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ABSTRACT. In this paper we establish weighted norm inequalities for an integral transform whose
kernel is a Fox function.
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1. INTRODUCTION
The transformations we will investigate in this paper are the ones called H-transformations. These
transformations are defined by

(a1,01), ..., (ap, @p)

H(f)(=) = /0 " Hoa (It )f(t)dt, f€Co, m

(blvﬂl)) aeey (bqy ﬁq)

where §7 denotes the Fox function ([9]) and as usual Cp represents the class of complex valued
functions on (0,00) which are continuous and compactly supported. In the last years, the H-
transformation has been studied by several authors (see [6], [7], [14] and [18]) and it reduces to important
integral transforms (Laplace, Hankel, Meijer, Hardy, ...) by specifying the involved parameters. In a
previous paper [5] the authors (simultaneously to A. A. Kilbas, M. Saigo and S. A. Shlapakov [15], [16]
and [17]), investigated the behavior of transformation (1) in certain weighted L, spaces introduced by P.
G. Rooney [21].

Weighted Fourier transform norm inequalities have been exhaustively studied (see [2], [3], [4], [10],
[13], [20], amongst others). Inspired by the above works our aim in this paper is to give conditions on a
positive Borel measure Q2 on (0, 00), and on a measurable nonnegative function v on (0, 00) which are
sufficient in order that the inequality

{r IH(f)(z)l’dQ(z)}% <o [ v(z)lf(z)l’dz}é. fean @

holds where 1 < r, 3 < oo and C is a suitable positive constant. Also we analyze some special cases of
(2). Moreover we establish some properties on {2 and v that are implied by (2).

We now introduce some notations that will be used throughout this paper. We need consider some
parameters related to the §)-function. Let m,n,p,g € Nbeing0<m <s,0<n<randr+s>1
Assume thata;, j=1,..,rand b;, j=1,...,s, arereal numbersand a,, j = 1,...,r,and G, j =1, ..., 3,
are positive real numbers. We define

o= max{—%;,j:l,...,m} , for m>0
— 00 , for m=0
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ﬂ={min{%°l,j=l,...,n} , for n>0
+ 0o , for n=0

9 P
V= Z b, — Za_,
1=1 =1
n y4 m q
§=EQJ_Z aJ+Z'6J Z B
J=1 J=n+1 J=m+1

Also we remember a result that was established in [5] and that will be very useful in the sequel
THEOREM A (Corollary 1 of [5]). Ifa < v < § and if either
(@ &>0o0r
() £=0,p#0andv+py—L(g-p) < -1

holds, then the function 5) is defined by

(a1, 1), .., (ap, @p) Y+100
) B 2—:5/ 7" h(s)ds ®)
(b1, Br), ..., (bgy By) y-100

H(z) = fJ;:"q" (I

for every z > 0, where

(a1, 1), ..., (ap, @p)
h(s) = hy" (
(blyﬁl)’ ""(bqv .Bq)

) ﬁ L, + ﬁ]s)ﬁ [(1-a;—qs)
S =

H 1"(1 -b, —,st) H F(aJ+a,3) .

]-m
Here the empty products as usual are understood as 1 Moreover
19(z)] < Cyz™” 4)

for every >0, C, being a positive constant. Furthermore if a<y< 3, £ = 4 =0and v— %(q— p)<-1
then (3) and (4) hold for every z > O exceptforz =7 B

In view of the above considerations we will assume in the sequel that our parameters satisfy one of the
following four conditions, namely

N £€>0
(i) €=0,p>0andf< —Llp+1+i(p-g)

() £=0,p<Oanda> —Lv+1+}(p—g)]

Gv) ¢€=0,p=0andv+i(p-g) < -1

Throughout this paper for every 1 < 7 < oo we denote by ' the conjugate of  (that is, ' = -53)
Also when some of the exponents in our weighted inequality are infinite said inequality must be
understood in the obvious form.
2. WEIGHTED NORM INEQUALITIES FOR THE H-TRANSFORM

We shall firstly give sufficient conditions on a positive function v on (0, 00) and on a positive Borel
measure §2 on (0, 0o) in order that the inequality

1

{/0 [H(F) (=) dn} <c{/ v(z)|f(z)|'dx}', fec,

holds, where 1 < 7, s < 0o and C denotes a certain positive constant. When either r = oo or s = 0o
inequality (2) takes the obvious form. The employed procedure here is inspired by the one used by
J. J Benedetto and H. P. Heinig ([2] and [3]) in their studies about Fourier transforms
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PROPOSITION 1. Assume that Q is a positive Borel measure on (0, 00) and that v is a nonnegative
measurable function on (0, co) belonging to L1 (0, o).
If1 < r < 3 < oo and there exist a < a, b <  such that

. 1
T H lz- 7
B, = sup{ / t““dQ(t)} { / o v(t)l‘“dt} < oo
>0 0 0
% L peo 4
B, = sup { / t“”dQ(t)} { / T v(t)“”dt} < 00,
z>0 z 1;

then (2) holds for every f € Co.
Alsoif 1 < 8 < r < 0o and there exist @ < a, b < 3 such that

and

1

B = /000{/0; z_‘”dQ(z)}’f{/ozz""v(z)l"’dz}5z'°’lv(x)l_'/d.1: < 00
B = '/0'00{/;00 z"b’dﬂ(z)}%{/:wz_"'v(z)l")dz} 5:'Wv(z)1_',dx < o0

where ; = 1 — 1 then (2) holds for every f € Co

r

PROOF. First we consider thecase 1 <7 < s < o0
Let f € Cy. By virtue of (4) for every a < a, b < 3 there exists C,, > 0 such that

and

M@ < c.,,b{ /0 " (zt) 70 |f(0)ldt + / " (zt)"’lf(t)ldt}y z>0.

By using the Minkowski inequality we obtain

{/o (s )“)l’dﬂ(z)} < Ca.b[{ / { / t‘“lf(t)ldt} z'“’dﬂ(z)}
+ { /ooo { /: o~ f(t)|dt} x“bsdﬂ(z)}’] = Coy(di + ). ©)

A straightforward change of variable leads to

Ji= { /0 m{ /0 o f(t)]dt}’x“”dﬂ(a:)}% - { /0 w{ / rmh(u)éu}’x-“dn(x)}'

where h(u) = u"2|f(1)]|,u >0
Therefore from Theorem 4 (1.3.1) [19] one infers

o ! o L '
<o [Mheruwa) = [Mrorwe) ©
with C; > 0 and v; () = v(3)t> 27", ¢ > 0, provided that B; < co.
On the other hand, we have

h= { / w{ I t‘"lf(t)|¢zt}’x-:udn(ac)}é -{[[ g(t)dt}’x""dn(w}%

where g(t) = t*=2|f(1)|, t > 0. Then by invoking Theorem 1 (1.3.1) [19] it follows
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B < Cz{ I g(t)'w(t)dt}} - 02{ / mlf(t)l'v(t)dt}% ™)

where vy (t) = v(1)t¥ 2% ¢ > 0, when B; < 0o

By combining (5), (6) and (7) we can immediately deduce (2)

When either 7 = 0o or s = oo the proof can be made in a similar way

In the case 1 < s < 7 < 0o (2) can be established as the above case by invoking the Theorem 2 (1 3.2)
[19]. W

In the sequel we present some special cases of inequality (2). The following results are related to
known weighted norm inequalities for other integral transforms due to P Heywood and P G Rooney
([11], [12]), N E. Aguilera and E O Harboure [1], B Muckenhoupt [20] and S A Emara and H P
Heinig [8]

A generalization of Theorem 2.1 of [12] is the following

PROPOSITION 2. Leta<1—n< fand1 < s < oo. Then

{/m|xl'"7-{(f)(z)|’dz}; < C/w " f(z)|dz, f e Cy, 8)
0 )

z
for certain C > 0.

PROOF. This result, that also can be proved in a similar way to Theorem 21 of [12], is a
consequence of Proposition 1 In effectif1 — n < a < § we have

0 H
{/ ts(l-—n-a)-ldt} |
z

where |||, 14 denotes the essential supremum respect to the measure t”~'dt and x g represents as usual

o g = (s -n-a)f, z>0md 1< <00

00,t"!dt

the characteristic function associated to the measure set E.
In a similar way we can see thatifa < b <1 —nand1 < s < oo. Then

1
z h
s(1-n—b)-1 “ —b—n+1
sup {/0 t dt} t X(0.1) (t)“w'm_ldt < oo.

z>0

Hence according to Proposition 1 (8) holds for every 1 < s < oo

When s = oo the result can be proved analogously W

We now investigate the inequality (2) when dQ = u(z)dz being u is 3 measurable nonnegative
function on (0,00), v=1andr = s.

PROPOSITION 3. Let 1<7<2,a<0 and % < (. If u is a locally integrable nonnegative
function on (0,00) for which there exists a constant M > 0 such that for every measurable set
E [pu(z)dz < M|E|""1 is satisfied, then

/0 " @M ) dz < C /0 " \f@)dz, feCo ©

for a certain C' > 0.
PROOF. Our proof is essentially the same one given in Theorem 1 of [1]. Let 1 < r < 2 we define

the operator

@@= {*EHNE L HuD 20 feq,

= 2
where b = 3%

Since a < 0 < G, then by (4) $is a bounded function on (0,00) Hence, according to Theorem 2 of
[1] we obtain
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00
/ u(z)dz S/ u(z)dz < g/ |f(z)|dz
{z ITf(z)'>A} {zub@<% F1f()iaz) A Jo

where C,, i = 1,2, are positive constants Thus T is a weak type (1,1) operator, on measure spaces
((0, 00), dz) and ((0, 00), u*(z)dx)

Moreover by virtue of Proposition 3 of [5] H is a bounded operator from Ly (0, co) into itself because
a < j <[ Therefore

I T 1T f@) et @)z < © / ” | f(@)dz
0 0

with C > 0, and T is a strong type (2,2) operator between the spaces under consideration

Now by the Marcinkiewicz interpolation theorem we obtain the desired result for 1 < r < 2

Finally, note that if » = 1 then f(;” u(z)dz < oo and (9) holds trivially because & < 0 < S and by (4)
Moreover if 7 = 2 then u is bounded function on (0, 0o) and sincea < % <fB@)leadsto(9) N

By proceeding as in §7 of [1] we can deduce from Proposition 3 conditions for a function v that imply
inequality (2) holds when Q is the Lebesgue measure on (0,c0) andr = s

We now give conditions for u that are deduced from (9)

PROPOSITION 4. Let 1 < 7 < oo. Assume that one of the following two conditions is satisfied'
()  There exists jo € N, 1 < jo < p, such that — 22 > max{c,1 - 1} and

(a’llv al)y “ey (a';’ ap)
mn

z||=K;>0 (10)

1
O<z<1

(blyﬁl)v sy (bqvﬂq)

where @) =a;, +1landa) =a;,, 1<j<p, j#jo
(i) There exists jo € N, 1 < jp < g, such that l—;:—"l > max{f,1— 1} and

(ay,@1), .-y (ap,a,,)

odnf . z||=Ky>0
<z<
(61, B1), ---, (b, 57)
where b =b, —1landb) =b,,1<5<q,j#jo
Then there exists a positive constant L such that
a
/ u(z)dz < Cal™", holds for every a >0, Qam)
0

provided that (9) holds.
PROOF. We will establish the result when (i) is satisfied withn + 1 < jo < p The proof in the other

cases can be made in a similar way
It is easy to see that

(a},@1), -y (a;,,a,,)

|

-am mn Q)o
AR z

(blyﬁl)» R ] (bqv ﬁq)

(01, 01), ey (a'Pv aP)

= _ I-(%H)ﬁ;"'(}"( x“’o) , >0 (12)

(blﬂal)v oy (bq1 ﬂq)
beinga) = a, +1landa)=ga;,, j=1,..,p, j # Jo
For a > 0 fixed, define
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_ %07
™o, 0<z<l
, z> 1.

t:r) dt

fa(z) = {g
By using (12) we can write

% apgray (al,al),...,(a,,,ap)
(Hfa)(z) = /0 £ g

(blv ﬂl)v ey (er ,Bq)

O d (a1, @1), s (ap, @p)
=ewI L g | TV v | |dv
(b1, 51), ., (bq, By)
%9 (a,lval)v"'y (a';yap) z
= —ay,a Hyr =
(blvﬂl)v-"y (bq;ﬁq)
because
(a'l,al),..., (a;,ap)
lir{]l+ v HTn o | = 0. (13)

(blv ﬂl)v ey (bQ1 ﬂq)

Sincea < — g—j% to see (13) it is sufficient to take into account (4) Hence, by virtue of (10)

(a}, 1), .., (a5, @) ’

— || dz
a

[ wers < &7 [ uto|ngy
0 0 (bhﬂl)"-'v(bq’ﬂq)

s\ T [e
= (Kiapa®)  [u@rtreres
Similarly from (9) one deduces
a a5\ T Lo (oxten)r
/ u(z)dz < C(Kzana%) / z  » dz=C(Kya,) Tah
0 0

Thus the proofis finished W

Note that if » = 1 (11) implies that u is integrable over (0,00) When r = 2, u is bounded on (0, 0o)
provided that (11) holds Also if » > 2 and (11) is satisfied thenu = 0, a.e (0, go)

B Muckenhoupt [20] investigated sufficient conditions for the measurable functions u and v that
guarantee that the inequality (2), with dQ(z) = u(z)dz, holds when the H-transformation is replaced by
the Fourier transform Also he studied the converse problem proving that, in some cases, the above cited
conditions are necessary Later P Heywood and P.G Rooney [11] analyzed weighted norm inequalities
for the Hankel transformation in a similar way We now use an analogous procedure to extend the results
in [11] to the H-transformation (note that this transform reduces to the Hankel transformation when the
parameters take on suitable values)

It will be used to recall some definitions of [11]. For every n € R, 1 <r < oo and for every v
nonnegative measurable function on (0,00), the space L. is constituted by all those measurable
functions f on (0, o0) such that

£l = { [ ere@r i‘f—} <o

The space L, ., is a Banach space when it is endowed with the topology associated to the norm |||, ,, .
Also, if u and v are nonnegative measurable functions on (0,00) we say that (u,v) € A(r,s,6) with
6 €Rand1 < r, s < oo when there exist positive constants B and C for which"
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o o €] [ {2} %] <o

In Propositions 4-8 [5] we established some conditions on the parameters involved in the $-function in
order that the H-transformation can be extended to the space £, as a bounded operator from £, , into
L1-ns In the following Proposition the above results are improved We prove that under suitable
conditions the H-transformation can be extended to £y, as a bounded operator from £, ,,, into L1-n..s
We only stated the result corresponding Proposition 8 of [5] although similar results corresponding to
Propositions 4-7 of [5] can be established.

PROPOSITION S. Let 1 <r<s<oo, £>0and a<l—n<fB Suppose that (u,v) €
A(r,s,1—n—o0), witha < g < 5. Then the H-transformation can be extended to L, as a bounded
operator from L, ,, - into £1_p.,

PROOF. This result can be proved as Theorem 1 of [11]. It is sufficient to take into account that
I5(z)| £ Coz™%, > 0, with @ < ¢ < § and for certain C, >0 By using this inequality instead of
(2 5) of [11] and Proposition 8 of [5] instead of Lemma 1 of [11] the proof of our result follows as the
one of Theorem 1 of [11]

On the other hand this result can be proved also by invoking Proposition 1 because if
(u,v) € A(r,s,1-n—0) being a<1l-7n,0<fB then the conditions B, < oo,i=1,2, in
Proposition 1 are satisfied when dQ and v are replaced by z(1-"-9)3~1y(z)°dz and z(1-")r~ly(z)",
respectively. W

Our next objective is to establish a partial converse to Proposition 5

LEMMA 1. Let1<r<s<ooand 0<7n<1 Assume that u and v are nonnegative measurable
functions on (0, 0o) such that u is decreasing, lim u(z) = 0 and v is increasing. Also suppose that
I—00

( (a1, 1), ..., (ap, ap)

for everyw > 0

mn
o<z<1 P9

x) =C; > 0. (14
(bly ﬁl)x weey (bqy ﬁq)
Then there exists a positive constant B > 0 for which
sup{z : u(z) > Bw} - sup{z : v(z) <w} <1,
for every w > 0, provided that  is a bounded operator from £, into £1_p4.s
PROOF. This result will be proved when we see that if
sup{z : u(z) > Bw} - sup{z : v(z) <w} > 1,
for some w > 0, then B is less than a positive constant only depending on r, s and 7, the lemma then

holds with any larger value of B
Let B, w > 0. For simplicity denote

M = M(B,w) = sup{z : u(z) > Bw}.
Since lim u(z) =0, M(B,w) < co. Assume now M(B,w) - sup{z : v(z) < w} > 1 and define the
I—00

function fwo 1 o<y
D=0, ifz> L.
It is clear that f € £, , . and one has
! d : ! !
M T M w
= [FEmer £ < [foeriap - —2 (s)
T { [ vt 2 } { [ } prevms

because v(z) < w, forevery z € (0,%). Since Hf € Li_nu, then by virtue of (14) and since
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u(z) > wB, for every z € (0, M) we can write

1
M s s
dz
>
”Hf“l—n,u,s el {L z }

M : M :
> ﬂ / lxl-nu(z)l’ d_:: > ____CIB“) / Z-me=15. 0 C1Bw : (16)
M | Jo z M o Mn(s(1-m)):

for a suitable K > 0.
Moreover for a certain C > 0

() / " o (at)dt
0

”Hful—r;,u'g -<— C”f“r,'u‘r‘ (17)
By combining (15), (16) and (17) one concludes that

B < Sl =l
Ci(nr)-

Note that the constant in the right hand side of the last inequality is positive since 0 <7 <1 Thus the
proof is complete. W
PROPOSITION 6. Let 1<r<s<ooand 0<n<1 Assume that u and v are measurable

nonnegative functions on (0, 00) such that u is decreasing, lim u(z) =0, v is increasing and
' g Z—00 g v(z)<w

v
{%} 4 < oo, for every w > 0. Then (u,v) € A(r,s,1 — n) provided that  is a bounded operator
from Ly, . into £,_,, . and (14) holds

PROOF. We define for every w > 0 the function

nr-1 N
_ == v(z) if0<v(zr)<w
(@) { 0 otherwise

o= { (2} )

and f, € £,,.r, for every w > 0
But since H is a bounded operator from L, into £;_,,,, there exists a positive constant C > 0
such that

It is not hard to show that

"wanl—n,u,s S C”fw”n,v,r' w>0.

Hence
1

s H 1-ny " d H
{/( )>Bw|:l71—'lu($)7"(fu)(x)l %E} SIH folli-pus < C{/(z)< {z(z;} f} ,w>0 (18)

where B denotes the constant given in Lemma 1.
Moreover, according to Lemma 1, ifw, z,t > 0, u(z) > Bw and v(t) < w, then

zt < sup{z : u(z) > Bw}sup{t : v(t) <w} < 1.
Hence (14) leads to

{/uu»aw |2! "u(@H(£) ()] d?z }5
1L ,

L v
sdz)*® t1-1\" dt

zc{/ z M (x —} / {——} —, w>0. 19)
! u(z)>Bw| ( )l z v(z)<w ‘U(t) 3

() t%5 H(zt)u(t) " dt
o(t)<w
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By combining (18) and (19) we conclude that (u,v) € A(r,s,1—17). &

S A Emara and H P Heinig [8] established interpolation theorems (Theorems 1 and 2 of [8]) that
they employed to study the behavior of the Hankel and K -transformations on weighted L,-spaces We
can use such interpolation theorems to obtain new weighted norm inequalities for the H-transform The
weight functions that appear in this inequality are in the class F", that we are going to define Let u and v
be nonnegative measurable functions defined on (0,00) and let u* and (1)” be the equimeasurable
decreasing rearrangements of u and %, respectively We say that (u,v) € F7, if

SUpP,>0 {/01; u'(t)’dt}];{/ow K%)‘(t)} #dt}ﬁ < 00 (20)

holds for every 1 < r < s < 00, and when 1 < s < r < oo the conditions

Clod ey @ereee @
[ {{ [lewelal [ [t-g(g)'@ﬂ“dt}é}"{(5)1,):-%}““ cw @

hold, where 4 = 1 — 1. Moreover if (20), (21) and (22) hold when u" and (1) are replaced by u and 1,
respectively, then we write (u,v) € F,,
PROPOSITION 7. Assumethat1 <7, s < 00, a < 0 and % < f Then

1

{ I Iu(z)H(f)(r)I’dz}; < c{ I tv(z)f(x)rdz} L feon @)

holds for a certain C' > 0, provided that (u,v) € F;,.
PROOF. Since a < 0 < f, according to (4) we can write

sup [H f(z)] < C / " |f@)ldz, f € Li(0,00)
>0 0

for a certain C > 0, and then H is a bounded operator from L; (0, 00) into L, (0, 00)

Moreover, H is a bounded operator from L (0, 00) into itself because a < % < B (Proposition 3 of [5])

Hence from Theorems 1 and 2 of [8] we can infer that the inequality (23) is satisfied W

We now prove a result that is a (partial) converse to Proposition 7 Note that here no monotonicity
assumptions on the weights need be made.

PROPOSITION 8. Let 1 <r<s<ooand let u and v be nonnegative measurable functions on
(0,00). Assume that (14) holds and that f;’ v(z) " dz < o0, for every w > 0. Then (u,v) € F,, when
(23) is satisfied.

PROOF. Firstly we define for every w > 0 the function

v(z)™" , f0<z<w
fw(z)={0() , ifz>w.

From (14) one deduces

[ u@ms@re= [

> [ @) [ atwn e

for a certain M > 0. Moreover,

dzr

u(z) /Ooo H(xt) f,(t)dt

s L s
dr > M/”u(z)’dz {/wv(t)-“dt} , w>0
0 0
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/0 ") dz = /0w o(e) " dz, w>0.

Since (23) holds we can write

1
< r

{M/Ol;u(:c)’dz{/:v(t)"”dt}’}! sc{/owv(t)-"dt} , w>0.

Thus we conclude that (u,v) € F,,. B
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