such that [x(t)- x,(t)[ < r(t), [z(t)- y,(t)[ < s(t), where s

and r are the maximal solutions of the system:

(r)’ 2Llr + 2Lrs + 2MA r(0) 0

(s2)’ 2L3rs/e- 21s2/ + 2(M/e + N)A s(0) [z(0)- y0[

Let m > r and n > s be such that

r:n 3Lm + Ln/L + MA m(0) 0 (4.1)

iz 2L3m/(tte)- tm/e + 2(M/e + N)A, n(O) [z(0)- y0] no (4.2)

Then rh(t) _> 0 for a.e. I. Using the Cauchy formulae and integrating by parts one obtains

from (4.2) n(t) < exp(-ttt/e)no + 2A(ge + M)/t + 2L3m/tz. From (4.2) one obtains rh(t) _<
(3L1 + 2L3/#)m + 2L1A(Ne + M)/(Ltt) + exp(-#t/e)no. Denote cl 3L + 2L3/tt and c
L(M + Ne)/(Ltt). From the Cauchy formulae follows

m(t) < exp(ct)[no, exp((-#/e- cx)r)d, + c2. exp(-car)dr]

< xo(,t)[= + 0,/u]
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Oo c ( + :V + 1#)1#; c, xp(c,t)/v hence n(t) < expC-pr/) + c3A + c,. Thus

n(t) no/(7) + c3A + c4 on [r, 1] since exp(-7/) G /(r). Since c,c,c3 and c4 do not

depend on one can find A and such that n(t) and re(t) . QED.
COROLLARY 4.1. Under A1, A2 he solution set Z() depends lower semicontinuously on

eat =0+.
PROOF. Let (x,y) be a solution of (1.3). Fix and . Since y(.) is bounded one h that

there exists g > 0 and K- Lipschitz z(.)such that z(t)- y(t)I on IT and ]z(t)- y(t) M
on A. Here ITand A are as in lemma 2.2. Thus d[(x, z,&, ), GraphF] 6 on I x Hwith ms

Ix> -6 and d[(x,z,&,e),GraphF] M on A x H for small . From lemma 2.2 there exists a

solution (u, v) of (1.2) with z(t) u(t) r(t) + ; z(t) v(t) r(t) + , where r and r
are the solutions of the system:

f g 4nr, + L:r:/L, + C,($ + a(t)) r,(O) Ix(O)- x(O)l

f: S e-’-’{2/zr, p:r: + C:( + a(t)) + K} r2(0) lye(0) y(0)l

One h only to prove that (r,, r2) converges to zero in C x L2 0, which is standard and

is omitted. QED.
EXAMPLE 4.1. Consider the system

(t) ez’/+l+[0,] (0)=0.

(t) e - + [0, ] (0) 1.

Obviously the solution set of this system is not LSC at 0, because the first inclusion is not

Lipschitz. Consider however

(t) -’/ + I + [0, ] (0) 0.

(t) e - + [0, ] (0) 1.

The solution set of last system is LSC since theorem 4.1 holds, however the right-hand side is not

Lipschitz. This is true also for the first inclusion (without y(.) and without singular perturbation).
In that case theorem 3.2 is valid.

As we have seen the LSC dependence on parameters in regulary and singulary perturbed ces
can be investigated under the same approach. The USC dependence however can not. We give an

example for system which is not USC at 0+.
EXAMPLE 4.2. Consider the system

(t) - + (t) (0) 0, h e I-i, ].

(t) -2 + w(t) (0) 0

Fore 0 the solution set of this system is R(t) (w(t), w(t)/2) where w(.)is arbitrary meurab]e

w(t) I-l,1]. Let w(t) 1,t [(2k)/(2n),(2k + l)/(2n)); w,(t) -l otherwise. Consider

the sequence , 1/(2n). Let (x,,y) be the solution of the system for w w,. It is ey to show

that li o+ f ]x,(t)- 2y=(t)dt (e- l)4/(e- 1). Thus the solution set of this system does

not depend USC on at 0+ in L, str9 topology (of course x 2y 0 in L2-weak). This

example is studied in [7].
5. CONCLUSION REMARK.

We note that using the properties of the duality map j(.) (s theorem 3.3 for definition and

[9] for the properties) one can prove similar results as theorem 3.1 and theorem 4.1 in case of
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uniformly convex Banach space H’. Using technique as in the proof of theorem 3.2 and by more

carefull estimations one can obtain similar results also in case of nonautonomous system.
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