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ABSTRACT. We use selected semi-groups of self maps of a semi-metric space to obtain fixed point
theorems for single maps and for families of maps — theorems which generalize results by Browder,
Jachymski, Rhoades and Walters, and others. A basic tool in our approach is the concept of commuting
maps.
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1. INTRODUCTION. By a semi-group of maps we shall mean a family H of self maps of a set X
which is closed with respect to composition of maps. Thus, if f,g € H, then foge H. Since
composition of maps is associative, H is indeed a semi-group with respect to composition. We shall write
fgfor fog and fx for f{x) when convenient and confusion is not likely.

We shall utilize the following semi-groups of maps in subsequent sections.
L.1. Let g X — X,and H=0z ={ g": n € NU {0} }, where N is the set of positive

integers, g°=1iq — the identity map, g' =g and g™' =gog".
12 Let gX — X, and H=C; = { X — X|fg=gf}. C; is a semi-group. For if
£h € Cy, then (fh)g = flhg) = f{gh) = (fg)h = (ghh = g(fh), and thus, fh € C,.

1.3. H={iy}, and
14 IffgX— X and fg=gf, wecanlet H={ f"g™: n,m e NU {0} }.

If H is a semi-group of self maps of a set X and a € X, then H(a) = {h(a): h € H}.
Consequently, if g:X — X and H=0,, O;4(a) = {g"(a) : n € NU {0}}, and is called the orbit of g at a.

Just as we use semi-groups of maps to generalize the concept of orbits, we shall use semi-metric
spaces to generalize results pertaining to metric spaces. We need the following definitions.

DEFINITION 1.1 A symmetric on a set X is a function d: XxX — [0, co) such that d(x, y)
=0 iffx=y and d(x,y)=d(y, x) forallxy € X.

Given a symmetric d on a set X, we generate an induced topology t(d) for X as follows. For
x € X and €0, welet S.(x)={y € X: d(x,y)<e} . Thent(d) consists of all subsets U of X such that
for each p € U, S(p) C U for some €>0. Just as in the case of a metric, t(d) is a topology on X.
However, if d is a symmetric, the sets S.(x) need not be neighborhoods of x. A semi-metric is a
symmetric d such that all sets S(x) are neighborhoods of x; i.e., 3 U € t(d) such that x € U C S,(x). It



126 G. JUNCK

is easy to verify that if d is a semi-metric, then a sequence {x,} in X converges to x € X in the topology
t(d) iff d(xs, x) = 0. This is the property we desire. Hence, the following terminology.

DEFINITION 1.2 A semi-metric space is a topological space, denoted by (X; d), with topology
t(d) induced on the set X by a semi-metric d.

For further discussion of symmetrics and semi-metrics refer to [1] or [2]. In this context, we note
that a semi-metric need not be Hausdorff (or T) Example 2.2 in [2] gives an instance of such a semi-
metric. Since we desire uniqueness of limits, we shall in most instances require that a semi-metric space
(X; d) be Hausdorff. Note also that — as in metric spaces — we shall say a semi-metric space (X; d) is
complete iff every Cauchy sequence in X converges to a point in X . If g:X —+ X, then (X; d) is g-
orbitally complete iff every Cauchy sequence in Og(x) converges to a point in X forallx€ X. A
function F.X — [0, 0o) is lower semicontinuous iff F(x) < nll’ngo inf F(x,) when {x,} is a sequence in X

converging to x.
To produce fixed points we use a contractive function P:[0, o) — [0, oo) which is
nondecreasing and which satisfies: lim P?(t) = 0 for each t € [0, 0o). Throughout this paper, P will
n—0o0

denote such a map, and P will denote the family of all such maps P.

2. FIXED POINT THEOREMS. The major results in this paper evolve from the following lemma.
LEMMA 2.1. Let X be a set, g:X — X, and let d:XxX — [0, 00). Let H be a semi-group of
maps h X — X suchthat HC C; Suppose that for each pair x,y € X there is a choice of r =r(x,y),
s=s(x,y) € H and u,v € {x,y} for which
(i) d(gx, gy) < P(d(ru, sv)).
Then, if n € N, for each pair x,y € X 3r,,s, € H and u,,v, € {x, y} such that
(i) d(g™x, g") < P"(d(tatn, Sava)).
PROOF. (ii) holds for n=1 by (i), so suppose n € N for which (ii) is true. Then, ifx,y € X,

d(g™'x, g™'y) = d(g(g"). 8(g"y)) < P(d(ru, sv)), (21
where r,s € H and u,v € {g"x,g"y}, by (i).

Specifically, u=g"u,, whereu, € {x,y} and v=_g"v, withv, € {x,y}. Thus
d(ru, sv) = d(r(g"uo), s(g"v,)) where u, v, € {x,y}. Andsince r,s € HC Cg,
d(ru, sv) = d(g"(ru,), g"(svo)) < P"(d(rnun, snva)), by (i), 22)
where 1, s, € H and u,, v, € {ru,, sv,}.
Then ryu, € {(rar)u,, (Tas)vo}, where ryr, rys € H (a semi-group). So, rpu,= rpe1Uge), Where rpp € H
(i.e., Tne1 € {rar, 1,8}) and ugey € {u,, Vo} C {X, y}. Similary, s v, = Sp+1Vn+1, Where sp.p € H and
Vo+1 € {x,y}. Thus (2.2) implies

d(ru, sv) < PY(d(fa+1Un+1, Sne1Vae1)), With rpep, s.0p € H and upep,vaa € {X, y}. (23)

But P is nondecreasing; therefore, (2.1) and (2.3) imply
d(gnﬂx: gnﬂ)') < PP (d(Tn+1Un+1, Sn+1Va+1)) = Pnﬂ(d(rn*lun#h Sn+1Vn+1),
with rye1,Sq+1 € H and ug.y, vae € {x, y}. Thus, (ii) is true for all n, by induction. m}

THEOREM 2.1 Let (X; d) be a T, semi-metric space. Let g:X — X and let (X; d) be g-
orbitally complete. Suppose H is a semi-group of self maps of X such that H C Cg, and thereisana € X
for which H(a) is bounded and g(H(a)) C H(a). If for each x,y € X 3 a choice of r,s € H and
u,v € {x,y} such that

(*) d(gx, gy) < P(d(ru, sv)),
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then g"(a) — c for some c € X. If g is continuous at c, then g(c) = c. If d is lower semicontinuous ,
then c is a fixed point for all h( € H) continuous at c. Moreover, if g and each h € H are continuous at
¢, then c is the unique common fixed point of g and the family H.

PROOF. We first prove that {g"(a)} is Cauchy. By Lemma 2.1., for each pair n,k € N, there is
a choice of 1,,s, € H and u,,v, € {a, ga} such that

d(g"(2), g™(a)) = d(g"(a), £"(8(2)) < P"(d(faun, SaVa)) - (2.4)
Now 1, € H implies ra € H(a) and r,g(a) = gk(r,a) € H(a), since g(H(a)) C H(a) implies that
g“(H(a)) € H(a). Thus ryu, € H(a). Similarly, s,v, € H(a). But H(a) is bounded, so3 M >0 such
that d(x,y) < M for x,y € H(a). Thus, d(rquy, spva) <M forn € N.  Then (2.4) implies

d(g"(a), g"*(a)) < P"(M), fornk €N (2.5)
since P is nondecreasing. But P"(M) — O asn— oo. Sogiven €0, 3 n, € N such that for any
m>n2> n, (2,5) implies d(g"(a), g"(a)) < P'(M) <¢, with m=n+k. Consequently, {g*(a)} is
Cauchy.

Since (X; d) is g-orbitally complete, g"(a), g"*'(a) — c for some c € X. If g is continuous,
g(g"(a)) = g™*!(a) — g(c); thus, c=g(c) since X is Hausdorff.

Now suppose that d is lower semicontinuous and that h( € H) is continuous at ¢. Then, since
HCC; and g"(a) — ¢,

g"(h(a)) =h(g"(a)) — h(c). (26)
But (*) and Lemma 2.1 tell us that 3 r,,s, € Hand u,,v, € {a, h(a)} such that
d(g"(a), g"(h(a))) < P"(d(rnun, SnVa))- 2.7

Then ryu, = 1,2 € H(a) or ryu, = ryh(a) € H(a) (r,h € H, since H is a semi-group.). Thus, in either
event, rou, € H(a). In like manner, we conclude that s,v, € H(a). Then, as above, d(ryun, snva) <M
forn € N, which implies by (2.7)

d(g"(a), g’(h(a))) < P"M) — 0. (2.8)
But since g"(a) — c, (2.6) implies that (g"(a), g"(h(a))) — (c, h(c)) in XxX. Since d is lower
semicontinuous, d(c, h(c)) < nli‘q‘\od(g"(a), g"(h(a))) =0 by (2.8), soh(c)=c.

To complete the proof we have yet to show that if ¢ is a common fixed point for g and every
h € H, then c is the only such point. So suppose that z € X and that z = g(z) = h(z) forallh € H.
Then by (*) and Lemma 3.1, we can write:

d(c, z) = d(g"(c), 8"(2)) < P"(d(raun, $nVn)) (29
where r;,s, € H and u,,v, € {c, z}. But then ryu, € {c, z}. Similarly, s,v, € {c, z}. Therefore,
d(raup, spvp) = 0 or d(c, z). Thus (2.9) says that d(c, z) < P*(d(c, z)). Since P"(d(c,z)) — O, c=z
i.e, cis unique. O

The following example shows that the family H in Theorem 2.1 can have fixed points other than
the unique common fixed point of g and H.

EXAMPLE 2.1. Let X={0, 1}, g(x)=0 forx€ X h(x)=x forx € X. Letdxy)=|x—y|
and H= {h": n € N}. Since h"(x) =xforne N, H = {ig}. Since d(gx, gy) =0 for all x,y € X, it is
immediate that g and H satisfy the hypothesis of Theorem 3.1 witha=0, and 1 is a fixed point of H but
not of g.

The first corollary provides conditions necessary and sufficient to ensure that a family H of
continuous self maps of a semi-metric space has a fixed point.
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COROLLARY 2.1. Let (X; d) be a complete Hausdorff semi-metric space with d lower
semicontinuous. A semi-group H of continuous self maps of X has a common fixed point iff H(a) is
bounded for some a € X, and 3P € P and a continuous self map g of X which satisfies the following.

1. HC C; and g(H(2)) C H(a)

2. Forany x,y € X, 3achoice ofr,s € Hand u, v € {x, y} such that

d(gx, gy) < P(d(ry, sv)).

PROOF. That the conditions are sufficient follows immediately from Theorem 2.1.. To prove
necessity, suppose a € X and that h(a) = a for h € H. Then H(a) = {a} and is thus bounded. Let g(x) =
a for x € X. It is immediate that gh=hg forallh€ H, so HC C;. Moreover, g(h(a)) = a for all
h € H, so that g(H(a)) € H(a) and statement 1. of the Corollary holds. Statement 2. follows upon
noting that d(gx, gy) =d(a, a)= 0 forallx,y € X. (WecanletP(t)=v2,eg.) O

NOTE 2.1. The next result and proof suggest that the function g of Theorem 2.1 may have an
infinitude or unbounded set of fixed points, although H may have just one. Example 3.1 in the next
section confirms this.

COROLLARY 2.2. Let (X; d) be a complete Hausdorff semi-metric space with d lower
semicontinuous. A semi-group H of continuous self maps of X has a common fixed point provided 3
a € X such that H(a) is bounded, and forany x,y € X3 r,s € H and u,v € {x, y} such that

d(x,y) < P(d(ry, sv)).

PROOF. Let g =14, the identity map. O

COROLLARY 2.3. Let g be a self map of a metric space (X, d) which is g-orbitally complete.
If 3 a € X such that Og(a) is bounded and k € N such that for each pair x,y € X there is a choice of
n=n(x, y), m=m(x, y) € N and u,v € {x, y}, for which

*) d(g*x, gy) < P(d(g"u, g™v))
then g"(a) — ¢ for some c € X. Moreover, if x, € X and Oy(x,) is bounded, then g"(x,) — ¢. Ifgis
continuous at ¢, c is the unique fixed point of g.

PROOF. Let H=0;. Note that HC Cu, g(H(a)) = g(Og4(a)) € O4(2), and that g* (H(a))

C H(a). Since d is a metric, d is actually uniformly continuous [3]. Thus, g*(a) — c asn — oo for
some ¢ € X, by Theorem 2.1 applied to gk. If g is continuous at ¢, each g" € H(= Oy) is continuous at
c. So, as an element of H, g(c)=c by Theorem 2.1..

We have yet to prove that g"(a) — c and that g"(x,) — c for x, with Og(x,) bounded. To see
that g(a) — c, lete>0. Since (g5)™(a) = ¢ asm — oo, 3m; € N such that
d(g"(a), c) < €/2, form>m, (2.10)
By Lemma 2.1 and (*') of the hypothesis, if m € N, for each pair x, y € X there exist ry, sm € H
and up, Vm € {X, y} such that

d((g"(x), €Y < P"(d(Tmbm, SmVm)). - @1
Since Og(a) is bounded, 3 M > 0 such that
d(fmUm, SmVm) < M if rquy and spvm are in Og(a). (2.12)
Now P™(M) — 0 asm — o0, so we can choose m, € N such that
m,>m; and P™(M) <e¢/2. (2.13)
Let n>km,. Then n=km, +t, for some t, €N, and (2.11) implies
d(g"(a), 8“™(2)) = d(g"™ (8"(2)), §“™(2)) < P™(d(Tm,Um,» Sm,Vim,)) (2.14)
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where 1, € H=0, up, € {a, g~(a)}, sothat ryum, € Og(a). Similarly, sm,vm, € Og(a).
Therefore, (2.12) implies that

d(Tm,Um,, Sm,Vm,) < M, and since P is nondecreasing, we have
P™( d(Tm,Umg, SmeVm,)) < P™ (M) <e€/2, by (2.13). Thus (2.14) implies
d(g"(a), g™ (a)) < €/2.

But then (2.10) with m = m, and the triangle inequality imply that d(g"(a), c) <€, since me> m;. We
therefore conclude that g"(a) — ¢

If X, € X suchthat Og(x,) is bounded, the above argument shows us that 3 p € X such that
g'(x,) — p. To see that p =c, first observe that S = O4(x,) UOg(a) is also bounded since d is a
metric; ie, 3 M, >0 suchthat d(x, y) <M, if x, y €S. We can therefore apply (*') and Lemma
2.1 as before to conclude that

de, p) = fim  d(@"(a), g7 (xo)) < . lim P"(Mo)=0. O

The following example shows that the hypothesis in Corollary 2.3 that the orbit Og4(a) be bounded
for at least one a € X is indeed necessary.

EXAMPLE 2.2. Let X =1, 00), P(t)=t/2 fort € [0, 00), d(X,y)=|x~y]| and g(x)=3x
forx,y € X. ThenP(t)=t/2" — 0 asn— oo, gX — X and d(gx, gy)= |gx—gy|=3|x-y|

<92 x—y|=1/2|9x - 9y| = 1/2 |g?x — g?y| = P(d(g?x, g’y )). But since g"(x) =3"x — oo for

each x € X, O4(x) is bounded for no x € X and g has no fixed point.

In [4] Rhoades and Watson introduced the concept of a “generalized contraction”.

DEFINITION 2.1 Let (X, d) be a metric space. A function £X — X is a generalized
contraction (with respect to Q) if 3 p,q € N such that for all x,y € X

® d(fPx, fy) < QM(x, y)),
where

M(x, y) = max{d(f'x, fiy), d(fx, f'x), d(fly, fy): 0S¥ <p, 0<jf < q}.

(Q is a nondecreasing function Q: [0, co0) — [0, 0o) such that Q(s) <s for s > 0.)

NOTE 2.2. Jachymski [5] studied the relation (i) and observed that it satisfies

(i) d(f"x, f'y) < Q(max{ d(f'u,fiv): 0< i,j < r andu,v € {x,y}})
where r = max{p, q}, since Q is nondecreasing. But (ii), and hence (i), satisfy the relation (*') in
Corollary 2.3. In fact, the following theorem by Jachymski — except the last sentence therein — is a
consequence of Corollary 2.3. This last sentence refers to (9) which is essentially (i) above with the
restriction that either i, i’ € {0, p} orj,j’ € {0, q}.

THEOREM 4. ([5]) Let fbe a generalized contraction and let (X, d) be f-orbitally complete. If
‘}ixg_) ooQ“(s) =0 for s € [0, co) and there exists a point x, € X with a bounded orbit, then the sequence

{f"x,} converges to some z € X. Moreover, for any x € X with a bounded orbit, f"x — z.
Furthermore, if f satisfies (9) z is the unique fixed point of f.

The following example shows that if we use the more general contractive property (*') of Corollary
2.3, continuity at ¢ or restrictions of the ilk found in (9) of Theorem 4 are needed to ensure that the point
c (or z) is a fixed point.

EXAMPLE 2.3. Let X=[0, 1] and let d(x,y)=|x —y|. Define g: X = X by g(x) = 3(x+1)
for x€ [0, 1) and g(1) = % Then it is easy to see that g(x) = (x — 1)2"+1 (x # 1), and g"(1) =
1-2"" forne N. Thus, g"(a) — 1 foranyae€ X. Since X is bounded, Og(a) is bounded for each
a € X. Thus, to see that the hypothesis of Corollary 2.3 is satisfied, we need only to verify that (*')
holds. A check shows that
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d(g?x, g2y) = § d(gx, gy) forallxy € X. (2.15)
Thus, (*') holds trivially with k=2, n=m=1,andu=x, v=y forall x,y in [0, 1]. However, g"(a) — 1
for any a, but g is not continuous at 1 and 1 is not a fixed point of g. Note that property (9) of
Jachymski's Theorem 4. does not hold since in this instance p=q =2, and g2, g° do not appear in the
right member of (2.15).

3. THE BOUNDED CASE. The following is an example of a function g and a family H which
satisfy the hypothesis of Theorem 2.1 and for which the set F; — the set of fixed points of g — is not
bounded We then consider the significance of this phenomenon.

EXAMPLE 3.1. Let X=[0, 00) and d(x,y)=|x—y| forxy € X. Let g(x)=xforx € X;
i.e., g is the identity map. So Fy = [0, 00), and is unbounded. Let P(t) = t/2 fort € [0, 00) and define
ha(x) =nx forx€ X and n€N. If H = {h,: n € N}, and hy,h, € H, then hyhy(x) = ha(hn(x)) =
hp(mx) = (nm)x = hyp(x). Thus hyhy, = hy, € H, so that H is indeed a semi-group. Since g is the

identity, the conditions H C C; and g(H(a)) € H(a) ( for any a € X) are satisfied trivially. Moreover,

digx, gy)=|x—-y| < % |x—yl|= % | 3x — 3y | = P(d(h3x, h3y)), so that (*) and hence the hypothesis

of Theorem 2.1 is satisfied. a=0 is the unique fixed point for g and H, but g has an infinitude of other
.fixed points.

In the remainder of the paper, if (X; d) is a T, semi-metric space and g:X — X, we shall say that
g has property P relative to a semi-group H of self maps of X iff for each pair x,y € X 3r,s € H and
u, v € {x,y} such that

(*) d(gx gy) < P((ry, sv)).

NOTE 3.1. If a function g:X — X has property P relative to a semi-group H of self maps of X
for which H C C;, Lemma 2.1 implies that if n € N, for any pair x,y € X there exist r,, sn € H and u,,
vy € {x,y} suchthat

(**) d(g"x, g"y) < P"(d(raun, $aVn))

PROPOSITION 3.1. Let (X; d) be a T, semi-metric space and let g:X — X. Suppose H is a
semigroup of self maps of X such that H C C,. If g has property P relative to H and F; is nonempty and
bounded, then

(i) Fgisasingleton {c}, and (ii) ¢=g(c)=h(c) forallh € H.

PROOF. To prove (i), we first note that h(F;) C F; forallh € H. Forifh € H and a = g(a),
then g(h(a)) = h(g(a)) = h(a), so that h(a) € F;. Moreover, since F; is bounded, 3 M > 0 such that
d(a,c) <M for ac€F,.

Now by hypothesis, 3 ¢ € F;. We assert that ¢ is unique. For suppose a € Fg. Then Note 3.1
says that we can choose ugv, € {a, ¢} andr,,s, € H such that

d(a, ¢) = d(g"(a), 8"(c)) < P"(d(raun, SaVa))- (ERY)
But since h(Fg) C F; for h € H, and since a, ¢ € F, rau,, sava € Fg. So by the above,
d(raun, SaVn) <M.
Therefore, since P and hence P" is nondecreasing, (3.1) yields:
d(a,c) < P"(M) forn€N. (3.2)
Since P"(M) — 0 asn — oo, (3.2) implies that a=c.

(i) is an immediate consequence of (i), since (h€ H) = h(F;) C F;. Therefore, ifh € H,
h(c) € {c};i.e, h(c)=c. O
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COROLLARY 3.1. Let (X;d) be a bounded and complete T, semi-metric space. Let g:
X—X and let H be a semi-group of self maps of X such that H C C; and g(H(a)) C H(a) for a € X
If g has property P relative to H, then for each x € X 3 a point ¢x € X suchthat g"(x) = cx . Ifgis
continuous at one such c,, then Fy is a singleton, {c}, and ¢ =c for all x. Moreover, ¢ =h(c) for all
heH.

PROOF. Since X is bounded, H(x) is bounded for each x € X. Therefore, Theorem 2.1 implies
that g"(x) — cx for some ¢, € X. If g is continuous at one such c,, then g(cx) = cx. But then Fyis
bounded and nonempty, so that Proposition 3.1 implies that F; = {c}, a singleton, and that ¢ =h(c) for
alheH O

Corollary 3.1 has Theorem 1.[6] by Browder and a result by Zitarosa [7] on contractive self maps
of a bounded complete metric space as special cases with H= {i4}.

The proof of our next theorem, as did the proof of Corollary 2.3, requires that the union of two
bounded sets be bounded. So we again need a metric. Also, observe that in Example 3.1 the set H(a) =
{na ne N} isunbounded fora # 0.

THEOREM 3.1. Let g be a self map of a metric space (X, d) which is g-orbitally complete.
Suppose that H is a semi-group of self maps of X such that H C C,; and that g has property P relative to
H. If g(H(a)) C H(a) and H(a) is bounded for all a € X, then g has a contractive point c; i.e., g"(x) -
c for all x € X. Moreover, ¢ = g(c) = h(c) for all h € H if g is continuous at ¢

PROOF. Let a € X. By Theorem 2.1, since H(a) is bounded, g"(a) — ¢ for some c € X But
g"(x) = cx € X for any x € X since H(x) is bounded. We show ¢, =c for any x € X. To this end, let
x € X. Then H(x)UH(a) is bounded. Since g has property P relative to H and H C Cg, Note 3.1
implies that for alln € N we have:

d(g"(a), g"(x)) < P*(d(raun, Savn)), (3.3)
where 1y, s, € H and u,v, € {a, x}; hence, ryu,, syvys € H(a) UH(x) for n € N. But H(a) UH(x) is
bounded, and so 3M > 0 such that d(r,un, $oVa) <M for all n. Thus, P*(d(raup,, Sava)) < P"(M) =
0 asn— oco. Hence (3.3) and the above imply:

d(c, &) = lim d(g"(a), 8"(x)) = 0.

Thus ¢ = ¢. If g is continuous at c, then ¢ =g(c) Butsince g"(x) — ¢ for all x, c is the only fixed
point of g. Therefore, ¢ =h(c) for all h € H by Proposition 3.1. O

COROLLARY 3.2. Let g be a self map of a metric space (X, d) which is g-orbitally complete.
Suppose that Oy(x) is bounded for all x € X. If g has property P relative to Oy, then 3 z € X such that
g"(x) = z for all x € X. zis a unique fixed point of g iff the function F(x) = d(x, g(x)) is lower
semicontinuous at z.

PROOF. Since trivially, Oy C C; and g(Og(x)) C Og(x) for all x € X, Corollary 3.2 follows
immediately from Theorem 3.1 (with the observation that the last statememt is a well known
consequence of "g"(x)—»z") O

We conclude with a theorem (rephrased) by Jachymski [S] which generalizes theorems of
Rhoades and Watson [4], and which is a consequence of our Corollary 2.3.

THEOREM 2. [S5] Assume that f is a generalized contraction, and (X, d) is f-orbitally complete.
If ,,ll.'Eo Q"(s) =0 for s € [0, 00) and sll.r& (s — Q(s)) = oo, then there exists z € X such that f"x =z
for any x € X. z is a unique fixed point of f if and only if the function F(x) = d(x, f{x)) is lower
semicontinuous at z.

To see that Theorem 2. [5] does indeed follow from Corollary 2.3, first observe that (as noted
before) a generalized contraction satisfies (*') of Corollary 2.3. Moreover, Lemma 3. [5] tells us that if
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,“'{,L (s — Q(s)) = oo, then the orbits Og(x) are bounded for all x € X. Therefore, Corollary 2.3 assures

us that 3 z € X such that f*(x) = z for all x € X. The assertion that z is the unique fixed point of f
follows as in the proof of Corollary 3.2

4. RETROSPECT. In closing we emphasize the general nature and utility of the semi-groups
H of self maps employed. For example, in Corollary 2 2 H is any family of continuous self maps closed
under composition with H(a) bounded at some one point a € X — no commutativity requirements are
imposed. Corollary 2.3 demonstrates the utility of options provided by H in letting H = Og. And
Example 1.4 indicates how, when given a map g:X — X, we can generate semigroups H which satisfy
g(H(a)) C H(a).

Note also that Hausdorff semi-metric spaces (X; d) generalize metric spaces, even if the semi-
metric d is lower semi-continuous. In fact, Cook [8] provides an example of a semi-metric space with a
continuous semi-metric which is developable but not normal, and hence not a metric

A final comment. The semi-group C, has been used to some extent in fixed point research See,
e.g., [9,10,11)
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