A NOTE ON SOME APPLICATIONS OF SEMI-OPEN SETS

T.M. NOUR

Department of Mathematics University of Jordan Amman, JORDAN

(Received May 5, 1996 and in revised form August 29, 1996)

ABSTRACT. The object of the present paper is to study the well known notions of semi-closure, semi-interior, semi-frontier and semi-exterior of a set using the concept of semi-open sets. A semi-isolated point of a set is also defined and studied.

KEY WORDS AND PHRASES: Semi-closure, semi-interior, semi-isolated point, semi-discrete set, semi-scattered spaces.

1991 AMS SUBJECT CLASSIFICATION CODES: 54A05, 54A20

1. INTRODUCTION

A subset A of a topological space (X,τ) is said to be semi-open [1] if there exists an open set U such that $U\subset A\subset Cl(U)$. The complement of a semi-open set is called semi-closed [2] The union of all semi-open sets of X contained in A is called the semi-interior of A [2] and is denoted by sInt(A). The intersection of all semi-closed sets containing A is called the semi-closure of A [2] and is denoted by sCl(A) - sInt(A) is called the semi-frontier of A [3] and is denoted by sFr(A) + sInt(X-A) is said to be the semi-exterior of A [3] and is denoted by sExt(A). In this paper, these notions are further investigated. We also introduce and study the concepts of semi-isolated points and semi-scattered spaces

THEOREM 1. For a set $A \subset X$, the following are equivalent

- (a) A is dense in X
- (b) sCl(A) = X.
- (c) If B is any semi-closed subset of X and $A \subset B$, then B = X.
- (d) For each $x \in X$, every semi-open set containing x has non-empty intersection with A
- (e) $sInt(X A) = \emptyset$.

PROOF. (a) \Rightarrow (b). Let U be an open set with $U \subset X - B \subset Cl(U)$ Since $U \subset X - A$ and A is dense, therefore $U = \emptyset$ and so $Cl(U) = \emptyset$ Hence B = X It follows that the intersection of all semi-closed sets containing A is X, that is sCl(A) = X.

- (b) \Rightarrow (a) Obvious since $sCl(A) \subset Cl(A)$ for every $A \subset X$
- (b) \Rightarrow (c) and (c) \Rightarrow (d) are obvious.
- (d) \Rightarrow (e) If $sInt(X-A) \neq \emptyset$, then sInt(X-A) is a non-empty semi-open set However, $(X-A) \cap A = \emptyset$ and since $sInt(X-A) \subset X-A$, we have $sInt(X-A) \cap A = \emptyset$ This contradicts (d) and means $sInt(X-A) = \emptyset$.
 - (e) \Rightarrow (b) Since sInt(X A) = X sCl(A) [1], therefore X = sCl(A).

206 T M NOUR

THEOREM 2. Let A be a subset of the space X Then

- (a) $sFr(sInt(A)) \subset sFr(A)$
- (b) $sFr(sCl(A)) \subset sFr(A)$
- (c) $sExt(X) = \emptyset$
- (d) $sExt(\emptyset) = X$
- (e) sExt(A) = sExt[X sExt(A)]
- (f) sInt(A) = A sFr(A)
- (g) $sInt(A) \subset sExt[sExt(A)]$
- (h) $X = sInt(A) \cup sExt(A) \cup sFr(A)$

PROOF. Only the proof of (e) will be given here. We have

$$\begin{split} sExt[S-sExt(A)] &= sExt[X-sInt(X-A)] \\ &= sInt[X-(X-sInt(X-A))] \\ &= sInt[sInt(X-A)] \\ &= sInt(X-A) = sExt(A). \end{split}$$

THEOREM 3. If $A, B \subset X$ such that $sFr(A) \cap Fr(B) = \emptyset$ and $Fr(A) \cap sFr(B) = \emptyset$, then $sInt(A) \cup sInt(B) = sInt(A \cup B)$.

PROOF. Let $x \in sInt(A \cup B)$. Then there exists a semi-open set U such that $x \in U \subset A \cup B$ If $x \in sFr(A)$ then $x \notin Fr(B)$, so there exists an open set V containing x with $V \subset B$ or $V \subset X - B$ Assume $V \subset B$. Then $x \in U \cap V \subset B$. Since $U \cap V$ is semi-open, $x \in sInt(B)$ On the other hand, if $V \subset X - B$, then $x \in U \cap V \subset A$ and so $x \in sInt(A)$. If $x \notin sFr(A)$ In particular, suppose that $x \notin sCl(A)$, for otherwise, $x \in sInt(A)$. Then $x \in B \subset sCl(B)$ since $x \in A \cup B$. We may assume that $x \notin sFr(A)$ for otherwise, $x \in sInt(B)$ Thus $x \notin Fr(A)$ and the argument now proceeds similarly to the case when $x \notin Fr(B)$.

THEOREM 4. A set $A \subset X$ is nowhere dense iff $Int(sCl(A)) = \emptyset$.

PROOF. The proof is obvious since Int(ClA) = Int(sCl(A)) for every $A \subset X$

DEFINITION 1. Let A be a subset of a topological space X. Then

- (a) A point $x \in A$ is said to be a semi-isolated point of A if there is a semi-open set U such that $U \cap A = \{x\}$.
- (b) A set A is said to be semi-discrete if each point of A is semi-isolated
- (c) A space (X, τ) is said to be semi-scattered if every non-empty subset of X has a semi-isolated point.

It is obvious that every isolated point of $A \subset X$ is semi-isolated. But the converse is not true as can be seen from the following example.

EXAMPLE 1. Consider the usual topology on **R**. Let A = [0, 1] A subset U = [1, 2) of **R** is semi-open and $U \cap A = \{1\}$. $1 \in A$ is a semi-isolated point of A but it is not an isolated point of A

REMARK 1. Let (X, τ) be a topological space and $A \subset X$. Then

- (a) A semi-isolated point of X is merely an isolated point. For $\{x\}$ is semi-open iff $\{x\}$ is open. The set of all isolated (semi-isolated) points of a set $A \subset X$ is denoted by $A^s(A^{ss})$.
- (b) A space X is a semi-discrete subset of itself iff X is discrete. Every discrete set is semi-discrete. But the converse need not be true as can be seen from the following example.

EXAMPLE 2. The subset $a=[0,1]\times\{0\}\subset R^2$ is dense-in-itself but it is semi-discrete. For each $x=(r,0)\in A$, let U(x) be the open unit disk with nonnegative center coordinates which is tangent to A at the point x. Thus $B=U\cap\{x\}$ is semi-open and $\{x\}=B\cap A$. This shows that each point $x\in A$ is a semi-isolated point of A. This implies that A is semi-discrete in R^2 . However, A is not discrete since its points are not isolated.

If A'_s denotes the semi-derived set of A, then we have the following theorem

THEOREM 5. If A is a subset of a space X, then

- (a) $A'_s \cap A^{ss} = \emptyset$
- (b) $sCl(A) = A'_s \cap A^{ss}$
- (c) $X = A'_s \cap A^{ss} \cap sExt(A)$

PROOF. (a) $x \in A^{ss} \Leftrightarrow$ there is a semi-open set U containing x such that

$$U \cap A = \{x\}$$

$$\Leftrightarrow U \cap (A - \{x\}) = \emptyset \Leftrightarrow x \notin A'_{\bullet}.$$

(b) $x \in sCl(A) \Leftrightarrow U \cap A \neq \emptyset$ for every semi-open set U containing x.

$$\Leftrightarrow U \cap (A - \{x\}) \neq \emptyset \text{ if } x \notin A \text{ or } U \cap (A - \{x\}) = \emptyset \text{ if } x \in A.$$

$$\Leftrightarrow x \in A'_s \text{ or } x \in A^{ss} \Leftrightarrow x \in A'_s \cup A^{ss}.$$

(c) Obvious in view of parts (a) and (b).

THEOREM 6. If $A \subset X$ is dense, then the following hold:

- (a) The semi-isolated points of A are precisely the isolated points of A as a subspace
- (b) $A \subset A'_s$ iff $A^s = \emptyset$

PROOF. (a) If $\{x\} = B \cap A$, where B is semi-open, then there is an open set U such that $U \subset B \subset Cl(U)$. $U \cap A \neq \emptyset$ since A is dense in X. $B \neq \emptyset$ implies $U \neq \emptyset$. Thus $U \cap A = \{x\}$ and x is an isolated point of the subspace A. Converse is obvious.

(b) $A^s = A^{ss}$ because A is dense in X. Since $X = sCl(A) = A'_s \cup A^{ss} = A'_s \cup A^s$ and $A^{ss} \cap A'_s = \emptyset$, therefore $A^s \cap A'_s = \emptyset$. Hence $A = A^s \cup (A \cap A'_s)$. Thus $A \subset A'_s$ iff $A^s = \emptyset$.

THEOREM 7. Every scattered space is semi-scattered.

The following example shows that a semi-scattered space need not be scattered.

EXAMPLE 3. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}\}$ be a topology on X. Then the set $A = \{b, c\}$ has no isolated points. But every subset of X has semi-isolated points.

ACKNOWLEDGMENT. The author is thankful to the referee for his kind comments and suggestions leading to revision of the paper in the present form.

REFERENCES

- [1] LEVINE, N., Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly 70 (1963), 36-41.
- [2] CROSSLEY, S.G. and HILDEBRAND, S.K., Semi-closure, Texas J. Sci. 22 (1971), 99-112
- [3] DAS, P., Note on some applications of semi-open sets, Progress Math. 7 (1973), 33-44