A REMARK ON Θ -REGULAR SPACES

MARTIN M. KOVÁR

Department of Mathematics Faculty of Electrical Engineering and Computer Science Technical University of Brno Technická 8, 616 00 Brno. Czech Republic

(Received February 22, 1996)

ABSTRACT. In this paper we give an embedding characterization of θ -regularity using the Wallman-type compactification. The productivity of θ -regularity and a slight generalization of Nagami's Product Theorem to non-Hausdorff paracompact Σ -spaces we obtain as a corollary.

KEY WORDS AND PHRASES. θ -regularity. Wallman-type compactification, paracompact Σ -space

AMS SUBJECT CLASSIFICATION CODES: Primary 54A20, 54D35. Secondary 54B10, 54D20.

1. PRELIMINARIES

A filter base Φ in a topological space X has a θ -cluster point $x \in X$ if every closed neighborhood H of x and every $F \in \Phi$ have a nonempty intersection. The filter base Φ θ -converges to its θ -limit x if for every closed neighborhood H of x there is $F \in \Phi$ such that $F \subseteq H$. Recall that a topological space X is said to be θ -regular [3] if every filter base in X with a θ -cluster point has a cluster point. A topological space is said to be a Σ -space [1] if there exist locally finite closed collections Φ_i , i = 1, 2, ... and a cover Γ which consists of closed countably compact sets such that if $C \in \Gamma$ and $C \subseteq U$, where U is open in X, then $C \subseteq F \subseteq U$ for some $i \in \mathbb{N}$, $F \in \Phi_i$. A topological space is called (semi-) paracompact, if every its open cover has an open (σ -) locally finite refinement. Paracompact spaces are θ -regular [4].

Let X be a topological space with \mathfrak{G} its closed base which is a *lattice* (that means $\emptyset, X \in \mathfrak{G}$ and \mathfrak{G} contains all its finite unions and intersections). Recall that the *Wallman-type* [2] or *Šanın* [6] compactification is defined as the set $\omega(X, \mathfrak{G}) = X \cup \{y | y \text{ is an ultra-}\mathfrak{G} \text{ filter in } X \text{ with no$ $cluster point}\}$, where the term "ultra- \mathfrak{G} " means maximal among all filters with a base consisting of elements from \mathfrak{G} . The set $\omega(X, \mathfrak{G})$ can be topologized by the open base consisting of the sets $S(U) = U \cup \{y | y \in \omega(X, \mathfrak{G}) \setminus X, U \in y\}$ where $X \setminus U \in \mathfrak{G}$. If \mathfrak{C} is the collection of all closed sets in X then $\omega(X, \mathfrak{C}) = \omega X$ is the Wallman compactification of X.

2. MAIN RESULTS

Let X be a topological space with a closed base \mathfrak{G} . We say that \mathfrak{G} is balanced if \mathfrak{G} is a lattice and every $x \in X$ has a neighborhood base, say δ_x , such that $\operatorname{cl} U \in \mathfrak{G}$ for every $U \in \delta_x$. Trivially, the collection \mathfrak{C} of all closed sets of X is balanced. Two disjoint sets $A, B \subseteq X$ are said to be point-wise separated in X if every $x \in A$, $y \in B$ have open disjoint neighborhoods. Now, we can state the theorem.

Theorem 1. Let X be a topological space with a balanced closed base \mathfrak{G} . The following statements are equivalent.

- (i) X is θ -regular
- (ii) The sets X, $\omega(X, \mathfrak{G}) \smallsetminus X$ are point-wise separated in $\omega(X, \mathfrak{G})$.
- (iii) There exists a compact space K containing X as a subspace such that the sets $X, K \setminus X$ are point-wise separated in K.

Proof. Suppose (i). Let $x \in X$ and $y \in \omega(X, \mathfrak{G}) \setminus X$. Since X is θ -regular the filter y has no θ -cluster point. It follows that x has an open neighborhood U with $cl U \in \mathfrak{G}$ such that $F \cap cl U = \emptyset$ for some $F \in y$. Then $V = X \setminus cl U \in y$ and, consequently, $y \in S(V)$. Now, let $W \subseteq U$ be an open neighborhood of x with $X \setminus W \in \mathfrak{G}$. One can easily check that S(W), S(V)are disjoint neighborhoods of the points x, y It follows (ii).

(ii) \implies (iii) is trivial Suppose (iii). Let Φ be a filter base with a θ -cluster point $x \in X$. There exists a filter base Φ' finer than Φ which θ -converges to x. Since K is compact, Φ' has some cluster point $y \in K$. But a θ -limit and a cluster point of the same filter base cannot have disjoint neighborhoods; hence $y \in X$. Finally, y is a cluster point of Φ which implies (i).

Corollary 1. The product of θ -regular topological spaces is θ -regular.

Proof. Let X_{α} , $\alpha \in A$ be θ -regular topological spaces. It follows from the Theorem 1 that there are compact spaces $K_{\alpha} \supseteq X_{\alpha}$ such that for every $\alpha \in A$ the sets X_{α} , $K_{\alpha} \smallsetminus X_{\alpha}$ are point-wise separated. Let $K = \prod_{\alpha \in A} K_{\alpha}$, $X = \prod_{\alpha \in A} X_{\alpha}$. Then K is compact and, evidently, the sets X, $K \smallsetminus X$ are point-wise separated. Hence, the space X is θ -regular.

K. Nagami in [5] proved that a countable product of paracompact Hausdorff Σ -spaces is paracompact. Nagami uses Hausdorff separation axiom for upgrading semiparacompactness to paracompactness. However, Nagami's proof essentially contains the result that a countable product of paracompact Σ -spaces is semiparacompact which needs no separation axioms. The following result now follows from the fact that θ -regular semiparacompact spaces are paracompact ([4], Theorem 6).

Corollary 2. A countable product of paracompact (not necessarily regular or Hausdorff) Σ -spaces is paracompact.

It is easy to check that a second countable space has a countable balanced closed base. Theorem 1 (with Theorem 6, [4]) also yields the following.

Corollary 3. A topological space X is paracompact second countable if and only if there exists a compact second countable space K containing X as a subspace such that the sets X, $K \setminus X$ are point-wise separated in K.

References

- 1. Burke D. K., Covering properties, Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984.
- 2. Császár A., General Topology, Akademiai Kiadó. Budapest. 1978.
- 3. Janković D. S., θ -regular spaces, preprint. published: Internat. J. Math. Sci. 8 (1985), no.3, 615-619.
- 4. Kovár M. M., On θ-regular spaces, Internat. J. Math. Sci. 17 (1994), no.4, 687-692.
- 5. Nagami K., Σ-spaces, Fund. Math. 65 (1969), 169-192.
- 6. Nagata J., Modern General Topology, North-Holland, Amsterdam, 1974.