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ABSTRACT. This paper is concerned with error bounds for numerical solution of linear ordinary
differential equation using collocation method. It is shown that if the differential operator is split in

different operator forms then the applicability conditions for the computable error bounds which are

based on the collocation matrices could be improved.
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1. INTRODUCTION
This paper extends previous work of Cruickshank & Wright 1] and Ahmed [2] on computable error

bounds for collocation solution of ordinary differential equations. In [1 computable error bounds for the

solution with the global collocation method were described in terms of matrices related to the highest
derivatives ofthe solution. It is shown later in [2] that ifthe bounds were related directly to the matrices
involved in the solution and not via the highest derivatives then significant improvement in the closeness
of these bounds could be achieved. However, despite this improvement, the conditions of applicability
which were the main drawback of [1] have turned out to be the same. That is for many practical
problems an inordinate amount of work is necessary to produce any strict error bounds of this type. The

aim of this paper is to consider this problem in order to improve the applicability of these bounds. The

work in this paper is developed from Ahmed’s thesis [3].

2. THE NEW SPLITTING OF THE DIFFERENTIAL OPERATOR
Before investigating the remit more precisely we introduce the following assumptions and notations.
We confider an m-th order differential equation ofthe form

m-1

zm(t) +E P.i(t)zO)(t) F(t) (2.1)
I=o

with associated homogeneous boundary conditions. The theory in 1] and [2] deals with this equation in
the operator form

(D"’ T)z F, (2.2)

where (D’m)() (--)() But as indicated in Kantorvich & Akilov [4] and Anselone [5], the theory
can be applied to a general equation ofthe form

(D- T)x /, (2.3)

where D is invertible. Clearly different choices may be treated to deal with the problem of applicability.
However, there are some practical difficulties which would limit them. Firstly the inverse ofD needs to
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be known explicitly. Secondly the procedure for calculating the projection norm or bound on it needs to

be available. Thirdly all the assumptions required by the theory in [4] and [5] should be satisfied.

To avoid the difficulty of knowing the inverse of D explicitly, perhaps the simplest extension could

be to define the differential operator D by

Dz D’z + A_D’-z + .--+ A0z (2.4)

where the A’s are some parameters to be chosen to g/ve the highest possible applicability with a

reasonable amount ofwork. Since D is a linear differential operator wih constant coefficients its inverse

if" it exists can be found analytically.
The norm of the project operaor associated with D, which will be denoted by " was shown in

Ahrned [6] o be asymptotically the same as the norm of the usual interpolating projection operator if, for

the global collocation method, the points are more usually Tchebychev. It was also shown here that

bounds of" the norm of this projection operator can be calculated in terms of the usual interpolating

projection. These results will overcome the second problem. For satisfaction of the conditions required

by the theory in [4] and [5], using the analysis in [6] this will be straightforward ifwe prove tha TO- is

a compac operator. That is guaranteed by Kolomogorov and Fomin [?] since TO- is an integral

operator.
Now replacing D by D and following the same analysis in Ill and [2] we reach smilar expressions

for the error bounds with slight computational modifications in certain terms. This is shown in the next

section.

3. EXPRESSIONS FOR THE ERROR BOUNDS WITH THE NEW SPLITTING
OF THE DIFFERENTIAL OPERATOR
If we refer to the bounds presented in [1 and [2], then the bounds with the new splitting will have

exactly the same expressions with the following modifications in computation ofthe following terms:

1. The integral operator K which stands for TD"- in [1] and [2] will be replaced by TD-;
2. The projection operator Oq will be replaced by Oq;
3. The collocation matrix Q) which relates to the highest derivative of the solution and is

denoted in [1] by W, will be replaced by the matrixQ whereQ Q +A_Q,"-: + + AoQ,q
andQ relates to the kth derivative ofthe solution.

4. The subscript n refers to the number of partitions and q refers to the number of collocation

points. For global case n 1, then the expression of the error bounds with this new splitting and

notation will be

and

d

(D T)-1 II <- P. 6
(3.1)

d 0,1, 2,

II(D- T)-1 -< 1 -/k
(3.2)

d= 1,2,....
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Since the main purpose ofthis paper is to study the problem of applicability we are not going to compare
the closeness ofthese new bounds. However, we don’t expect to have any significant changes, especially
with the bounds using matrices related directly to the solution as they will not be affected by the new
splitting. But for the applicability conditions we expect significant changes since all modified terms are

involved.

4. NUMERICAL APPLICATIONS
In our numerical application we will consider the simple second order case

"() + ()’() + o()() (),( +/- 1) o

with D taking the simples form

Dx x" + oZ,

that is, the coefficient of x’ is taken zero. Obviously, if p(t) - 0, then the inclusion of that parameter is

expected to give better results. Generalization to higher order equations and more complicated D is

straightforward but a bit tedious.

The test problems will be the same ones considered in [1] and [2].
Problem (1) z" + a(1 + t2)x y x( + t) 0

Problem (2) x" x y z( + 1) O

Problem (3) x" 2x
5- (+) =0

Problem (4) x"-+- 2zxt+3 (t+3)
[2x y x( =[= l) 0.

The parameter c= is included to vary the smoothness ofthe problem. Problem 2 wig be neglected because
it is a trivial case with the above D. A, is firstly chosen the one point best approximation of p, (). That

is, A, 1/2{maxlpi(s)[ -+- min, lp,(s)l}.
In table (1) we present bounds for IITD- and (TD’)- II and the norms of the matrices related

to D" and D for n 1, q 5 and n 1, q 20. In comparing those bounds we notice the following:

(i) There are some odd values in problem (1) (values with *) where the new splitting gives larger
values. The easiest practical way of avoiding these nearly singular cases is to consider other values of

nearby and to choose the best ofthem, as shown later.

(ii) For problem (3) huge reductions were achieved. That is because , is negative and hence TD-is well behaved, the function p0(t)= does not vary much and can be well approximated by a

constant and Pi (t) 0.

(iii) For problem (4) all values are reduced but the reductions are not as in problem (3) since here

/h (t) :{- 0. Obviously, ifD includes an approximation ofpi then similar reductions are expected.

(iv) For most of the cases the reductions increase with a, which indicates better results with less

smooth problems.
In comparing the norms of the collocation matrices related to D and D"=, Q and W,w respectively,

we note the following in table (1).
(v)For problem (1) Q < W,w for every value of a 1,2 where [[TD- was shown in (i) to be

relatively large. The explanation of this may be due to singularity ofD at a 2,18 which will affect the

values ofW,w more than Q.
(vi)For problem (3)Q << W,w as expected from (ii).

(vii) For problem (4) Q is almost similar to W,. This is probably due to the dominate of the

derivative term.

Table (2) compares the smallest number of poims required for the applicability of bounds with the

original and the modified splittings. That is the bounds Pd and Ad given by (3.1) and (3.2) and the

corresponding bounds described in [1 and [2].
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We note here the following:

(viii) For problem (1) as expected from (i) and (v) we see good improvements with a 0.5 and
a I but no improvement with a 2. This case will be reconsidered.

(ix) For problem (3) huge improvements were achieved, especially with c 100 as expected from
(ii) and (vi).

(x) For problem (4), there are also good improvements as expected from (iii) and (vii).
In table (3) the bounds for [[TD-I[[ are considered with other values of A for problem (1), a 2.

We see that the bounds take their minimum around A 1. The applicability is tested in table (4) with

A 0.8, 1, 1.28. We observe that the best applicability ocrs for A 1 where [ITD-I[[ takes its

minimum which supports our method in dealing with the choice ofA values.

Problem

.5 .75
1.5

2 3
100 150

3
.5 -0.04514

-.09028
2 -.8056

100 9.028

4
.5 -0.15625

-0.3125
2 -0.625

100 -312.5

Table (I)
Comparison ofbounds on imcgral operators

and the norms ofthe rchtcd matrices

0.1812 0.2500 1.3258 1.0122
0.6494 0.5000 1.9318 1.3572
2.4064 1.000 13.4358 5.678
8.0191 50.000 526.872 112.6927

0.0045 0.03125 1.0025 1.0042
0.0088 0.0625 1.0048 1.0027
0.0171 0.1250 1.0089 1.0060
0.2058 6.250 1.475 1.2439

0.4755 0.6250 1.4935 1.5017
0.9074 1.250 2.0520 2.0659
1.6665 2.500 3.3172 3.337

17.888 125.0 32.1639 34124

W2o

1.3257
1.9318

13.4934
26.2084

1.01409
1.0283
1.0546
1.4831

1.5515
2.2038
3.7425

148.5813

1.1136
1.3543
5.6359
7.3665

1.0045
1.0144
1.0278
1.245

1.552
2.2043
3.7439

148.7529

Table (2)
Comparison of applicability cxmditions

(The smallest number of collocation points required for applicability)

Problem
A

.5 0.75
1.5

2 3
100 150

3
.5 -0 04514

-.09028
2 -.18056

100 -9.028

4
.5 -0.15625

-0.3125
2 -0.625

100 -312.5

original modified

19 4
82 35

> 120 > 120
> 120 > 120

2
2
2

> 120

33
> 120
> 120
> 120

2
2
2
22

17
97

> 120
> 120

8 4
22 19

> 120 > 120
> 120 > 120

2
2
2

> 120

2
2
2
10

6
22
74

> 120

A1
original modified

3 2
36 18

> 120 > 120
> 120 > 120

2
2
2

> 120

12
38

> 120
> 120

13
> 120
> 120
> 120

5
65

> 120
> 120

A2
oris modified

3
9

> 120
> 120

2
2
2

> 120

6
24

> 120
> 120

2
2

> 120
> 120

4
16
77

> 120
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Table (3)

Bound on TD-]I with other values of A near 3 for problem (l), a 2

[2.75 12.5 l:25 12 1"75 1"5 1"25 0.75

ii!D-*ll 3.393 19.1538 i.981’_611.234211.038510.9.6571.9401 0.9365 b.9459

Table (4)
The applicability for values of ) with

small bounds of[[TD-*l[ for problem (1), a 2

A Po i A, A2
.5 >120 95 >120 61

>120 85 >120 48
1.25 >10 87 >120 49

5. CONCLUSION
It is shown in this paper that extension of the principal part of the differential operator to be a linear

combination with constant parameters of all the derivatives can be one practical solution to the problem
of applicability ofthe error bounds derived in and [2].

The numerical results have shown that significant improvements in the applicability are achieved with

this new extension. More investigation in the method of choosing the parameters or in looking for other

principal part extensions may be needed for further improvements. One option could be to consider the

equation in the form

(I D-’T)x D"- I,

and to investigate for satisfaction ofthe theory and look for practical bounds for m"- Tll.
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