L, SPACES FAIL A CERTAIN APPROXIMATIVE PROPERTY

AREF KAMAL
Department of Mathematics and Computer Sciences
U A.E University
P. O Box 17551
Al-Ain, UNITED ARAB EMIRATES

(Received May 4, 1994)

Abstract

In this paper the author studies some cases of Banach space that does not have the property P_{1}. He shows that if $X=\ell_{1}$ or $L_{1}(\mu)$ for some non-purely atomic measure μ, then X does not have the property P_{1}. He also shows that if $X=\ell_{\infty}$ or $C(Q)$ for some infinite compact Hausdorff space Q, then X^{*} does not have the property P_{1}.

KEY WORDS AND PHRASES: Property P_{1}, classical Banach spaces $\ell_{1}, L_{1}(\mu) \ell_{1}^{n}$, compact width 1991 AMS SUBJECT CLASSIFICATION CODES: 41A65.

1. INTRODUCTION

The Banach space X is said to have the property P_{1}, if for each $\in>0$ and each $r>0$, there is $\delta>0$, such that for each x and y in X, there is $z \in \overline{B(x, \epsilon)}$ satisfying that for each θ with $0<\theta<\delta$

$$
B(x, r+\delta) \cap B(y, r+\theta) \subseteq B(z, r+\theta)
$$

where $B(x, r)$ is the open ball of radius r and centered at x, and $\overline{\mathrm{B}(x, r)}$ is its clouser u
The property P_{1} plays an important role in approximation theory, and many authors used it This property appears in approximation by compact operators, simultaneous approximation and other areas (see for example Roversi [1], Lau [2], Mach [3] and Kamal [4]). Mach [3] showed that if X is uniformly convex then it has the property P_{1} [3], and that if $X=C(Q)$, or $X=B(Q)$ then X has the property P_{1} [4]. Mach [4, page 259] asked if the space $L_{1}(\mu)$ has the property P_{1}

In this paper the author studies some cases of normed linear space X, for which X does not have the property P_{1} In section 2, it is shown that if $X=\ell_{1}$ then X does not have the property P_{1}, and in section 3, it is shown that if μ is a non-purely atomic measure, then $L_{1}(\mu)$ does not have the property P_{1} These two results give a negative answer for the question of Mach [4] In section 3, it will be shown also that if $X=\left(\ell_{\infty}\right)^{*}$, or $X=(C(Q))^{*}$, where Q is an infinite compact Hausdorff space, then X does not have the property P_{1}

In this paper ℓ_{1} is the Banach space of all real sequences $x=\left\{x_{2}\right\}$ satisfying that $\Sigma\left|x_{i}\right|<\infty$, together with the norm $\|x\|=\Sigma\left|x_{2}\right|$ Also ℓ_{1}^{n} is the Banach space of all real n-tuples $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ together with the norm $\|x\|=\sum_{i=1}^{n}\left|x_{2}\right|$.

2. I_{1} DOES NOT HAVE THE PROPERTY P_{1}

The proof of the fact that ℓ_{1} does not have the property P_{1} depends on the behavior of the property P_{1} in ℓ_{1}^{n} In Lemma 2.3, it will be shown that if $\epsilon>0$ is fixed, and δ_{n} corresponds to ϵ for $X=\ell_{1}^{n}$ in Lemma 21 , then $\delta_{n} \rightarrow 0$ when $n \rightarrow \infty$, so using the fact that ℓ_{1}^{n} is a norm-one-complemented subspace of ℓ_{1}, it will be shown in Theorem 2.4, that ℓ_{1} does not have the property P_{1}.

LEMMA 2.1. If the Banach space X has the property P_{1} then for each $\epsilon>0$, there is $\delta>0$ such that for each $y \in X$, there is $z \in \overline{B(0, \epsilon)}$ such that if $0<\theta<\delta$ then

$$
B(0,1+\delta+\theta) \cap B(y, 1+\theta) \subseteq B(z, 1+\theta)
$$

PROOF. Let $r=1$ and let $\epsilon>0$ be given By the definition of the property P_{1} there is $\delta>0$ such that for each x and y in X, there is $z \in B(x, \epsilon)$ satisfying the following; for each θ^{\prime} such that $0<\theta^{\prime}<\delta^{\prime}$

$$
B\left(x, 1+\delta^{\prime}\right) \cap B\left(y, 1+\theta^{\prime}\right) \subseteq B\left(z, 1+\theta^{\prime}\right)
$$

Let $x=0$ and $\delta=1 / 2 \delta^{\prime}$, then for all θ satisfying $0<\theta<\delta$;

$$
B(0,1+\delta+\theta) \cap B(y, 1+\theta) \subseteq B\left(0,1+\delta^{\prime}\right) \cap B(y, 1+\theta) \subseteq B(z, 1+\theta)
$$

LEMMA 2.2. Let $n \geq 3$ be a positive integer, let $\delta>0$ be given and let $\left(z_{1}, \ldots, z_{n}\right)$ be an n-tuple of real numbers

If $\sum_{\imath=1}^{n} z_{\imath} \geq \delta$, and for each $i \leq n-1$

$$
z_{1}+\ldots+z_{2-1}-z_{2}+z_{2+1}+\ldots+z_{n} \leq-\delta
$$

then $\sum_{i=1}^{n}\left|z_{2}\right| \geq(2 n-3) \delta$.
PROOF. For each $i=1,2, \ldots, n$, let $y_{2}=z_{1}+\ldots+z_{\imath-1}-z_{2}+z_{2+1}+\ldots+z_{n}$, then $\sum_{i=1}^{n} y_{i}=(n-2) \sum_{i=1}^{n} z_{i}$, thus

$$
y_{n}=(n-2) \sum_{i=1}^{n} z_{\imath}-\sum_{i=1}^{n-1} y_{\imath}
$$

Therefore

$$
\sum_{i=1}^{n}\left|z_{\imath}\right| \geq\left|y_{n}\right| \geq(n-2) \delta+(n-1) \delta=(2 n-3) \delta
$$

LEMMA 2.3. Let $n \geq 3$ be a positive integer and let $\delta>0$ be a given real number such that $(2 n-5) \delta \leq 1$ Then the element $x_{n}=(\delta, \delta, \ldots, \delta,-(n-2) \delta)$ in ℓ_{1}^{n} satisfies the following conditions
(1) $\forall \theta$ such that $\theta>0$

$$
B(0,1+\delta+\theta) \cap B\left(x_{n}, 1+\theta\right) \neq \phi
$$

(2) If $z \in \ell_{1}^{n}$ and for each θ with $0<\theta<\delta$;

$$
B(0,1+\delta+\theta) \cap B\left(x_{n}, 1+\theta\right) \subseteq B(z, 1+\theta)
$$

then $\|z\| \geq(2 n-3) \delta$
PROOF. Let $\left\{e_{\imath}^{\prime}\right\}_{\imath=1}^{n}$ be the standard basis in ℓ_{1}^{n}, that is $e_{\imath}^{\prime}=\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right)$, where $x_{j}^{2}=1$ if $i=\jmath$ and $x_{j}^{2}=0$ if $i \neq j$ and let

$$
x_{n}=\delta \sum_{i=1}^{n-1} e_{2}^{\prime}-(n-2) \delta e_{n}^{\prime}=(\delta, \delta, \ldots, \delta,-(n-2) \delta) \in \ell_{1}^{n}
$$

Then $\left\|x_{n}\right\|=(n-1) \delta+(n-2) \delta=(2 n-3) \delta \leq 1+2 \delta \leq 2+\delta$, therefore for each θ such that $0<\theta<\delta$

$$
B(0,1+\delta+\theta) \cap B\left(x_{n}, 1+\theta\right) \neq \phi
$$

Assume that $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \ell_{1}^{n}$ is such that for each θ with $0<\theta<\delta$

$$
B(0,1+\delta+\theta) \cap B\left(x_{n}, 1+\theta\right) \subseteq B(z, 1+\theta)
$$

It will be shown that
(1) $\sum_{i=1}^{n} z_{\imath} \geq \delta$, and
(2) for each $i \leq n-1$

$$
z_{1}+\ldots+z_{\imath-1}-z_{\imath}+z_{\imath+1}+\ldots+z_{n} \leq-\delta
$$

If these are true then by Lemma 2.2, $\|z\|=\sum_{i=1}^{n}\left|z_{i}\right| \geq(2 n-3) \delta$
(1) Assume that $z_{1}+\ldots \ldots . .+z_{n}<\delta$. Let

$$
\begin{aligned}
y & =\delta \sum_{i=1}^{n-2} e_{\imath}^{\prime}+\frac{1+\delta}{2} e_{n-1}^{\prime}+\left[\frac{1-(2 n-5)}{2}\right] e_{n}^{\prime} \\
& =\left(\delta, \ldots, \delta, \frac{1+\delta}{2}, \frac{1-(2 n-5)}{2}\right) \in \ell_{1}^{n} .
\end{aligned}
$$

Then

$$
\|y\|=(n-2) \delta+\frac{1+\delta}{2}+\frac{1-(2 n-5) \delta}{2}=1+\delta
$$

On the other hand

$$
\begin{aligned}
\left\|y-x_{n}\right\| & =\left|\frac{1+\delta}{2}-\delta\right|+\left|\frac{1-(2 n-5) \delta}{2}+(n-2) \delta\right| \\
& =1
\end{aligned}
$$

Thus, for each θ such that $0<\theta<\delta$,

$$
y \in B(0,1+\delta+\theta) \cap B\left(x_{n}, 1+\theta\right)
$$

But

$$
\begin{aligned}
\|y-z\|=\sum_{i=1}^{n}\left|y_{i}-z_{2}\right| \geq\left|\sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} z_{i}\right| & =\left|1+\delta-\sum_{i=1}^{n} z_{i}\right| \\
& =1+\left(\delta-\sum_{i=1}^{n} z_{i}\right) \\
& >1,
\end{aligned}
$$

so for any $\theta<\left(\delta-\sum_{i=1}^{n} z_{2}\right), y \notin B(z, 1+\theta)$.
(2) Assume that for a certain $i_{0} \leq n-1$

$$
z_{1}+\ldots+z_{\imath_{0}-1}-z_{\imath_{0}}+z_{\imath_{0}+1}+\ldots+z_{n}>-\delta
$$

Let

$$
y=\left(\frac{1+\delta}{2}\right) e_{\imath_{0}}^{\prime}-\left(\frac{1+\delta}{2}\right) e_{n}^{\prime}=\left(0,0, \ldots, 0, \frac{1+\delta}{2}, 0, \ldots, 0,-\left(\frac{1+\delta}{2}\right)\right) \in \ell_{1}^{n}
$$

i_{0}-th term
Then

$$
\|y\|=1+\delta
$$

and

$$
\begin{aligned}
\left\|y-x_{n}\right\| & =(n-2) \delta+\left|\frac{1+\delta}{2}-\delta\right|+\left|\frac{1+\delta}{2}+(n-2) \delta\right| \\
& =(n-2) \delta+\frac{1-\delta}{2}+\frac{1-(2 n-5) \delta}{2} \\
& =1
\end{aligned}
$$

Thus, for each θ such that $0<\theta<\delta, y \in B(0,1+\delta+\theta) \cap B\left(x_{n}, 1+\theta\right)$. But

$$
\begin{aligned}
\|y-z\| & =\sum_{i=1}^{n}\left|y_{2}-z_{2}\right| \\
& \geq\left|\left(y_{1}+\ldots+y_{\imath_{0}-1}-y_{20}+y_{20}+1+\ldots+y_{n}\right)-\left(z_{1}+\ldots+z_{\imath_{0}-1}-z_{\imath_{0}}+z_{\imath_{0}+1}+\ldots+z_{n}\right)\right| \\
& =\left|-1-\delta-\left(z_{1}+\ldots+z_{20-1}-z_{\imath_{0}}+z_{\imath_{0}+1}+\ldots+z_{n}\right)\right| \\
& =\left|1+\left[\delta+\left(z_{1}+\ldots+z_{\imath_{0}-1}-z_{\imath_{0}}+z_{\imath_{0}+1}+\ldots+z_{n}\right)\right]\right| \\
& >1 .
\end{aligned}
$$

Thus, for some $\theta>0, y \notin B(z, 1+\theta)$.
THEOREM 2.4. ℓ_{1} does not have the property P_{1}
PROOF. It will be shown that for each $\delta>0$, there is $x_{\delta} \in \ell_{1}$, such that if $z \in \ell_{1}$ and for all θ with $0<\theta<\delta$ it is true that $B(0,1+\delta+\theta) \cap B\left(x_{\delta}, 1+\theta\right) \subseteq B(z, 1+\theta)$, then $\|z\|>\frac{1}{2}$. Let $\left\{e_{2}\right\}_{\imath=1}^{\infty}$ be the standard basis in ℓ_{1}, and let $\delta>0$ be given If $\delta>1$ then for each $\theta>0$

$$
B(0,1+1+\theta) \cap B\left(x_{1}, 1+\theta\right) \subseteq B(0,1+\delta+\theta) \cap B\left(x_{1}, 1+\theta\right)
$$

Thus one can take x_{1} to be x_{δ} So without loss of generality one may assume that $\delta \leq 1$
Let $n \geq 3$ be a positive integer satisfying $(2 n-5) \delta \leq 1$ and $(2 n-3) \delta>\frac{1}{2}$, and let x_{n} be as in Lemma 2.3 Define

$$
x_{\delta}=\delta \sum_{i=1}^{n-1} e_{\imath}-(n-2) \delta e_{n}=(\delta, \delta, \ldots, \delta,-(n-2) \delta, 0,0, \ldots) \in \ell_{1}
$$

Then $\left\|x_{\delta}\right\|=\left\|x_{n}\right\| \leq 2+\delta$, thus

$$
B(0,1+\delta+\theta) \cap B\left(x_{\delta}, 1+\theta\right) \neq \phi \quad \text { for } \quad 0<\theta<\delta
$$

Let $P_{n}: \ell_{1} \rightarrow \ell_{1}^{n}$ be the mapping defined by $P_{n}\left(\left\{x_{2}\right\}_{z=1}^{\infty}\right)=\left\{x_{\imath}\right\}_{z=1}^{n} \quad$ By the construction of x_{δ} its image under P_{n} is the element x_{n}

Assume that for some $z \in \ell_{1}$

$$
B(0,1+\delta+\theta) \cap B\left(x_{\delta}, 1+\theta\right) \subseteq B(z, 1+\theta) \quad 0<\theta<\delta
$$

then in ℓ_{1}^{n}

$$
B(0,1+\delta+\theta) \cap B\left(x_{n}, 1+\theta\right) \subseteq B\left(P_{n}(z), 1+\theta\right) \quad 0<\theta<\delta
$$

Thus by Lemma $2.3\left\|P_{n}(z)\right\| \geq(2 n-3) \delta>\frac{1}{2}$. Therefore

$$
\|z\| \geq\left\|P_{n}(z)\right\|>\frac{1}{2}
$$

3. OTHER SPACES THAT DO NOT HAVE THE PROPERTY \boldsymbol{P}_{1}

The subspace Y of X is called a norm-one-complemented subspace of X if there is a linear projection $P: X \rightarrow Y$ satisfying that $\|P\|=1$. If A is a subset of X, and $x \in X$ then

$$
d(x, A)=\inf \{\|x-y\| ; y \in A\}
$$

and if B is another subset of X, then the deviation of A from B is defined by

$$
\delta(A, B)=\sup \{d(x, B) ; x \in A\}
$$

The compact width of A in X is defined by

$$
a(A, X)=\inf \{\delta(A, K) ; K \text { is a compact subset of } X\} .
$$

The compact width is said to be attained if there is a compact subset K of X satisfying that $a(A, X)=\delta(A, K)$

In this section it will be shown that if $X=(C(Q))^{*}$, where Q is an infinite compact Hausdorff space, $X=\left(\ell_{\infty}\right)^{*}$, or $X=L_{1}(\mu)$ where μ is non-purely atomic measure, then X does not have the property P_{1}.

The proof of the following proposition is elementary
PROPOSITION 3.1. Let X be a Banach space that has the property P_{1}, and let Y be a closed subspace of X If Y is a norm-one-complemented subspace of X, then Y has the property P_{1}

COROLLARY 3.2. If μ is non-purely atomic measure then $L_{1}(\mu)$ does not have the property P_{1}
PROOF. By Feder [5, Theorem 2], $L_{1}[0,1]$ has a subset A for which the compact width $a\left(A, L_{1}[0,1]\right)$ is not attained, thus by Kamal $\left[6\right.$, Theorem 4.3] $L_{1}[0,1]$ does not have the property P_{1}, but by Lacy [7, sec 8], $L_{1}[0,1]$ is a norm-one-complemented subspace of $L_{1}(\mu)$, therefore by Proposition $31, L_{1}(\mu)$ does not have the property P_{1}.

NOTE 3.3. Theorem 2.4 together with Corollary 3.2 give a negative answer to the question of Mach [4, page 259].

COROLLARY 3.4. If $X=\ell_{\infty}$ or $X=C(Q)$ for some compact infinite Hausdorff space Q Then X^{*} does not have the property P_{1}

PROOF. If $X=\ell_{\infty}$ then ℓ_{1} is a norm-one-complemented subspace of X^{*}, and if $X=C(Q)$ then by Kamal [8, Lemma 3.2], ℓ_{1} is a norm-one-complemented subspace of X^{*}, in both cases one concludes by Proposition 3.1 that X^{*} does not have the property P_{1}.

REFERENCES

[1] ROVERSI, M., Best approximation of bounded functions by continuous functions, J. Approx. Theory 41 (1984), 135-148
[2] LAU, K., Approximation by continuous vector valued functions, Studia Math. 68 (1980), 291-298
[3] MACH, J., Best simultaneous approximation of bounded functions with values in certain Banach spaces, Math. Ann. 240 (1979), 157-164.
[4] MACH, J., On the existence of best simultaneous approximation, J. Approx. Theory 25 (1979), 258-265.
[5] FERDER, M., On certain subset of $L_{1}[0,1]$ and non-existence of best approximation in some spaces of operators, J. Approx. Theory 29 (1980), 170-177.
[6] KAMAL, A., On certain diameters of bounded sets, J. Port. Math. 51 (1994), 321-333
[7] LACY, H.E., The Isometric Theory of Classical Banach Spaces, Springer-Verlag, 1974
[8] KAMAL A., On proximinality and sets of operators III, Approximation by finite rank operators on spaces of continuous functions, J. Approx. Theory 47 (1986), 156-171.

