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ABSTRACT. A triangular norm is a special kind of associative function on the closed unit interval [0,1 ].
Triangular norms (or t-norms) were introduced in the context of probabilistic metric space theory, and they
have found applications also in other areas, such as fuzzy set theory. We determine the explicit forms of all
t-norms which satisfy a generalized homogeneity property called quasi-homogeneity.
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0. INTRODUCTION
Let I [0, be the closed unit interval on the real line R. A triangular norm (or t-norm) is a

map T: I x I-->I satisfying the following four hypotheses. First, T is associative:

T(x, Try, z)) T(T(x, y), z), x,y,zl;

second, T is nondecreasing in each variable; third, T is commutative; and fourth, for all x L

T(x, 1) x. (0.1)

T-norms were introduced by Menger as a means of generalizing the triangle inequality to statistical
(later, probabilistic) metric spaces. Associated with a family Fpq} of probability distribution functions is

a map T: I x I-->I (later, a t-norm) such that

Fpr(X + y) >_ T[Fpq(X), Fqr(Y)] (0.2)

for all p, q, r in some space S and all nonnegative reals x and y. Interpreting Fpq(X) as the probability
that the distance between p and q is less than x, inequality (0.2) means that the probability that the
distance from p to r is less than x + y is at least as great as the T-value of the probabilities that the
distance from p to q is less than x and the distance from q to r is less than y. For further information
on the history, theory and applications of t-norms, see Schweizer and Sklar [2].

In light of the interpretation above, we examine now those t-norms satisfying an additional

property. If the probabilities Fpq(X) and Fqr(Y) on the fight side of (0.2) are shrunk by a factor a I,
then it may be reasonable to suppose that the probability Fpr(X + y) is also shrunk by a factor depending
on t, possibly after some change of scale. More precisely, we shall study those t-norms T which satisfy
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r(t, ty) n-’{(r) nit(., (0.3)

for some map q): I--)I and some continuous injection H: I--) [0, oo). Such t-norms will be called quasi-

homogeneous. If H in (0.3) is the identity map, then T is called homogenous, and the forms of such t-

norms are known already (e.g. [3]). In that case, either T(x, y) Min (x, y) with q)(t) t, or T(x, y)
xy with q)(t) 2. We shall obtain that result as a corollary of the main result of the present paper, in

which we determine the general solution of (0.3) for t-norms.
Before proceeding, let us observe some other properties of t-norms. It is easy to deduce the

following from the definition of triangular norm:

T(x, O) T(O, x) O, x I,

T(x, y) < Min (x, y), x, y I

(i.e. Min is the "maximal" t-norm), so in particular

T(x, x) < x, x I.

Note also that (0.3) forces H to be strictly increasing. For, setting x y 0 there, we have

T(0, 0) H-l{q)(t) H[T(0,0)]}. Since T(0,0) 0, this means H(0) q)(t) H(0) for all [0, 1].
Hence H(0) 0, since otherwise q) 1, which in (0.3) with 0 would yield 0 T(x, y) for all x, y
L in violation of (0.1).
1. PRELIMINARIES

In the sequel, let / [0, **] be the extended nonnegative real half-line. The structure of
continuous t-norms is known. (The continuity assumption can be weakened somewhat, but that is not
relevant to the current discussion.)

THEOREM 1.1. (Schweizer and Sklar [2: Sections 5.3-5.5]) Let T: I x I ---) I be a continuous
t-norm.

(i) T satisfies T(x, x) < x for all x (0, 1) if and only if T admits the representation

T(x, y)=Y[e,(x) + g(y)], (.)

where g: I--)/ is continuous, strictly decreasing with g(1) 0, where f: /--)I is onto, continuous,
strictly decreasing on [0, g(0)] with f(u) 0 for u > g(0), and where f g is the identity map on I
(i.e. g is a "quasi-inverse" off).

(ii) If T(x, x) x for all x e I, then T Min on I I.
(iii) Otherwise, the semigroup (/, T) is an ordinal sum of semigroups (Sk, T/)}. Here each Sk

is a proper closed (nontrivial) subinterval of I, each T: admits a representation of the form (1.1) on

S/ x St, with g/ on St andf/ onto St, and T= Min on (Ix/) k(Sk xSk) [2].

REMARK. Any t-norm of the form given by case (i) of Theorem 1.1 is called Archimedean. If

in addition g(0) ,,*, thenf= g-1 and Tis called strict.

We shall use Theorem 1.1 to find the forms of quasi-homogeneous t-norms. We shall also need
the following known result.

THEOREM 1.2. (See e.g. Aczel and Dhombres [4: Chapter 15, Theorem 1]. The general
solution of

g(tx) a(O g(x) + tgt), (1.2)

among maps g, a, b: I--)/, is given by the following:
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g(x) l/x) + c, a(x) 1, b(x) t(x);

g(x) c, a arbitrary, b(x) c[ a(x)]; (1.4)

or

g(x) cm(x) + d, a(x) mfx), b(x) d[ re(x)];

for all x L where c and d arc arbitrary constants, I---+ is an arbitrary solution of the logarithmic
functional equation

/(xy) =/(x) +/lv), x, y I,

and m: I--+ is an arbitrary solution of the multiplicative functional equation

m(xy) re(x) re(y), x, y I.

,2. DETERMINATION OF QUASI-HOMOGENEOUS T-NORMS
We prove first that quasi-homogeneity implies that T must be continuous and that only certain

forms are possible for p.
LEMMA 2.1. If a t-norm T is quasi-homogeneous in the sense of (0.3), then T is continuous

and there exists a constant ct > 0 such that

,(t) . (2.,)

PROOF: Setting x y in (0.3), we find that

H[T(t, t)] p(t) If(1), (2.2)

since T(1, 1) 1. Since H(1) 0, this yields

9(t) H(1)- H[T(t, t)], (2.3)

and shows immediately that p is monotonic, with 9(1) 1. It shows also that tp is multiplicative, since by
(0.3) we have

q,(xy) n(1)- H[T(xy, xy)]

H(1)- 9(x) H[T(y, y)]

(x) x,yl.

Moreover, (2.3) shows that tp(t) < for < 1, for otherwise, since rI is strictly increasing we would have

T(t, t) > for some < 1, contradicting T< Min. Thus tp must be of the form (2.1) for some tx > 0.
Now (0.3) takes the form

T(tx, ty) H-I n[T(x, y)] }. (2.4)

For any given x, y I, if x < y we have
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HoT(x,y)=Ho y.-, y.l Ho ,I II
Y

while if x > y, then

In either case, putting tn Min (x, y) and M Max (x, y), we obtain

T(x, y)= I’[-I.

Since H is continuous, this shows that T is continuous and completes the proof of the lemma.

We observe in passing that the full force of the definition of t-norm was not used in Lemma 2.1. In
fact, Lemma 2.1 is valid also whenever T: I x I ---) I is quasi-homogeneous, satisfies T(1,x) =T(x,1)

x, and the diagonal map t--> T(t, t) is non-decreasing and satisfies T(t, t) < for all < 1.

Now we may assume that T is continuous and use Theorem 1.1 to obtain additional information

about the structure of T. The next step is to deal with the Archimedean case.

THEOREM 2.2. T: I x I - I is a quasi-homogeneous t-norm satisfying T(x, x) < x for all

x (0, 1) if and only if either

T(x, y) xy, (2.5)

for all x, y I, with 9 given by (2.1) and with H(t) II(1) a//2
for some ct > 0, or

T(x, y)= + -1 / x,ye

otherwise

(2.6)

ri(0) o.
PROOF" Suppose T is a quasi-homogeneous t-norm with T(x, x)< x on (0, l). By Lemma

2.1, T is continuous and (p has the form (2.1) for some u > 0. Thus by Theorem l.l(i), T has the form

(l.I) where g is a quasi-inverse off. Inserting the representation (I.I) into (2.4), we get

:[[g(tx) + g(ty)] n- ttt H f[g(x) + g(y)] }. (2.7)

First, we establish that g(0) (and hencef= g-1 and T is strict). Suppose, to the contrary, that g(0)

< *,,. Since g is continuous, we can choose positive so close to 0 that g(t) > -g(0). Recalling that

g(1) O, f(O) andf(u) 0 for u > g(0), we deduce from (2.7) by putting x y that

0 =3’[2g(t)] n-l{f(:t H(1)}

for all sufficiently close to 0. But this implies H(0) 0 H(1), contradicting the injectivity of H. Thus

g(0) andf= g-l.
Now we can write (2.7) as
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g(tx) + g(ty) g H-l{ ta FI g- [g(x) + g(y)] }, (2.8)

where g is a strictly decreasing homeomorphism of I onto +. Fixing temporarily, let u g(x), v

g(y) and define

gt (x) := g(tx), k (x) := g lI-l[ta I’l(x)],

for x I. Then (2.8) becomes

gt g’l(u) + gt g-l(v) k g-l(u + v),

Since gt and k are strictly monotonic by definition, the solution of this Pexider equation is

gt g-l(u) atu + bt, k g-l(u) atu + 2b

for some "constants" a and b (depending on t). Freeing I and recalling the definitions of gt and
kt, we have now

g(tx) a(t) g(x) + b(t), (2.9)

g l’I-l[tct II(x)] a(O g(x) + 2b(t), (2.10)

valid for all t, x I.
The general solution of equation (2.9) is given in Theorem 1.2. We eliminate solution (1.4) here

because g is strictly monotonic. We consider solutions (1.3) and (1.5) separately.
Case 1. Suppose the solution of (2.9) is of the form (1.3). Since g is strictly decreasing, so is

the logarithmic function/ That is, there exists a constant b < 0 for which

g(x) b log x + c, a(t) 1, and b(t) log t. (2.1 I)

Substituting these into (2.10), we find that

: I’I(x) II(xt2), t, x I.

With x 1, this yields H(q)= q H(1) for all q e 1. Furthermore, inserting (2.11) into (1.1), withf
g-l, we obtain (2.5) for T.

Case 2. Suppose the solution of (2.9) is of the form (1.5). Since g is strictly monotonic, the

same is true of the multiplicativc function m, so re(x) x[j. Moreover, since g(0) and g(1) 0,
we must have

g(x) c(x 1), a(O t, and b(t) (t 1) (2.12)

for some constants I < 0 and c > 0. Inserting these into (2.10) and simplifying, we arrive at
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rl(q) rI(1) [1/2(q + 1)

Finally, (2.12)combined with (1.1) (andf= g-l) yields

which simplifies to (2.6).
The converse is easily verified, and that completes the proof ofTheorem 2.2.
Now we are ready to establish the main result.

THEOREM 2.3. T: I x 1 -- I is a quasi-homogeneous t-norm if and only if T is given by

(2.5), by (2.6) for some I < 0, or by T(x,y) Min (x,y). In the last case, {p is given by (2.1) for some

> 0, and H has the form H(x) H(1) xt.
REMARK. If we def’me TI to be the t-norm given by (2.6), then

lim Tf(x,y)= xy, and fm Tl(x,y)= Min (x,y).
-o

Defining TO to be the product on I I and T.** to be Min, we can restate the conclusion of Theorem 2.3

as follows. The only quasi-homogeneous t-norms are the members of the family TI for < I < 0.

PROOF OF THEOREM 2.3: Let T be a quasi-homogeneous t-norm. Then by Lemma 2.1,

T is continuous and 0 has the form (2.1) for some 0t > 0. Now we apply Theorem 1.1.

If case (i) of Theorem 1.1 holds, then we find that (2.5) or (2.6) holds by Theorem 2.2.

In case (ii) of Theorem 1.1, we have T= Min, and equations (0.3) and (2.1) yield

Min (tx, ty) rI-l{/t 1I Min (x,y)}.

With x y 1, we obtain

H(t) a H(1), I.

Finally, we consider case (iii) of Theorem 1.1. Choose any x0 (0, 1) such that T(x0, x0)
x0, and let Sk be any subinterval of Ix0, such that Tk admits representation (1.1) in the square
Sk x Sk. Then

T(x,y) Min(x,y), (x,y) . D D2,

where D and D2 are the rectangles

Ol={(x,y) lO<y<xO<x<l}, 02={(x,y) lO<x<xo<Y<_l}

in I I. We prove that in fact this case cannot occur.
Let us confine our attention to the lower triangle (x,y) 0 < y < x < }. Choose (x,y) in

x
0Sk Sk so that x0 < y <_ x <_ 1. Then we choose --, so that (tx, ty) belongs to D 1. Now (0.3)
Y

and (2.1) yield

H[T(x,y)] H(xO)
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which implies that T(x, y) is independent ofx for x > y > x0. Specifically,

T(x, y)= n-I 17(%) (2.13)

when x >_ y > x0, which is inconsistent with representation (1.1) for the restriction T/ of T to SkSk.
Indeed, as in the proof of Theorem 2.2, Tk must be strict:

Tk(X,Y) gk-l[ gk(x) + gk(Y)], x, yeSk.

This representation, with strictly monotonic gk, shows that Tk(x, y) is injective in x for each y . Sk.
But the right hand side of (2.13) is independent of x. This contradiction shows that there can be no Sk in
the interval [x0, ].

A similar argument shows that there can be no Sk in the interval [0, x0]. Thus there can be no

proper ordinal sum. That is, case (iii) of Theorem 1.1 is incompatible with quasi-homogeneity. (In other

words, if a quasi-homogeneous T satisfies T(xo,xO) x0 for some x e (0, 1), then it satisfies T(x,x)

r for all x e (0, 1).)
The converse is easily verified, and this completes the proof of the theorem.
From Theorem 2.3, the structure theorem for homogeneous t-norms is easily extracted.

COROLLARY 2.4. T: I x I --) I is a homogeneous t-norm if and only if either T(x,y)

xy, with to(t) 2, or T(x,y) Min (x,y), with t0(t) t.

PROOF: Suppose T is a homogeneous t-norm. We apply Theorem 2.3 in the special case in

which rI in (0.3) is the identity map. When T is of the form (2.5), we have (of. Theorem 2.2) H(x)

rI(l)x’. This will give rI(x) x only if t 2; in (2.1) this yields to(t) 2. When T is given by

(2.6) for some 1$ <0, we note that H(x)=l-I(1)[21-(xl +1)]/. Such H can never be the identity map, so

this case cannot arise. Finally, when T(x,y) Min (x,y), the accompanying FI is (cf. Theorem 2.3)
H(x) H(I) xa. This H is the identity only if t 1, in which case (2.1) becomes to(t) t.

The simple converse completes the proof.
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