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ABSTRACT. In order to have a topological category that contains both pMET and Unif in a
nice way (and therefore combines quantitative and uniform concepts), approach uniformities are
introduced. Approach uniformities uniformize the so—called approach spaces, introduced in Lowen
[8]. Different characterizations of approach uniformities are formulated. Some natural examples
are presented, such as function spaces, hyperspaces, spaces of measures, and an example concern-
ing theoretical computer science.
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1 INTRODUCTION

Different results concerning completeness in the category AP (see Lowen [9]), imply that the
theory is local. For instance, the space of continuous functions between metric spaces, equipped
with the pointwise distance, turns out to be complete.

Also, AP seems not to be the right context for the quantification of uniform properties, such
as completeness and total boundedness.

Therefore, it is natural to seek a new category that combines the quantitative aspects of AP
(or pMET) and uniform concepts.

Recall that an approach space is a set X equipped with a distance 4, i.e. a map
§:X x2% = [0,00] : (z, A) — &(z, A)
satisfying the following conditions:
(D1) Vz € X : §(z,{z}) =0
(D2) Vz € X : §(z,0) = o0
(D3) Vr € X,VA,B C X : §(z, AU B) = min{é(z, A), §(z, B)}

(D4) Vz € X,VA C X,Ve € [0,00] : 6(z, A) < 6(z, A®) +¢
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This description of approach spaces is intuitively the most appealing: the value é(z, A) is
interpreted as a distance from the point z to the set A.

For the sake of uniformizing the concept of approach spaces, let us consider the following
equivalent characterizations.

A collection of ideals (A(z))zcx in [0, 00]* is called an approach system on X iff forallz € X
the following conditions are satisfied:

(A1) Vp € A(z) : p(z) =0
(A2) Yy € [0,00] : (Ve > 0,VN < 00: 3p € A(z) such that 9 AN < o¥ +¢) = ¢ € Ax)
(A3) Vp € A(z),Ve > 0,YN < 00,3(p.).ex € [] A(2) such that Vy,z € X : p(y) AN <
pz(2) + ¢:(y) + . =
The value p(y) of a so—called local distance ¢ € A(z) in a point y € X, is interpreted as the
distance from z to y according to .

A family of functions (te 12X 52X )een ., of pretopological closure operators is called a tower
on X iff the following conditions are satisfied:
(T1) VA € 2X,Ve, v € R : te(t,(A)) C tery(A)
(T2) VA€ 2¥,Ve e R* : t,(A) = [ t4(A).

T1>€

An approach space (X, 6) if called a uniform approach space if there exists a collection of

oop-metrics D such that Vz € X,VA C X : §(z,A) = sup izelgd(z, a).
deD &

A function f : (X,68) — (Y,n) is called a contraction iff n o (f x f) < 6. The topological
category of approach spaces together with contractions is denoted by AP. Its full subcategory of
uniform approach spaces is denoted by UAP.

2 APPROACH UNIFORMITIES

2.1 UNIFORM APPROACH SYSTEMS AND TOWERS

In this section, we shall give two descriptions of what an approach uniformity might look like: the
uniform approach system (a uniformization of approach systems) and the uniform tower (the uni-
form counterpart of approach towers). Then we shall prove that there is a one-one correspondence
between both kind of structures. The reader may skip the proofs in this section.

If v € [0,00}¥*X | then define for all z,y € X : v*(z,y) = (y, z).

DEFINITION 2.1. Let X be a set. A uniform approach system on X is an ideal I’ C
[0, 00}X*X such that

(AUL) VyeT,Vz € X : y(z,z) =0
(AU2) V€ € [0,00**X : (Ve > O,VN < oo: ¥ €T s.t. EAN <ol +€) > £ €T
(AU3) ¥y €T, VN < o0, N €T s.t. Vz,y,2 € X : v(x,2) AN <YV (z,9) + YV (3, 2)

(AU4) VyeT: y* €.
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An ideal T' C [0, 00/ *X satisfying (AU1), (AU2) and (AU3) shall be called an approach
quasi-uniformity.

fUCX x X thenU™! := {(y,z) | (z,y) € U} and Ay := {(z,z) | z € X}.

DEFINITION 2.2. Let X be a set. A uniform tower on X is a family of filters (U.)ecr+
on X x X, such that

(UT1) Vee R*"\WWUEU,: Ax CU
(UT2) Ve e RY*\WU €U, : U €U,
(UT3) Ve,e! e RY : U, o Uyt D Upyer
(UT4) Ve € R* : U, = Upse Ua.

Thus, a uniform tower is a stack of semi-uniform spaces satisfying (UT3) and (UT4). Also
notice that by (UT3), U is a uniformity.

A family of filters (U.). € R* on X x X satisfying (UT1), (UT3) and (UT4) shall be called
a quasi—uniform tower.

In the sequel we shall show that there exists a one-one correspondence between uniform
approach systems and uniform towers. A set X, equipped with one of these structures will be
called an approach uniform space. Analogously, a set X equipped with a quasi—uniform approach
system or a quasi—uniform tower, will be called an approach quasi-uniform space.

But firstly we shall investigate what is the relationship between approach uniformities and or-
dinary approach spaces. Next proposition shows that an approach uniformity induces an approach
space in a natural way.

PROPOSITION 2.3. LetT be a quasi-uniform approach system on a set X. Then the
family (A(z)),cx, where

A(z) ={v(z,") |y €T}
is an approach system on X.
PROOF. We shall show (A2) and (A3).

(A2) Let ¢ € [0,00]X be such that Ve > 0,VN < co,3¢p¥ € A(z) : p AN < @Y +¢. Then for
each € > 0 and N < oo there is some 4V € I such that ¢ = v (z,-). Define

§3X><X—>[0,oo]:{ g:gg:g(y) if:=z

Foralle >0and N <ocowehave Vy € X :

&z, y) AN p(YAN
o (y) +e

W (z,y)+¢

IN

and for all z # z and y € X by definition

£(z,9) AN < ¥ (z,y) +¢.

By (AU2), £ € T. Thus ¢ = £(z,-) € A(z).
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(A3) Let ¢ € A(z), let ¢ > 0 and N < oo. Choose € I' such that ¢ = y(z,-) and choose y¥ € I'
such that
Vz,y,2 € X : v(z,y) AN <7V (z,2) + 7" (2,9)-

Define for each 2z € X the function ¢, := 7V(z,-). Then we have Vy,z € X :

I

Py AN 1(z,y) AN
W(z,2) +7"(2,9)

0=(2) + ().

IN

If (U )ecr+ is a quasi-uniform tower, then each semi—quasi-uniformity U, induces a pre—
topological closure operator t., yielding a tower (t.).cgr+- It is shown later in the text that, if
(Ue)eer+ and I describe the same approach uniformity, then the tower (t.).cr+ and the approach
system in the previous proposition define the same approach structure, which will be denoted by
A(T).

Before we can move on to the proof of the equivalence of (quasi—)uniform towers and (quasi-
)uniform approach systems, we require some information about the basis of a (quasi-)uniform
approach system. We start with the following proposition.

PROPOSITION 2.4. IfT C [0,00/X*X is an ideal, then the following are equivalent.

(AU2) Vy €T,VN < 00, " €T s.t. Vz,y,2 € X : y(z,2) AN < vN(z,9) + 7V (v, 2)
(AU2)) Vv €T,¥N < 00,Ve > 0,39 €T s.t. Vz,y,2 € X : y(z,2) AN < ¥ (2, ) +1Y (3, 2) +e.

PROOF. We only need to show that (AU2’) = (AU2). To that end, let y € 'and N < oo.
For each n € N, choose 7 € I such that

vz,y,2 € X : 4(z,2) AN <A (z,9) + 97 (y,2)+—
Define vV by
1
vz,y € X : vV (z,y) = (sup'rk(z v)+ )

From (AU2) we deduce that ¥~ € I. Further, we have that

M (z,9) +71" (v, 2) supy (z,y) + ,ll +sup~/”(y,2) + )

inf inf (
nENo meNp
nf (sﬁ'p'rf (=,y) +slp(v,2) + —)

inf (sup('rk %y) +1 (v,2) + )

n€No

> "ienlgo( ((zz)/\N——) }z)

= ~v(z,z) AN.

\%

(\%

DEFINITION 2.5. Let X be a set and let T' C [0,00]X*X. Then T is called a uniform
approach basis on X iff T is an ideal basis (i.e.: Vy;,72 €T : 33 €T s.t. 1 V72 < 73) satisfying
(AU1), (AU3) and (AU4).

If T is a uniform approach basis, then

() == {7 €[0,00/"*X | Ve > 0,VN < 00,1’ € T'st. yAN < +¢}
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will be called the saturation of T

If ¥ is a uniform approach system and I' is a uniform approach basis such that ¥ = (T'), then
T is called a basis for U.

PROPOSITION 2.6. IfT is a uniform approach basis, then (I') is a uniform approach
system with T" as a basis.

PROOF. By saturation it is immediately clear that (I') is an ideal. We only have to show
that (T') satisfies (AU1) - (AU4).

(AU1) If v € (T), then Ve > 0,3y! € T such that YAl < 4! +e. Thus Vz € X,Ve > 0 :
¥(z,z) A1 < y}(z,z) + € = . Therefore Vz € X : v(z,z) =0.

(AU2) Let £ € [0,00]* be such that
Ve > 0,VN < o0, N € (T) :{/\NS*/E"+—52-.
Fixe > 0and N < co. Then there is some ¢ € I such that yY¥ AN < 9 +£ and consequently
EAN < 7§VAN+§

< Y+e.

(AU3) Let v € (), € > 0 and N < co. Then there is some v~ € I such that Y AN < 4¥ + &,
and there is some ¥ €I such that

vr,y,z€ X :AN(z,2) AN <Y¥(z,9) + ¥ (v, 2) + g
Consequently

1@,2) AN < (@,2) AN+ 2
WY (z,y) + ¥ (y,2) +e.

INA

(AU4) If v €T then obviously
Ve>0,YN <00, eT: AN < (4V)* +¢
whence vy* € ().

We now turn to a lemma that will be of paramount importance in proving the one-one
relationship between systems and towers.

For any N < oo, we define a (§—)net on [0, N] to be a finite collection {ay, . ..,as} such that
ay=0,a,=NandVi€{l,...,n}:ai — -y =6 =N/n.

U C X x X, then we define

(z,y) =0 if(z,y) €U

au :XXX—${07°°}:{ (z’y)p—)oo otherwise.

If v € [0,00]**X and o > 0 then we write {y < o} = {(z,y) € X x X | 7(z,y) < a} for
short.
LEMMA 2.7. Let (Ue)e be a quasi—uniform tower. If

I:={y€[0,00/"¥ | Ve €R*Va>¢: {y<a} €U}
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and
U= {;mZ{(a;_l +0y)AN| N <00,6>0,{ag,...,a.} a 6-net on [0, N], }
Vie{l,...,n}:U; EUy, and U;_, C U,
then T = ().

PROOF. Firstly we show that ¥ C I', and therefore (¥) C (I'). Suppose v = é{(m-l +
fu)AN€Vandletc€e R*anda>¢c. Ife > N,then {y<a}=XxX el.. Ife € (o1, 04]
for some i € {1,...,n}, then {y < a} D U; € U,, CU,, whence {7 < a} € U..

Secondly, we show that I is saturated, and therefore (¥) C I'. Let £ € (I'). Fixe € R* and
a > ¢. Then there exists some v € I" such that

—€
{Aa$7+a—é——.

Then we have Vz,y € X :

a+te

a—¢
7~ = Yz, y)+ — < a

2
= {(z,y)Na<a

7(z,y) <

= {(z,y) <o

Therefore {{ < a} D {y < &2} € U,, whence {{ < a} € .. Hence, { €T

Finally, we shall show that I' C (¥). To this end, we shall prove that for any £ € I, and for
any e > 0 and N < oo, there is some 7’ € ¥ such that E AN <Y +¢. Fix €[, ¢ > 0 and
N < oo, and some §-net {ay,...,a,} on [0, N] such that § < £/2. Put Vi € {1,...,n} : U; ==
{€ < & +6/2) €Us, and

¥ = inf(ass +05,) A N.

Let z,y € X. K 7Y (z,y) + & > N, then there is nothing to prove. Suppose 7Y (z,y)+e < A€
(@, @iya [ for some i € {0,...,n — 1}. Then

W (z,y) +26 < A€ [ou, 0u
= 7¥(z,y) < A - 26 € [0iz, 044
= (z,9) €Uin
= {(z,y) <ai +6/2< o <A

Thus EAN <Y +e.
PROPOSITION 2.8. If (U.).cr+ is a (quasi-)uniform tower, then

= {'ye [0,oo]x"x |VeeR*Va>e: {y<a} ell,}

is a (quasi-)uniform approach system.
PROOF. By proposition 2.6 it suffices to show that ¥ (defined as in lemma 2.7 ) satisfies
(AU2). Let
k
v = }2{ (aj—l +9U’) ANeV.

Since « is bounded, it suffices to prove that

Ve>0:3y, €¥:Vz,y,2 € X :7(z,2) < 7e(2,y) + 7e(y,2) + €.
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Fix € > 0 and z,y,2 € X. Refine the net {ay,...,ax} into a §-net {Bo,..., B} on [0, N] such
that

Vie{0,...,k}:Bn=0a; and 6§<e/2.

If j € {1,...,k}, then VB, B, such that G, + B, = @, and f3, € [0,,/2], there are V] € Uj, and
V7 € Up, such that V) o V7 C Uj. Define Vp € {1,...,kn}:

Vor=KW li€{l,....k} B < oy}
and
W, = ﬂV«
p

Notice that W}, € Ug,. Define

kn
Ve 1= E{(ﬂi-l +06w)AN€eWV.

Now suppose that (z,2) & U, , otherwise there is nothing to prove. Then «(z,2) = a; for
some j € {1,...,k}. If v.(z,y) > o, or 7.(y,2) > a;, then again there is nothing to prove.
Therefore suppose that Y.(z,y) = Bp-1 (p < jn) and 7.(y, 2) = B4-1 (¢ < jn). Now suppose that
Bp-1 + B4-1 + € < a;. Then

ﬂp +ﬂq = ﬂp-—l +ﬂq—l +26
< ﬂp—l + ﬁq-—l +e€

< a.
Then there would exist some r > p such that 3, + 8, = a;. Since §, < a, and G, < a;, we have
(r,y)eW, cW,CV,CcVJ

and
(y,z)EWqCVqCV;’

and thus (z, z) € U;. Hence, ¥(z, 2) < a;-1, which is a contradiction. Therefore 8,_; + B4-1+¢€ >
a;, which is exactly what we had to prove.

If T is the (quasi-)uniform approach system induced by a (quasi-)uniform tower (U,)., then
we denote this by I' = Ti, ((Ue).).

If F is a filter basis then we denote (F) := stack F.

PROPOSITION 2.9. IfT is a (quasi-)uniform approach system, then the family (U, )cer+,
defined by Ve € R* :

U:=({{r<a}lveT,a>e})

is a (quasi-)uniform tower.

PROOF. We shall only prove (UT3) and (UT4).
In order to prove (UT3), fixe € R*,a > ¢,v €T, and €1, &, € R* such that ¢, + €, = &. We have
to show that there exist ¥ € ', a; > €;, a2 > €5 such that

{¥ <a}e{y<am}c{y<a}

To this end, pick a; > £ and as > &, such that a; + a2 = a, and take v/ € I such that
Vz,y,2 € X :v(z,2) AN £ ¥(2,9) + 7 (9, 2).



8 R. LOWEN AND B. WINDELS

To prove (UT4), notice that if {y < a} € U, then {y < a} € U, for all 4 € ]¢,a[. Hence
U: CUpseUy.
Conversely, if {7 < a} € U, for some p > ¢, then clearly {y < a} € U, and therefore U, U, C
U..

If (Ue)c is the (quasi—)uniform tower induced by a (quasi-)uniform system I, then we denote
this by (). = Tae(T).

The following propositions show that T;, and T, define a one-one correspondence between
uniform towers and uniform approach systems.

PROPOSITION 2.10. Let (U.). be a quasi-uniform tower, and let (V. )e := Tia0Tae (Ue)e),
thenVe e R : U, = V..

PROOF. By definition we have Ve € R* :

V. ={U CXxX| 3y€ [0,00/*X such that Ve' € R*,Va' > ¢': }.
{y<a}le€lUsandJa>c:{y<a}CU

To prove that V. CU,, let U € V,. Then
(1) 3v € [0, 00}¥*X such that Ve’ € R¥,Va' > ¢': {y < &} €Uy
(2)3a>e:{y<a}cCU

Let a be as in (2), then applying (1) for ¢ := ¢ and ¢ := q, yields {y < a} € U., and thus, by
2), U el..
To prove that U, C V., let U € U,. By (UT4), there is some § > ¢ such that U € Us. Define
v:=0y N6. Lete' >0, thenife’ > 5, wehave Vo' > ¢’ : {y<a'} =X x X €Uy, and if £’ <4,
then we have Vo' > & : {y < o'} DU € Us C Uy. Let a == &2 > e. Clearly we have that
{y<a}=U.

PROPOSITION 2.11. LetT be a quasi—uniform approach system, and let ¥ := T, oTa(T).
ThenT = 0.

PROOF. By definition, we have that

‘II={1,I)€[0,00]X"X |Ve€R*,Va’>5,EI7€F,Ba>e:{7<a}C{¢<a’}}.

In order to prove that ' C ¥, let ¥ €T, ¢ € R* and o > ¢. If v := v and o := o, we clearly
have {y < a} C {¥ < a'}. Therefore v’ € ¥.

To prove that ¥ C T, suppose that (U.), = To:(I'). Then ¥ has a basis consisting of functions
of the form 4 := infl. ,(a4_; + 0y,) A N satisfying the conditions of lemma 2.7. If i € {1,...,n}
and U; € U,,, then there are ; € I' and o} > a; such that {y; < af } C U,. We shall show that
¥ < V&, % €T, and therefore 1 € T'. Suppose ¥(z,y) = a,. Then (z,y) € U; D {3 < of }, thus
(z,9) € {% < o }. Then %(z,y) > o5 > 0s and ¥(z,y) < %(z,y)-

We already mentioned that every uniform approach system induces an ordinary approach
system. On the other hand, every uniform tower has an underlying tower. These two underlying
structures define the same approach space.

PROPOSITION 2.12. Let I be a uniform approach system, and let (U,). be the induced
uniform tower. If (t.). is the tower defining A(T'), then Ve € R*, t. is the pre—closure operator
induced by the semi—uniformity U,, i.e. Ve € R*,VA C X : t.(A) = Ny, U(A).
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PROOF. Letc € R* and A C X. Then

te(A)

{z € X |Vp € A(z): inf p(y) < €}
= {z € X |supinf y(z,y) <¢}
yel veA

= N{yeX|Va>eIzeAy(z,y)<a}
~ver

= N{yeX|3kreA:(z,y) eV}
Uel.

= ) UA).
Uel.

In the non-symmetric case, we have an analogous result. One easily verifies that Ve €
R*,VAC X : t.(A) = Ny, U1 (A4).

2.2 UNIFORM CONTRACTIONS

DEFINITION 2.13. Let (X,T) and (Y, ¥) be approach (quasi—)uniformities, andlet f : X —Y
be a function. Then f: (X,v) — (Y, ¥) is a uniform contraction iff Vip € ¥ : ¢po (f x f) €T.
PROPOSITION 2.14. Let (X,T) and (Y, V) be approach (quasi-)uniformities, and let
(U.)e and (V.). be their (quasi-)uniform towers. Then the following are equivalent.
(1) f is a uniform contraction
(2) Vee R*Y: f: (X,U.) — (Y, V.) is uniformly continuous.

PROOF. In order to prove that (1) = (2), let ¢ € Rt and V € V.. Then there are ¢ € ¥
and o > ¢ such that {y < @} C V. Since ¥ o (f x f) € T, we have that (f x f)"}({y < a}) =
{$o(f x f) < a} €U, and thus (f x )7} (V) € U,.

To prove that (2) = (1), let ¥y € ¥. Then Ve € R*,Va > ¢ : {¢ < a} € V., and therefore
{o(fxfl<al=(fx ) '{Y <a}) €U, and thus Yo (f x f) € T.

2.3 THE TOPOLOGICAL CATEGORY AUnif

One easily verifies that approach uniformities, together with uniform contractions form a category,
which we shall denote as AUnif. The category of approach quasi~uniformities shall be denoted
by AqUnif.

PROPOSITION 2.15. AUnif is a topological category.

PROOF. Let (f;: X — (X;,I;)),c, be a AUnif-source. Then the initial structure is

I:= {?g}?% o(fixfi)|Jo€2VVje oy € r'j}~
J€Jo

Initial structures can be described with uniform towers too. In fact, a AUnif-source is initial
iff for any level ¢ € R* the induced sUnif-source is initial.

PROPOSITION 2.16. Let J be a set, let (X, (U.):) and for all j € J, (Y;, (Vi).) be
approach uniformities, and let for all j € J, f, : X — Y; be a function. Then the following are
equivalent.

(1) (fy : (X, Ue)e) = (Y5, (V2)e)) e 5 initial.
(2) Ve € R*: (f; : (X, U) = (Y;, 1)), 18 initial.



10 R. LOWEN AND B. WINDELS

PROOF. Let W. denote the initial semi-uniformity for the source (f, : X — (5, V1)), ;-
Let T' = Tia((Ue)e) and ¥, = Tpa((V¥):). We have V! = ({{; < a} | 7; € ¥;,a > €}), and thus

W, = ({ NG (<o €2,y €Y,,a,> 5})~

1€Jo

We also have

= {suy'rj olfixfi)l €2V Vi€ do:y € 1“1}

j€Jo
and therefore
U = ({{su})'yj o(fix fi) < a} | Joe2P Vi€ Jo:v, €Ty,a > e})
Jj€Jo
= ({ NG (s <a}) | Jo€2P,y; € ¥ja> 5}>~

j€do

Clearly W, = U,.

We already mentioned that every approach uniformity has an underlying ordinary approach
space. This operation in fact defines a forgetful functor. We need to show the following proposition.

PROPOSITION 2.17. Iff : (X,T') — (Y, ¥) is a uniform contraction, then f : (X, A(T')) —
(Y, A()) is a contraction.

PROOF. Let (A(z))zex and (B(y))yey denote the approach systems of A(I') and A(¥)
respectively. Let z € X and ¢ € B(f(z)). Then there is some ¥ € ¥ such that ¢ = ¥(f(z),").
Then ¢ o (f x f) €T and therefore o f = ¢(f(z), f(1)) =¥ o (f x f)(z,") € A().

COROLLARY 2.18. A: AqUnif — AP is a forgetful functor.

(X, - (X,AD))
f —

3 METRIC AND UNIFORM APPROACH UNIFORMITIES

3.1 METRIC APPROACH UNIFORMITIES

Metric spaces can be interpreted as approach uniformities in the following manner.
PROPOSITION 3.1. Let (X,d) be a cop-metric space. Then I'(d) := {7y € [0, 00}**¥ |
v < d} is a uniform approach system on X.
Approach uniformities induced by a cop-metric will be called metric approach uniformities.
PROPOSITION 3.2. Let (X,I') be an approach uniformity. Then the following are
equivalent.
(1) (X,T) is a metric approach uniformity.
(2) supyeTl
~yer
(3) T is closed under the formation of (arbitrary) suprema.
We now describe metric approach uniformities in terms of uniform towers.
PROPOSITION 3.3. If (). is the tower of a metric approach quasi—uniformity I'(d),
thenVe e RY : U, = {{{d < a} | a > ¢}).
PROOF. Immediate, since {d} is an approach basis for I
PROPOSITION 3.4. Let (X,d) and (Y,d’) be cop—metric spaces and let f: X —Y be a
function. Then the following are equivalent.
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(1) f:(X,d) — (Y,d) is non—ezpansive
(2) f:(X,I(d)) — (Y,I'(d)) is a uniform contraction.
This means that proposition 3.1 yields a full embedding functor pMET* — AUnif. We

have more.
PROPOSITION 3.5. pMET® is a full bicoreflective subcategory of AUnif.

PROOF. If (X,T) is an approach uniformity, then define

dp :=sup?.
~vyer

It is easy to verify that dr is a cop—metric.

Clearly id : (X,['(dr)) — (X,T) is a uniform contraction, since Vy € T : yo (id x id) < sup,ery =
dr.

Now suppose that f : (X',I'(d)) — (X,T) is a uniform contraction for some cop-metric d. Then
f:(X',I'(d)) — (X,T(dr)) is a uniform contraction too, since

§el(dr) & Esitexgv
= EO(fo)Siggvo(fo)sd
= £o(f x f) eT(d).

3.2 UNIFORM APPROACH UNIFORMITIES

PROPOSITION 3.6. Let (X,U) be a uniform space. Then T(U) :== ({8y | U € U}) is a
uniform approach system on X.

PROOF. IfU is a uniformity on X, then (i), (that is, U on every level), is a uniform tower.
The associated uniform approach system clearly is I'(U/).

Approach uniformities induced by a uniformity will be called uniform approach uniformities.

PROPOSITION 3.7. Let (X,I') be an approach uniformity. Then the following are
equivalent.

(1) (X,T) is a uniform approach uniformity.
@)T={y |UCX xX st 6y €T})
(3) T has a basis consisting of functions into {0, 00}.
Uniform approach uniformities have trivial uniform towers.
PROPOSITION 3.8. If (U.). is the tower of a uniform approach uniformity I'(U), then
VeeRY:U. =U.
PROPOSITION 3.9. Let (X,U) and (Y,V) be quasi—uniform spaces andlet f : X =Y
be a function. Then the following are equivalent.

1) f: (X,U) — (Y,V) is uniformly continuous
(2) f:(X,TU)) = (Y,T(V)) is a uniform contraction.
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PROOF. We immediately see that

f:(X,U) — (Y,V) is uniformly continuous
WeV,IWel:(fxfU)cV

Yoy € T'(V), 30y € TU) : Oy xpyv) = Ov

Voy € T(V), 30y € TU) : 0y 2 6v o (f x f)
f:(X,TU)) — (¥,I'(V)) is a uniform contraction.

t ¢ ¢ ¢

This means that proposition 3.6 yields a full embedding functor Unif — AUnif. We have
more.
PROPOSITION 3.10. Unif is a bireflective and bicoreflective subcategory of AUnif.

PROOF. Let (X,T') be an approach uniformity, and let (I), be its uniform tower. Then
define Up := Uy and UT := ,cp+U. It is not difficult to verify that both Ly and UT are
uniformities on X.

The fact that id : (X,I'(Ur)) — (X,T) is a uniform contraction follows immediately from
proposition 2.14. Now suppose f : (X’,['(U)) — (X,T) is a uniform contraction for some unifor-
mity & on X’'. Then f : (X',U) — (X,Up) is uniformly continuous and hence f : (X',I'U)) —
(X,T'(Ur)) is a uniform contraction.

The fact that id : (X,T) — (X,[(UF)) is a uniform contraction, is again a consequence of
proposition 2.14. Now suppose that f : (X,I') — (X', I'(/)) is a uniform contraction for some uni-
formity U on X'. Then for any ¢ € R* we have that f : (X,U.) — (X’,U) is uniformly continuous.
Hence f : (X, Neer+ Ue) — (X', U) is uniformly continuous, and thus f : (X, T(UF)) — (X', TU))
is a uniform contraction.

3.3 METRIC AND TOPOLOGICAL APPROACH SPACES

Let T : Unif — Top and A : AUnif — AP be the natural forgetful functors. Then the following
diagram is commutative.

C

Unif —— AUnif
(4
Tw
T A P
/
T C
op AP

r

PROPOSITION 3.11. Let (X,d) be a cop—metric space, then A(I'(d)) = b4.
PROOF. Let § denote the distance defining A(T'(d)). Recall that Vz € X,VAC X :

Sa(z, A) = "%fld(z, a) and &(z,A)= ?3:257(1’ a).
It is easy to see that § < §4. On the other hand, we have for any z € X and A C X that

Va € A,Ve > 0,3y < d:v(z,a) + € > d(z,a)
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and hence Ve > 0 : ilé]d) .,é“ﬁ v(z,0) +e > ilel:fq d(z, a), which, by arbitrariness of €, proves the other
inequality.

PROPOSITION 3.12. Let (X,T') be an approach uniformity. Then the underlying topology
of UT coincides with the topological reflection of A(T).

PROPOSITION 3.13. Let (X,T') be an approach uniformity. Then the underlying topology
of Ur coincides with the topological coreflection of A(T).

4 NATURAL EXAMPLES

4.1 THE FINE APPROACH UNIFORMITY

A uniform approach space (X, (A(z))zex) is (by definition) generated by a gauge of pseudo-
metrics D in the sense that for all z € X : A(z) = ({d(z,-) | d € D}). It is easily verified that the
underlying approach space of the approach uniformity generated by D is again (X, (A(z))zex)-
Therefore, every uniform approach space is compatible with some approach uniformity. There
always exists a finest such structure.
‘We need the following preliminary result.

PROPOSITION 4.1. Let (f, : (X,T) — (X,,I}))jes be an initial AUnif-source. Then
(f; : (X, A(T) = (X;, A(T3)))ses is AP-initial

PROOF. Let (A;(z)).ex, denote the approach systems of A(T;) (j € J) and let (A(z))zex
be the initial approach system for the given AP-source. Then Vz € X :

Aj(z) = {7(2,) | v €T3}
and therefore Vr € X :

A(z)

{fggﬁj o f; | Jo C J finite, &; € A;(f,(z))}
{fglpo 7 (fi(2), £i(-)) | Jo C J finite}

which clearly coincides with the approach system of A(T').

DEFINITION 4.2. Let (X,6) be a uniform approach space. Then we call FINE(6) :=
V{T € |AUnif] | A(T') = é} the fine approach uniformity compatible with 6.

Because of the previous proposition, A(FINE(6)) = 6.

As a matter of fact, FINE : UAP — AUnif is a functor.

PROPOSITION 4.3. Let (X,6) and (Y,8') be approach spaces and let f : X — Y bea
function. If f : (X,6) — (Y,8') is a contraction, then f : (X,FINE(§)) — (Y,FINE(§')) is a
uniform contraction.

PROOF. Let I" be the initial AUnif-structure for the source of all contractions X —
(Y, FINE(§")). Every 6—6'~contraction is a '-FIN E(6')-uniform contraction, and thus a A(I')-
&'—contraction, whence A(T') is finer than é.

Conversely, proposition 4.1 implies that the source of all 6~§—contractions (X, A(T')) — (X, §') is
initial, and therefore A(T') is coarser than 6. Thus A(T") = 4.

FINE(6) is the finest structure compatible with §, thus FINE() D I'. Therefore, every 6—6'-
contraction is a FIN E(8)-FIN E(&')-uniform contraction.
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4.2 SPACES OF MEASURES

Let X be a separable metrizable topological space. Let M(X) denote the set of all probability
measures on X. We define for every finite set C of continuous functions from X into I := [0,1]
(equipped with the usual topology) the map

do : M(X) x M(X) = 0,00] : (P,Q) = sup '/fdP—/fdQl.

Since each dc¢ is a p-metric, we have the following result.

PROPOSITION 4.4. {dc | C is a finite subset of C(X,I)} is a basis for some approach
uniformity T, on M(X).

The approach uniformity I, in the previous proposition, shall be called the weak approach
uniformity on M(X). The following propositions motivate this terminology.

It is a well-known result (see e.g. Billingsley [1]) that the weak topology on M(X) is initial
for the Top-source

(w, : M(X) > [0,00): P [ fdP)

Here we have an analogous result.
PROPOSITION 4.5. The weak approach uniformity on M(X) is initial for the AUnif-
source

fec(x.,n

(w, : M(X) = [0,00) : P /fdP)

(where [0, 00] is equipped with the usual approach uniformity).
PROOF. Let dp denote the euclidean metric on [0, 00]. Then the initial structure of the
given source is

fec(x,n)

({iuegdg o (‘UJ} X w,) I ccC C(X, I) finite })

= <{§gg|/fd-—/fd-||0cc(x,1) finite })

which is clearly the weak approach uniformity.

If f: X — Y is continuous, then f : M(X) — M(Y) defined by f(P)(B) := P(f~%(B))
for every Borel-set B in Y, is continuous with respect to the weak topologies. Here we have an
analogous result.

PROPOSITION 4.6. Let X andY be separable metrizable topological spaces. If f : X =Y
is continuous, then f : (M(X),TX) = (M(Y),TY) is a uniform contraction.

PROOF. For every C C C(Y, I) finite, we have that dco(f x f) € I'X since VP,Q € M(X):

sup| [ 94 (P) ~ [ 9¢f(@)
[gofdP—/gofdQl.

do(f(P), (@)

= sup
geC

In Lowen [9] the set M(X) is equipped with the so—called weak approach distance.
PROPOSITION 4.7. The underlying distance of the weak approach uniformity is the weak
distance.
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4.3 HYPERSPACES

Let (X, d) be a metric space. The collection of all non-empty closed subsets of X is denoted by
CL(X). For every finite subset F C X we define

dp : CL(X) x CL(X) — [0,00] : (A, B) — Slelg |d(z, A) — d(z, B)|

Since all dr are p-metrics, we have the following result.

PROPOSITION 4.8. The collection {dr | F € 2¥)} is a basis for some approach unifor-
mity on CL(X).

The approach uniformity in the previous proposition shall be referred to as the Wijsman
approach uniformityon CL(X). The following propositions motivate this terminology and enhance
the canonicity of the example.

It is known (see e.g. Beer [3]) that the Wijsman topology on CL(X) is initial for the Top—
source

(d(z,-) : CL(X) — [0,00] : A — d(z, A)),cx -

In AUnif we have an analogous result.
PROPOSITION 4.9. The Wijsman approach uniformity is initial for the source

(d(z,-) : CL(X) — [0,00] : A d(z, A)),cx

(where [0, 00] is equipped with the usual approach uniformity).
PROOF. Let dg denote the euclidean metric on [0,00]. The initial structure for the given
source has a basis consisting of functions

supdg o (d(lf, ) X d(z1 )) = sup 'd(zw ) - d(I, )l
z€F zeF

where F € 2X), which clearly determine the Wijsman approach uniformity.
The Wijsman topology on CL(X) is also initial for the singleton source

CL(X) — [0,00* : A d(-, A)

where [0, 0o]X is equipped with the product topology (see Beer [3]).
In AUnif too, we have the following.
PROPOSITION 4.10. The Wijsman approach uniformity on CL(X) is initial for the
singleton source
¢ :CL(X) — [0,00]% : A d(-, A)

where [0,00]X is equipped with the product approach uniformity.
PROOF. Let dp denote the euclidean metric on [0,00]. The approach uniformity on
[0, 00]% = I1.ex[0, o0] has a basis consisting of functions of the form

supdg o (7 X m;)
zEF

where F' € 2X). The initial structure of the given source is therefore determined by functions of
the form

supdg o (m; X 7z) 0 (¢ X @).
z€F
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We finish the proof by noticing that VA, B € CL(X) :

sugdg o (mz X mz) o (¢ X ¢)(A, B)
z€
= sup|d(z, A) — d(z, B)|.

zeF

The following result also illustrates that the definition for the Wijsman approach uniformity
is natural.

PROPOSITION 4.11. The oop-metric coreflection of the Wijsman approach uniformity
on CL(X) is the Hausdorff-metric hq.

PROOF. We have VA, B € CL(X):

sup dp(A, B) =supd}(A, B) = ha(A, B).
Fe2(X) zeX

On the analogy of the definitions in the topological and the uniform case, we define the
following notion of admissibility.

DEFINITION 4.12. Let (X,d) be a metric space. An appoach uniformity I’ on CL(X) is
called admissible iff ¥ : (X,T(d)) = (CL(X),T) : z — {z} is a well-defined embedding.

While the Wijsman topology and the Wijsman distance are always admissible, this is not the
case for the Wijsman uniformity and for the Wijsman approach uniformity. But we do have the
following partial result.

PROPOSITION 4.13. If(X,d) is totally bounded, then the Wijsman approach uniformity
is admissible.

PROOF. Since the underlying topology of (X, d) is Hausdorff, ¢ (as in definition 4.12) is
well-defined.

Clearly

dr({z},{y}) sup |d(z, z) — d(y, 2)|
< supd(z,y)

zeF
= d(z,y).

Conversely, fix ¢ > 0 and let F' € 2X) be such that | J Ba(z,£/2) = X. We shall show that
zeF

Vz,y € X : d(z,y) < dr({z},{y}) +e.

Let z,y € X, and choose z € F such that d(y, z) < ¢/2. If d(z,y) < ¢, then there is nothing to
prove. If d(z,y) > €/2, then

d(z,y) < dlz,2)+d(y,2)

d(z,2) —d(y,z) +¢

IAN AN

sup |d(z, z) — d(y, 2)| +¢.
z€F

The following example shows that the total boundedness is a necessary condition.
EXAMPLE 4.14. Let d be the usual metric on R? and let 'y denote the Wijsman approach
uniformity on CL(R?). Then ¢ : (R?,T'(d)) — (CL(R?),I'w) : £ — {z} is not an embedding.
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4.4 FUNCTION SPACES

Let X be a set. Let X be a collection of subsets of X such that X covers X and such that X
is closed under the formation of finite unions. Let (Y,d) be a metric space. For any A € X, we
define
da:Y¥ x ¥Y¥ — [0,00]: (f,9) = supd((z), 9(2))

Since each d4 is a p-metric we have the following result.

PROPOSITION 4.15. T'y:= ({d4 | A € X}) is an approach uniformity on YX.

Let us start with an example.

PROPOSITION 4.16. If X = 2% then (YX,T'x) coincides with the AUnif-product
(Y, ILex I(d))-

PROOF. The uniform approach system of [] I'(d) is given by

zeX

({supd o(m, xm)| A€ 2"”})
T€EA

which clearly coincides with Iy.
The uniform and the metric coreflection of I'y are well-known.
PROPOSITION 4.17. The uniform coreflection of I'x is the uniformity of X —convergence.

PROOF. This is clear, since the uniformity of A'—convergence has a basis consisting of
entourages of the form

<{{(f,g) €YX x Y | supd(f(z),9()) < e} |Aex,e> 0}>.
z€EA

PROPOSITION 4.18. The oop—metric coreflection of I'x is the uniform metric.
PROOF. If f,g € YX, then

d(Tx)(f,9)

sup supd(f(z), 9(z))
A€EX z€A
= sup d(f(z),g(z))-

Let k, denote the map that always takes the value y.
PROPOSITION 4.19. The map (Y,I'(d)) — (YX,Tx) : y — k, is an embedding.
PROOF. For arbitrary A € X we have

da(ks, ky)

'-':'gg d(kz(2), ky(2))
d(z,y)-

]

4.5 IMPLEMENTATION OF p¢-METRICS
gMET is considered to be a suitable category for domain theory. A well-known example is the
quasi—-metric

(z,y)—0 ifzCy

. +.
d: XxX—R '{(z,y)-—»2"‘ ifrZyand k=min{n | z, # yn}

on X = {0,1}*, the set of all infinite strings of zero’s and one’s. Recall that z C y means " z is a
prefix of y ”.
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If one wants to implement d, one will not implement the function d itself, since its domain
consists of infinite (!) strings. One would rather implement a series of test functions (f,), on
X x X, that check whether d(z,y) < 27" or not, say

. N ) (=y)—0 ifd(z,y)<2™
fa: XxX {O’W}'{(x,y)o—»oo otherwise.

PROPOSITION 4.20. {f, | n € Ny} is a basis for an approach quasi—uniformity T’ on
X.

PROOF. This follows from the observations that Vn,m € Ng : fno V f;n = favm and
Vn € No :Vz,y,2 € X : fu(@,2) < fanr(2,y) + farr(y, 2).

The quasi-uniform coreflection of I' is the quasi-uniformity 4, which was studied by e.g.
Smyth (Smyth [10]) and Stinderhauf (Stinderhauf [11]).

The pgoo—metric coreflection dr expresses the prefix—order, in the sense that dr(z,y) = 0 &
z C y, since

sup falz,y) =0 Vn:d(z,y) < 27" ©d(z,y) =0.
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