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ABSTRACT. The object of the present paper is to study the well known notions of semi-closure, semi-

interior, semi-frontier and semi-exterior of a set using the concept of semi-open sets A semi-isolated

point of a set is also defined and studied.
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1. INTRODUCTION
A subset A of a topological space (X, 7-) is said to be semi-open if there exists an open set U

such that U C A C Cl(U). The complement of a semi-open set is called semi-closed [2] The union of

all semi-open sets of X contained in A is called the semi-interior of A [2] and is denoted by slnt(A)
The intersection of all semi-closed sets containing A is called the semi-closure of A [2] and is denoted

by sCl(A) sCl(A)- slnt(A) is called the semi-frontier of A [3] and is denoted by sFr(A)
sInt(X A) is said to be the semi-exterior of A [3] and is denoted by sExt(A) In this paper, these

notions are further investigated We also introduce and study the concepts of semi-isolated points and

semi-scattered spaces
TIIEOREM 1. For a set A C X, the following are equivalent

(a) A is dense in X
(b) zCI(A) X.
(c) IfB is any semi-closed subset ofX and A C B, then B X.

(d) For each x E X, every semi-open set containing x has non-empty intersection with A

(e) slnt(X- A) @.
PROOF. (a) = (b). Let U be an open set with U c X B C CI(U) Since U c X A and A

is dense, therefore U 0 and so Cl(U) 0 Hence B X It follows that the intersection of all semi-

closed sets containing A is X, that is CI(A) X.

(b) = (a) Obvious since sCI(A) c Cl(A) for every A C X

(b) = (c) and (c) = (d) are obvious.

(d) = (e) If slnt(X- A) :/: 0, then sInt(X- A) is a non-empty semi-open set However,

(X A) fq A 0 and since zlnt(X A) C X A, we have slnt(X A) N A 0 This contradicts

(d) and means Mnt(X A) 0.
(e) = (b) Since slnt(X A) X zCI(A) [1], therefore X sCI(A).
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TFIEOREM 2. Let A be a subset of the space X Then

(a) F(M(A)) C F(A)
(b) sFr(sCl(A))C sFr(A)
(c) sExt(X) 0
(d) sExt() X
(e) sExt(A) sExt[X- sExG(A)]
(f) sinG(A) A- sFr(A)
(g) sinG(A)C sExG[sExt(A)]
(h) X sinG(A)[.J sExt(A) [J sEt(A)
PROOF. Only the proof of (e) will be given here. We have

sExt[S- sExt(A)] sEx,IX- sInt(X- A)]
sInt[X- (X- slnt(X- A))]
sInG[sInt(X- A)]
slnG(X- A) sExt(A).

THEOREM 3. If A,B C X such that sFr(A) rFr(B)= @ and Fr(A) nsFr(B)= O, then

t(A) (S) Zt(A S).
PROOF. Let x

_
sInt(A [J B). Then there exists a semi-open set U such that x E U c A [.J B If

x E sFr(A) then x Fr(B), so there exists an open set V containing x with V C B or V C X- B
Assume V C B. Then x U I’] V C B. Since U r V is semi-open, x sInt(B) On the other hand,
if V C X- B, then x U r V c A and so x

_
8Int(A). If x sFr(A) In particular, suppose that

x sCl(A), for otherwise, x slnt(A). Then x B C sCl(B) since x A [.J B. We may assume

that x f sFr(A) for otherwise, x sInt(B) Thus x Fr(A) and the argument now proceeds
similarly to the case when x f Fr(B).

THEOREM 4. A set A C X is nowhere dense iffInt(sCl(A)) .
PROOF. The proof is obvious since Int(CIA) Int(sCl(A)) for every A C X
DEFINITION 1. Let A be a subset of a topological space X. Then

(a) A point x A is said to be a semi-isolated point of A if there is a semi-open set U such that

UnA={x}.
(b) A set A is said to be semi-discrete if each point ofA is semi-isolated

(c) A space (X, T) is said to be semi-scattered if every non-empty subset of X has a semi-isolated

point.
It is obvious that every isolated point ofA c X is semi=isolated. But the converse is not true as can

be seen from the following example.
EXAMPLE I. Consider the usual topology on R. Let A [0, I] A subset U [I, 2) of R is

semi-open and U f’l A { I }. 1 E A is a semi-isolated point ofA but it is not an isolated point ofA
REMARK I. Let (X, T) be a topological space and A C X. Then

(a) A semi-isolated point of X is merely an isolated point. For {z} is semi-open iff {z} is open.
The set of all isolated (semi=isolated) points of a set A C X is denoted by AS(ASS).

(b) A space X is a semi=discrete subset of itself iffX is discrete. Every discrete set is semi=discrete.

But the converse need not be true as can be seen from the following example.
EXAMI)LE 2. The subset a [0, I] x {0} C R is dense-in=itself but it is semi-discrete. For each

z (r, 0) A, let U(z) be the open unit disk with nonnegative center coordinates which is tangent to A
at the point z. Thus B U N {z} is semi-open and {z} B 71A. This shows that each point z A is

a semi-isolated point of A. This implies that A is semi-discrete in R However, A is not discrete since

its points are not isolated.

If As denotes the semi-derived set of A, then we have the following theorem
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TiEOREM 5. IfA is a subset of a space X, then

(a) A’ ] A
(b) sCl(A) A’ N A
(c) X A’ C] A N sEx,(A)
PROOF. (a) x E A : there is a semi-open set U containing x such that

UA={}

(b) x sCI(A) = U C A for every semi-open set U containing x.

= V C (A {x}) - } ifx A or U c (A {x}) 0 ifx e A.
x e A’ or x e A = x e A’s [J Ass.

(c) Obvious in view of parts (a) and (b).
TEOREM 6. IfA C X is dense, then the following hold:

(a) The semi-isolated points ofA are precisely the isolated points ofA as a subspace

(b) ACA’siffAs=}
PROOF. (a) If {x} B C A, where B is semi-open, then there is an open set U such that

U c B C Cl(U). U C] A since A is dense in X. B implies U = }. Thus U C A {x} and x

is an isolated point ofthe subspace A. Converse is obvious.

(b) A A because A is dense in X. Since X sCl(A) A’s [J A A’ [J A and

A C A’s }, therefore A N As }. Hence A A U (A A). Thus A C A iff A $.

EOM 7. Eve scattered space is se-scaered.

The follong exple shows that a se-scattered space need not be scattered.

EMPLE . Let X {a,b,c} d T (X,,{a}} be a topolo on X Then the set

A b, c} h no isolat poims. But eve subset ofX has se-isolated poims.
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