L, SPACES FAIL A CERTAIN APPROXIMATIVE PROPERTY

AREF KAMAL

Department of Mathematics and Computer Sciences U A.E University P.O Box 17551 Al-Ain, UNITED ARAB EMIRATES

(Received May 4, 1994)

ABSTRACT. In this paper the author studies some cases of Banach space that does not have the property P_1 . He shows that if $X = \ell_1$ or $L_1(\mu)$ for some non-purely atomic measure μ , then X does not have the property P_1 . He also shows that if $X = \ell_{\infty}$ or C(Q) for some infinite compact Hausdorff space Q, then X⁻ does not have the property P_1 .

KEY WORDS AND PHRASES: Property P_1 , classical Banach spaces ℓ_1 , $L_1(\mu) \ell_1^n$, compact width **1991 AMS SUBJECT CLASSIFICATION CODES:** 41A65.

1. INTRODUCTION

The Banach space X is said to have the property P_1 , if for each $\epsilon > 0$ and each r > 0, there is $\delta > 0$, such that for each x and y in X, there is $z \in \overline{B(x, \epsilon)}$ satisfying that for each θ with $0 < \theta < \delta$

$$B(x, r+\delta) \cap B(y, r+\theta) \subseteq B(z, r+\theta)$$

where B(x, r) is the open ball of radius r and centered at x, and $\overline{B(x, r)}$ is its clouser u

The property P_1 plays an important role in approximation theory, and many authors used it This property appears in approximation by compact operators, simultaneous approximation and other areas (see for example Roversi [1], Lau [2], Mach [3] and Kamal [4]). Mach [3] showed that if X is uniformly convex then it has the property P_1 [3], and that if X = C(Q), or X = B(Q) then X has the property P_1 [4]. Mach [4, page 259] asked if the space $L_1(\mu)$ has the property P_1

In this paper the author studies some cases of normed linear space X, for which X does not have the property P_1 In section 2, it is shown that if $X = \ell_1$ then X does not have the property P_1 , and in section 3, it is shown that if μ is a non-purely atomic measure, then $L_1(\mu)$ does not have the property P_1 . These two results give a negative answer for the question of Mach [4] In section 3, it will be shown also that if $X = (\ell_{\infty})^*$, or $X = (C(Q))^*$, where Q is an infinite compact Hausdorff space, then X does not have the property P_1

In this paper ℓ_1 is the Banach space of all real sequences $x = \{x_i\}$ satisfying that $\Sigma |x_i| < \infty$, together with the norm $||x|| = \Sigma |x_i|$ Also ℓ_1^n is the Banach space of all real *n*-tuples $x = (x_1, x_2, ..., x_n)$ together with the norm $||x|| = \sum_{i=1}^{n} |x_i|$.

2. I_1 DOES NOT HAVE THE PROPERTY P_1

The proof of the fact that ℓ_1 does not have the property P_1 depends on the behavior of the property P_1 in ℓ_1^n In Lemma 2.3, it will be shown that if $\epsilon > 0$ is fixed, and δ_n corresponds to ϵ for $X = \ell_1^n$ in Lemma 2.1, then $\delta_n \to 0$ when $n \to \infty$, so using the fact that ℓ_1^n is a norm-one-complemented subspace of ℓ_1 , it will be shown in Theorem 2.4, that ℓ_1 does not have the property P_1 .

LEMMA 2.1. If the Banach space X has the property P_1 then for each $\epsilon > 0$, there is $\delta > 0$ such that for each $y \in X$, there is $z \in \overline{B(0, \epsilon)}$ such that if $0 < \theta < \delta$ then

$$B(0, 1 + \delta + \theta) \cap B(y, 1 + \theta) \subseteq B(z, 1 + \theta).$$

PROOF. Let r = 1 and let $\epsilon > 0$ be given By the definition of the property P_1 there is $\delta > 0$ such that for each x and y in X, there is $z \in B(x, \epsilon)$ satisfying the following; for each θ' such that $0 < \theta' < \delta'$

$$B(x, 1 + \delta') \cap B(y, 1 + \theta') \subseteq B(z, 1 + \theta').$$

Let x = 0 and $\delta = 1/2 \delta'$, then for all θ satisfying $0 < \theta < \delta$;

$$B(0,1+\delta+\theta)\cap B(y,1+\theta)\subseteq B(0,1+\delta')\cap B(y,1+\theta)\subseteq B(z,1+\theta).$$

LEMMA 2.2. Let $n \ge 3$ be a positive integer, let $\delta > 0$ be given and let $(z_1, ..., z_n)$ be an *n*-tuple of real numbers

If $\sum_{i=1}^{n} z_i \ge \delta$, and for each $i \le n-1$

$$z_1 + ... + z_{i-1} - z_i + z_{i+1} + ... + z_n \leq -\delta,$$

then $\sum_{i=1}^{n} |z_i| \ge (2n-3)\delta$.

PROOF. For each i = 1, 2, ..., n, let $y_i = z_1 + ... + z_{i-1} - z_i + z_{i+1} + ... + z_n$, then $\sum_{i=1}^{n} y_i = (n-2) \sum_{i=1}^{n} z_i$, thus

$$y_n = (n-2)\sum_{i=1}^n z_i - \sum_{i=1}^{n-1} y_i.$$

Therefore

$$\sum_{i=1}^{n} |z_i| \ge |y_n| \ge (n-2)\delta + (n-1)\delta = (2n-3)\delta.$$

LEMMA 2.3. Let $n \ge 3$ be a positive integer and let $\delta > 0$ be a given real number such that $(2n-5)\delta \le 1$ Then the element $x_n = (\delta, \delta, ..., \delta, -(n-2)\delta)$ in ℓ_1^n satisfies the following conditions

(1) $\forall \theta$ such that $\theta > 0$

$$B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \neq \phi.$$

(2) If $z \in \ell_1^n$ and for each θ with $0 < \theta < \delta$;

$$B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \subseteq B(z, 1 + \theta),$$

then $\|\mathbf{z}\| \geq (2n-3)\delta$

PROOF. Let $\{e_i^{t}\}_{i=1}^n$ be the standard basis in ℓ_1^n , that is $e_i^{t} = (x_1^{t}, x_2^{t}, ..., x_n^{t})$, where $x_j^{t} = 1$ if i = j and $x_j^{t} = 0$ if $i \neq j$ and let

$$x_n = \delta \sum_{i=1}^{n-1} e'_i - (n-2)\delta e'_n = (\delta, \delta, ..., \delta, -(n-2)\delta) \in \ell_1^n$$

Then $||x_n|| = (n-1)\delta + (n-2)\delta = (2n-3)\delta \le 1 + 2\delta \le 2 + \delta$, therefore for each θ such that $0 < \theta < \delta$

$$B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta) \neq \phi.$$

Assume that $z = (z_1, z_2, ..., z_n) \in \ell_1^n$ is such that for each θ with $0 < \theta < \delta$

$$B(0,1+\delta+\theta)\cap B(x_n,1+\theta)\subseteq B(z,1+\theta).$$

It will be shown that

(1)
$$\sum_{i=1}^{n} z_i \ge \delta$$
, and
(2) for each $i \le n-1$
 $z_1 + \dots + z_{i-1} - z_i + z_{i+1} + \dots + z_n \le -\delta$.

If these are true then by Lemma 2.2, $||z|| = \sum_{i=1}^{n} |z_i| \ge (2n-3)\delta$

(1) Assume that $z_1 + \dots + z_n < \delta$. Let

$$\begin{split} y &= \delta \sum_{i=1}^{n-2} e'_i + \frac{1+\delta}{2} e'_{n-1} + \left[\frac{1-(2n-5)}{2} \right] e'_n \\ &= \left(\delta, ..., \delta, \frac{1+\delta}{2}, \frac{1-(2n-5)}{2} \right) \in \ell_1^n. \end{split}$$

Then

$$||y|| = (n-2)\delta + \frac{1+\delta}{2} + \frac{1-(2n-5)\delta}{2} = 1+\delta.$$

On the other hand

$$||y - x_n|| = \left|\frac{1+\delta}{2} - \delta\right| + \left|\frac{1 - (2n-5)\delta}{2} + (n-2)\delta\right|$$

= 1.

Thus, for each θ such that $0 < \theta < \delta$,

$$y \in B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta).$$

But

$$\|y - z\| = \sum_{i=1}^{n} |y_i - z_i| \ge \left| \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} z_i \right| = \left| 1 + \delta - \sum_{i=1}^{n} z_i \right|$$
$$= 1 + \left(\delta - \sum_{i=1}^{n} z_i \right)$$
$$> 1.$$

so for any $\theta < \left(\delta - \sum_{i=1}^{n} z_i\right), y \notin B(z, 1+\theta).$

(2) Assume that for a certain $i_0 \leq n-1$

$$z_1 + \ldots + z_{i_0-1} - z_{i_0} + z_{i_0+1} + \ldots + z_n > -\delta$$

Let

$$y = \left(\frac{1+\delta}{2}\right)\boldsymbol{e}'_{\iota_0} - \left(\frac{1+\delta}{2}\right)\boldsymbol{e}'_n = \left(0, 0, ..., 0, \frac{1+\delta}{2}, 0, ..., 0, -\left(\frac{1+\delta}{2}\right)\right) \in \ell_1^n.$$

 i_0 -th term

,

Then

 $\|y\| = 1 + \delta,$

and

A KAMAL

$$\begin{aligned} \|y - x_n\| &= (n-2)\delta + \left|\frac{1+\delta}{2} - \delta\right| + \left|\frac{1+\delta}{2} + (n-2)\delta\right| \\ &= (n-2)\delta + \frac{1-\delta}{2} + \frac{1-(2n-5)\delta}{2} \\ &= 1. \end{aligned}$$

Thus, for each θ such that $0 < \theta < \delta$, $y \in B(0, 1 + \delta + \theta) \cap B(x_n, 1 + \theta)$. But

$$\begin{aligned} \|y - z\| &= \sum_{i=1}^{n} |y_i - z_i| \\ &\geq |(y_1 + \dots + y_{i_0-1} - y_{i_0} + y_{i_0+1} + \dots + y_n) - (z_1 + \dots + z_{i_0-1} - z_{i_0} + z_{i_0+1} + \dots + z_n)| \\ &= |-1 - \delta - (z_1 + \dots + z_{i_0-1} - z_{i_0} + z_{i_0+1} + \dots + z_n)| \\ &= |1 + [\delta + (z_1 + \dots + z_{i_0-1} - z_{i_0} + z_{i_0+1} + \dots + z_n)]| \\ &> 1. \end{aligned}$$

Thus, for some $\theta > 0$, $y \notin B(z, 1 + \theta)$.

THEOREM 2.4. ℓ_1 does not have the property P_1

PROOF. It will be shown that for each $\delta > 0$, there is $x_{\delta} \in \ell_1$, such that if $z \in \ell_1$ and for all θ with $0 < \theta < \delta$ it is true that $B(0, 1 + \delta + \theta) \cap B(x_{\delta}, 1 + \theta) \subseteq B(z, 1 + \theta)$, then $||z|| > \frac{1}{2}$. Let $\{e_i\}_{i=1}^{\infty}$ be the standard basis in ℓ_1 , and let $\delta > 0$ be given If $\delta > 1$ then for each $\theta > 0$

$$B(0,1+1+\theta) \cap B(x_1,1+\theta) \subseteq B(0,1+\delta+\theta) \cap B(x_1,1+\theta).$$

Thus one can take x_1 to be x_{δ} . So without loss of generality one may assume that $\delta \leq 1$

Let $n \ge 3$ be a positive integer satisfying $(2n-5)\delta \le 1$ and $(2n-3)\delta > \frac{1}{2}$, and let x_n be as in Lemma 2.3 Define

$$x_{\delta} = \delta \sum_{i=1}^{n-1} e_i - (n-2)\delta e_n = (\delta, \delta, ..., \delta, -(n-2)\delta, 0, 0, ...) \in \ell_1.$$

Then $||x_{\delta}|| = ||x_n|| \le 2 + \delta$, thus

$$B(0, 1 + \delta + \theta) \cap B(x_{\delta}, 1 + \theta) \neq \phi \text{ for } 0 < \theta < \delta.$$

Let $P_n : \ell_1 \to \ell_1^n$ be the mapping defined by $P_n(\{x_i\}_{i=1}^{\infty}) = \{x_i\}_{i=1}^n$ By the construction of x_{δ} its image under P_n is the element x_n

Assume that for some $z \in \ell_1$

$$B(0, 1 + \delta + \theta) \cap B(x_{\delta}, 1 + \theta) \subseteq B(z, 1 + \theta) \quad 0 < \theta < \delta,$$

then in ℓ_1^n

$$B(0,1+\delta+\theta)\cap B(x_n,1+\theta)\subseteq B(P_n(z),1+\theta)\quad 0<\theta<\delta,$$

Thus by Lemma 2.3 $||P_n(z)|| \ge (2n-3)\delta > \frac{1}{2}$. Therefore

$$||z|| \ge ||P_n(z)|| > \frac{1}{2}.$$

3. OTHER SPACES THAT DO NOT HAVE THE PROPERTY P_1

The subspace Y of X is called a norm-one-complemented subspace of X if there is a linear projection $P: X \to Y$ satisfying that ||P|| = 1. If A is a subset of X, and $x \in X$ then

$$d(x,A) = \inf\{\|x-y\|; y \in A\}$$

and if B is another subset of X, then the deviation of A from B is defined by

$$\delta(A,B) = \sup\{d(x,B); x \in A\}.$$

The compact width of A in X is defined by

 $a(A, X) = \inf\{\delta(A, K); K \text{ is a compact subset of } X\}.$

The compact width is said to be attained if there is a compact subset K of X satisfying that $a(A, X) = \delta(A, K)$

In this section it will be shown that if $X = (C(Q))^*$, where Q is an infinite compact Hausdorff space, $X = (\ell_{\infty})^*$, or $X = L_1(\mu)$ where μ is non-purely atomic measure, then X does not have the property P_1 .

The proof of the following proposition is elementary

PROPOSITION 3.1. Let X be a Banach space that has the property P_1 , and let Y be a closed subspace of X If Y is a norm-one-complemented subspace of X, then Y has the property P_1

COROLLARY 3.2. If μ is non-purely atomic measure then $L_1(\mu)$ does not have the property P_1

PROOF. By Feder [5, Theorem 2], $L_1[0,1]$ has a subset A for which the compact width $a(A, L_1[0,1])$ is not attained, thus by Kamal [6, Theorem 4.3] $L_1[0,1]$ does not have the property P_1 , but by Lacy [7, sec 8], $L_1[0,1]$ is a norm-one-complemented subspace of $L_1(\mu)$, therefore by Proposition 3 1, $L_1(\mu)$ does not have the property P_1 .

NOTE 3.3. Theorem 2.4 together with Corollary 3.2 give a negative answer to the question of Mach [4, page 259].

COROLLARY 3.4. If $X = \ell_{\infty}$ or X = C(Q) for some compact infinite Hausdorff space Q Then X^* does not have the property P_1

PROOF. If $X = \ell_{\infty}$ then ℓ_1 is a norm-one-complemented subspace of X^* , and if X = C(Q) then by Kamal [8, Lemma 3.2], ℓ_1 is a norm-one-complemented subspace of X^* , in both cases one concludes by Proposition 3.1 that X^* does not have the property P_1 .

REFERENCES

- [1] ROVERSI, M., Best approximation of bounded functions by continuous functions, J. Approx. Theory 41 (1984), 135-148
- [2] LAU, K., Approximation by continuous vector valued functions, Studia Math. 68 (1980), 291-298
- [3] MACH, J., Best simultaneous approximation of bounded functions with values in certain Banach spaces, Math. Ann. 240 (1979), 157-164.
- [4] MACH, J., On the existence of best simultaneous approximation, J. Approx. Theory 25 (1979), 258-265.
- [5] FERDER, M., On certain subset of L₁[0, 1] and non-existence of best approximation in some spaces of operators, J. Approx. Theory 29 (1980), 170-177.
- [6] KAMAL, A., On certain diameters of bounded sets, J. Port. Math. 51 (1994), 321-333
- [7] LACY, H.E., The Isometric Theory of Classical Banach Spaces, Springer-Verlag, 1974
- [8] KAMAL, A., On proximinality and sets of operators III, Approximation by finite rank operators on spaces of continuous functions, J. Approx. Theory 47 (1986), 156-171.