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ABSTRACT. The object of the present paper is to study the well known notions of semi-closure, semi-
interior, semi-frontier and semi-exterior of a set using the concept of semi-open sets A semi-isolated
point of a set is also defined and studied.
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1. INTRODUCTION

A subset A of a topological space (X, ) is said to be semi-open [1] if there exists an open set U
such that U C A C CI(U). The complement of a semi-open set is called semi-closed [2] The union of
all semi-open sets of X contained in A is called the semi-interior of A [2] and is denoted by sInt(A)
The intersection of all semi-closed sets containing A is called the semi-closure of A [2] and is denoted
by sCl(A) sCI(A) — sInt(A) is called the semi-frontier of A [3] and is denoted by sFr(A)
sInt(X — A) is said to be the semi-exterior of A [3] and is denoted by sExt(A) In this paper, these
notions are further investigated We also introduce and study the concepts of semi-isolated points and
semi-scattered spaces

THEOREM 1. For aset A C X, the following are equivalent

(a) Aisdensein X

(b) sCi(A) = X.

(c) If B is any semi-closed subset of X and A C B, then B = X.

(d) For each x € X, every semi-open set containing x has non-empty intersection with A

(e) sInt(X — A) = 0.

PROOF. (a) = (b). Let U be an openset withU C X — B C Cli(U) SinceU C X —Aand A
is dense, therefore U = 0 and so Cl(U) =0 Hence B = X It follows that the intersection of all semi-
closed sets containing A is X, that is sCl(A) = X.

(b) = (a) Obvious since sCl(A) C Cl(A) forevery A C X

(b) = (c) and (c¢) = (d) are obvious.

(d) = (e) If sInt(X — A) #0, then sInt(X — A) is a non-empty semi-open set However,
(X — A)N A =0 and since sInt(X — A) C X — A, we have sInt(X — A)N A =0 This contradicts
(d) and means sInt(X — A) = 0.

(e) = (b) Since sInt(X — A) = X — sCI(A) [1], therefore X = sCI(A).
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THEOREM 2. Let A be a subset of the space X Then

(a) sFr(sInt(A)) C sFr(A)

(b) sFr(sCl(A)) C sFr(A)

(c) sEzt(X) =10

(d) sEzt(0) =X

(e) sExt(A) = sExt[X — sExt(A)]

) sInt(A) = A—sFr(A)

(g) sInt(A) C sEzt[sExt(A)]

(h) X = sInt(A) UsEzt(A) UsFr(A)

PROOF. Only the proof of (e) will be given here. We have

SEzt[S — sEzt(A)] = sEzt[X — sInt(X — A)]

= sInt[X — (X — sInt(X — A))]
= sInt[sInt(X — A)]
= sInt(X — A) = sEzt(A).

THEOREM 3. If A, B C X such that sFr(A)NFr(B) =0 and Fr(A)NsFr(B) =0, then
sInt(A) UsInt(B) = sInt(AU B).
PROOF. Let z € sInt(A U B). Then there exists a semi-open set U suchthatz e U ¢ AUB If
z € sFr(A) then = ¢ Fr(B), so there exists an open set V containing z with V. C BorV Cc X - B
Assume V C B. Thenz €e UNV C B. Since U NV is semi-open, z € sInt(B) On the other hand,
ifVCX-B,thenzeUNV C Aandsoxz € sint(A). Ifz ¢ sFr(A) In particular, suppose that
z ¢ sCI(A), for otherwise, z € sInt(A). Then z € B C sCl(B) since z € AUB. We may assume
that = ¢ sFr(A) for otherwise, z € sInt(B) Thus z ¢ Fr(A) and the argument now proceeds
similarly to the case when z ¢ Fr(B).
THEOREM 4. A set A C X is nowhere dense iff Int(sCi(A)) = 0.
PROOF. The proof is obvious since Int(CIA) = Int(sCl(A)) forevery AC X
DEFINITION 1. Let A be a subset of a topological space X. Then
(a) A point z € A is said to be a semi-isolated point of A if there is a semi-open set U such that
UNA={z}.
(b) A set A is said to be semi-discrete if each point of A is semi-isolated
(c) A space (X, ) is said to be semi-scattered if every non-empty subset of X has a semi-isolated
point. ,
It is obvious that every isolated point of A C X is semi-isolated. But the converse is not true as can
be seen from the following example.
EXAMPLE 1. Consider the usual topology on R. Let A =[0,1] A subset U =[1,2) of R is
semi-open and U N 4 = {1}. 1 € A is a semi-isolated point of A but it is not an isolated point of A
REMARK 1. Let (X, 7) be a topological space and A C X. Then
(a) A semi-isolated point of X is merely an isolated point. For {z} is semi-open iff {z} is open.
The set of all isolated (semi-isolated) points of a set A C X is denoted by A*(A*°).
(b) A space X is a semi-discrete subset of itself iff X is discrete. Every discrete set is semi-discrete.
But the converse need not be true as can be seen from the following example.
EXAMPLE 2. The subset a = [0,1] x {0} C R? is dense-in-itself but it is semi-discrete. For each
z = (r,0) € A, let U(z) be the open unit disk with nonnegative center coordinates which is tangent to A
at the point z. Thus B = U N {z} is semi-open and {z} = BN A. This shows that each point z € A is
a semi-isolated point of A. This implies that A is semi-discrete in R?2. However, A is not discrete since
its points are not isolated.
If A/, denotes the semi-derived set of A, then we have the following theorem
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THEOREM 5. If A is a subset of a space X, then

(a) A,NA* =

(b) sCl(A) = A, n A*°

() X = A, nA* NsExt(A)

PROOF. (a) z € A*® & there is a semi-open set U containing x such that

UNnA={z}
SUNA-{z})=0ez¢ A,

(b) z € sCI(A) & U N A # 0 for every semi-open set U containing x.
SUNA-{z})#0ifz¢ AorUN(A-{z})=0ifz € A.
ozrzeAjorze A¥ & e AJUA”.

(c) Obvious in view of parts (a) and (b).

THEOREM 6. If A C X is dense, then the following hold:

(a) The semi-isolated points of A are precisely the isolated points of A as a subspace

(b) AC AliffA° =10

PROOF. (a) If {z} = BN A, where B is semi-open, then there is an open set U such that

UcCBCCIU). UNA#0since Aisdensein X. B # 0 impliesU # 0. ThusU N A = {z} and x
is an isolated point of the subspace A. Converse is obvious.

(b) A°= A* because A is dense in X. Since X =sCl(A)= A, UA* =A,UA° and

A* N A, =0, therefore A°N A, =0. Hence A= A°U(ANA,). Thus A C A, iff A° =0.

THEOREM 7. Every scattered space is semi-scattered.

The following example shows that a semi-scattered space need not be scattered.

EXAMPLE 3. Let X = {a,b,c} and 7= {X,0,{a}} be a topology on X Then the set

A = {b, c} has no isolated points. But every subset of X has semi-isolated points.
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