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ABSTRACT. It is known that two commuting continuous functions on an interval need not have

a common fixed point. It is not known if such two functions have a common periodic point. In

this paper we first give some results in this direction. We then define a new contractive condition,

under which two continuous functions must have a unique common fixed point.
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1. INTRODUCTION.
For some time there was a rather well known conjecture that if f and g are continuous

commuting selfmaps of [0,1] (i.e.f(g(x)) g(f(x))), then they have a common fixed point. W.M.

Boyce [1] and J.P. Huneke [2] answered this conjecture in the negative by constructing a pair of

commuting continuous functions which have no common fixed point. It is easy to see that their

pair of commuting continuous functions have a common periodic point. In fact for the Boyce’s

example zero is a common periodic point. Thus one may conjecture the following:

CONJECTURE 1.1. I/f and g are commuting continuous self,naps of [0, 1], then they

must have a common periodic point.

Even though we believe that the answer to the above conjecture is also negative, at present

we are not able to construct a counterexample.

A.J. Schwartz [3] proved that if f and g are continuous functions of [0, 1] into itself that
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commute, then there always exists a point x such that x f(z) g’(x) for some positive integer

n, under the additional assumption that f has a continuous derivative. In this paper we first give

some results in this direction. Then we define a property P1 and show that under this condition,

two commuting continuous functions must have a unique common fixed point.

We begin with some preliminaries. The orbit of z under g i.e. the set {gk(x) k _> 0}) and

its closure are denoted by O(g,z) and O(g,z), respectively. The set of cluster points of O(g,z) is

denoted by w(g,z). A subset Y of I is called invariant under g if g(Y) _C Y. A closed, invariant,

nonempty subset of I is called minimal if it contains no proper subset that is also closed, invariant

and nonempty. A point z is called a recurrent point of g if z belongs to w(g, z). Throughout

denotes the n fold composition of f with itself. The sets P(f), R(f) and F(f) are the sets of

periodic points of f, recurrent points of f, and the fixed points of f, respectively. We state some

known facts concerning minimal sets. Every closed, invariant, nonempty subset of I contains a

minimal set. If Y is a minimal set, then Y C_ R(f). If Y is a minimal set, which is not the orbit

of a periodic point, then Y is perfect. A minimal set is nowhere dense.

2. THE MAIN RESULTS.
THEOREM 2.1. Let f and g be two commuting continuous selfmaps of the unit interval.

If f and g have no common periodic points, then for any two positive integers rn and n the set

A,, {" f"()= ()} ==o=ta.

PROOF. First we show that A,,,n is not empty. If for some rn and n, A,,n is empty, the

continuity of f and g permits us to assume without loss of generality, that

ff’(z) < g’(x) (2.1)

for all x E I. Since gin(l) < 1, the set S {x E I’g"(x) < x} is not empty. Thus, since S is

closed, it has a minimum element c. Clearly, c g’(c). Hence f’(c) f"(g"(c)) g"(f’(c)),

so that f"(c) q. S. Consequently f’(c) > c g’(c). Since f"(c) >_ g,"(c) contradicts (2.1),
the assertion that A,,,,, is empty is false. Now suppose that z A.... Then f’(z) g"(z)

hence, f"(f(x)) f(g’(x)) g(f(x)) and f"(g(x)) g(f(x)) g(g’(x)) g"(g(x)). Thus

if x A.... {f(x),g(x)} C_ A,,n and fP"(z) gW(x) for each positive integer p. From this it

follows that O(g,x) is contained in A,,, whenever x G A,,. The set O(g,x) is an invariant

set under g. Suppose A1 is a minimal set contained in O(g,x). Since f and g have no common

periodic points, the set A1 cannot be the orbit of a periodic point. Hence A is a perfect set

contained in A,,,, implying that A,,,, is uncountable.

COROLLARY 2.1. Let f and g be two commuting continuous selfmaps of the unit interval.

Iffor some positive integers m and n, the set {x fn(x) 9’(x)} is countable, then f and g have

a common periodic point.
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Fixed points of contractive type mappings have been studied by a number of authors. B.E.

Rhoades [4] has investigated a comparison of different kinds of contractive definitions in the liter-

ature. The following theorem is in this direction.

DEFINITION 2.1. Let X be a compact metric space. The function h" X X [0,
is said to have property P if it satisfies the following conditions:

(i)" h(x, y) 0 if and only if x y,

(ii)" if limn_ xn z0, lirn_ y Yo, and lirn_ h(x,,, y) O,

then xo yo.

THEOREM 2.2. Let f and 9 be selfmaps of the unit interval and let h I I

be a function having property P1. Suppose g is continuous on I and A is a nonempty closed

g-invariant subset of F(f). If there ezists a real number a, 0 < a < such that for all x and y

in F(f), f and g satisfy the following inequality:

h(fz, f) < a.max{h(gz,gy),h(gz, fz),h(gy, fy),

h(gy, fx), h(fx, gy) }, (2.2)

then f and g have a unique common fixed point.

PROOF. First we show that any two functions f and g satisfying inequality (2.2), have at

most one common fixed point. To see this, on the contrary, suppose ql and qz are two different

common fixed points of f and g. Then using (2.2) we get

h(ql, q) h(fql, fq)
_< a- max{h(gq gq), h(gqa fq ), h(gq, fqz ), h(gq, fq ), h(fq gq

implying

h(q,q.) <_ a. max{h(q,q),h(q,q),h(q,q),h(q,q)},

a. max{h(q,,q2), h(q,ql)}.

In a similar manner we may show

h(q2, ql) < a.max{h(q,q_), h(q,q)},

hence we shall have

max{h(q,q2), h(q:,q)} < a.max{h(qi,q2), h(q2, q)}.

This is impossible unless max{h(q, q.), h(q2, ql)} O, which implies that h(q, q=) O, and hence

q q2, a contradiction. Now we show that f and g have a common fixed point. Without loss

of generality we may assume that A F(f). It is clear that the set B fq,l g"(A) is a closed
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nonempty subset of A, and that g2(B) B. If for some yo 6_. B, f(yo) g(yo), then yo is a

common fixed point of f and g, so we may assume that f(y) g(y) for all y E B. Let y be an

arbitrary point of B, and x2 E B be such that g(x) yl Since g(y) # f(y) for all y B,

if we let x yl and y2 g(x), then g(y2) yl f(y). Since h(gy, fy2) h(fyl, fy), from

inequality (2.2) we have

h(fyl,fy) <_ a. max{.h(gyl,gy2),h(gyl,fyl),h(gy,fy),

h(gy_, fyl ), h(fy,, gy) }

a. max{h(gy,gy), h(gy, fy,), h(gy, fy), 0))

a. m{h(gy, fl), h(gy2, fy2) ),

implying h(gy:, fy:) a. h(gy, fyl). If we define " B [0,) by (x) h(gx, fx), then we

have (y) a-(yx). Suppose x3 B be such that g2(x3) y. By taking x y2 and yz g(x3),

similarly we can show that (yz) a. (y2) a2" (y). By repeating this process we obtn a

bounded sequence {y} in B. Suppose {y,}= is a convergent subsequence of {y,}. d

lim_y y0 Since g is continuous on I,

lira h(gy,y) lira h(gy,fy)
k

lira (y,)

< lira a"- (y) 0.

So g(yo) yo, and y0 B F(f), hence y0 is a common fixed point of f and g.

REMARK 2.1. There is nothing in the prf of Threm 2.2 that requires the underlying

space to be the unit intervM. However in our proof the compactness of the unit intervM is used.

Therefore one can let the underlying space to be a compact metric space. Also condition P is not

a necessary condition and it may be replaced with weber conditions when f and g e nice. For

example if h, f are nice enough that the function defined in Theorem 2.2 attains its minimum

at some point y B, then we can find a point y B such that (y:) < (y) a contradiction,

so f d g must have a common fixed point. If we are not concerned about the uniqueness of the

common fixed point, similar to the proof of Threm 2.2 we have the following.

THEOREM 2.3. Suppose f and g am two selfmaps of a compact metric space X and let

h X x X [0,) be a function having property P. Suppose also that g is continuous on X and

A is a nonempty closed g-invariant subset of F(f). If there exists a real number a, 0 a <

such that for all x and y in A, f and g satisfy the following inequality:

h(fx, fy) a. max{h(gx, gy),h(gx, fx),h(gy, fy),

h(, f), h(f, )}, (2.3)
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then f and g have a common fized point.

The conclusion of Theorem 2.3 is not valid if inequality (2.3) is replaced with

h(yx, fy) < max{h(gz, gy),h(gx, fx),h(gy, fy),

h(gy, fx),h(fx, gy)}.

The following example illustrates this.

EXAMPLE 2.1. Let f and 9 be defined on the unit interval as follows"

(8x + 15)/24 0 < x < 3/4,

(-32x + 31)/8 3/4 < z <_ 13/16,

2x- 13/16 < x _< 7/8,

3/4 7/8 < x <_ 1,

f(x)

(8x + 39)/48 0 <_ x < 3/4,

3/4 x 3/4,

(-32z + 39)/16 3/4 < x < 13/16,

x 13/16 < x < 7/8,

7/8 7/8 < z < 1.

Define h(x, y)" I x I -, [0, oo) as h(z,y)=
0 if z y,

z+y ifx#y.

(l+g(x))/2 if x#3/4,
One can easily check that h has property P1, f(x)

3/4 if x 3/4,
and F(f) {3/4} [J[13/16, 7/8]. Let A {3/4, 7/8}, then A is a closed g-invariant subset of

F(f) and for every x - y in A we have

h(fx, fy) max{h(gx, gy),h(gx, fz),h(gy, fy),

h(gy, fx),h(fx, gy)} < 13/.

It is easy to see that f and g do not have a common fixed point.

THEOREM 2.4. Suppose f and g are two selfmaps of a compact metric space X with g

continuous, and let h X X [0, oo) is a function having property P1. Iffor all x # y in X,

f and g satisfy the following inequality:

h(fx, fy) < max{h(gx, gy), h(gx, fx), h(gy, fy),

h(gy, fx),h(fz, gy)), (2.4)

then one of the following holds:

(i) either f and g have a common fized point,
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(iO or every nonempty closed 9-invariant subset of F(f) contains a perfect minimal set B

such that the functions 1(z) h(gz, z) and O(z) h(z,gz), do not attain their minimum or

mazimum on B.

PROOF. From inequality (2.4) it follows that for each z E F(f) with z 9(z), we have

h(gz, z) < h(9z, gz). This implies that F(f) cannot contain any periodic point of 9 with period

greater than 1. Let A be a nonempty closed 9-invariant subset of F(f), then it should contain a

minimal set B. If this minimal set is finite, f and 9 have a common fixed point. Otherwise, B is

a perfect set with g(B) B. Since for ech x . B, h(gx, x) < h(gx, gx), the functions and

cannot attain their maximum or minimum on B.

:LEMMA 2.1. Suppose h-J0,1] [0,1] [0, or) is a lower semicontinuous function such

that h(x, y) 0 if and only if z y. Then h satisfies property

PROOF. Suppose lim,,...oo xn z0, lim,, y, y0, and lim,...oo h(x,,,y,,) 0. We need

to show that x0 yo. On the contrary suppose zo y0. Let dist { (z0, yo), { (z, z). z [0, ]}
and B1 B(z0, )= B[z0, ], where z0 (x0,y0). Let e be an arbitrary positive number. Then

there exists a positive integer A/" such that for all n > A/’,(z,,, y,,) fi Bx, and h(x,, y,,) l< e. Since

h is lower semicontinuous and B1 is compact, it attains its minimum at some point (s,t) in B1.
Hence h(s,t) [=[minimum of h(x,y) on Bx I<l h(xf,y.q) 1< e, implying h(,t) 0. Thus s t,

a contradiction.

THEOREM 2.5. Let f and g be commuting selfmaps of[O, 1] with g continuous. If A is a

nonempty closed g-invariant subset of F(f), then one of the following holds:

(i) either P(f) P(g) ,
(ii} or there is a perfect set Aa C_ (AflR(g)flP(f)).

PROOF. Take Xo A. For every positive integer n, g"(xo) A. Thus O(g, xo) C A im-

plying w(g, xo) C_ A. Clearly w(g, zo) is nonempty and is invariant under g. Thus it contains

a minimal g-invariant subset A. Obviously A C_ (Af’lR(g)). If A1 is a finite set, then it is the

orbit of a periodic point of g, implying 1 (P(g)fqA) C_ p(.f)fp(g). Otherwise A is a perfect

set contained in A f’l R(g).

REMARK 2.2. As in the proof of Theorem 2.5, if f and g have no common periodic point

then there exits a perfect set A1 contained in A Iq R(g) f’l P(f). Since f and g do not have common

periodic points and, for a continuous function on a compact interval P(f) P(g) see Coven and

Hedlund [5] ), we have A C_ A f’lR(g) Af’IP(g)= A[P(g) \ P(g)]. From this it follows that

if P(g) \ P(g) does not contain a perfect set, then f and g must have a common periodic point.

In particular, for two commuting continuous functions if either of P(g) \ P(g) or P(y) \ P(f) do

not contain a perfect set, then f and g must have a common periodic point.

Consider the following ordering of positive integers:
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1,2,4,8,. ,7- 8, 5- 8, 3- 8,...,7- 4,5- 4,3-4,...,7- 2,5- 2,3- 2,...,7,5,3.

A.N. Sarkowskii has proven that if rn is to the left of n in the above ordering and f has a

periodic point of period n, then f must have a periodic point of period m (see Stefan [6]).
Let P,(f) {x E [0,1] f"(x) x}. The Sarkovskii’s theorem immediately implies that if

Pl(f) P2(f), then Pl(f) P,,(f) for every n > 1. Suppose f and g are two commuting

continuous selfmaps of the unit interval which do not have a common periodic point. We claim

that f and g should have periodic points of all even orders. To see this, on the contrary suppose

that n 2k- r(r odd,k _> 1) and f has no periodic point of order n. By Sarkowskii’s theorem

P2.r(f) Pr(f) implying Pl(f) P2(f), hence Pn(ff Pl(ff for any n > 1. Thus we have

P(f) (J’=l P,,(ff) P,(f) which implies P(f) \ P(ff) }. Since g commutes with f, it also

commutes with ft. Thus g and ff should have a common periodic point which is also a common

periodic point of f and g. We may interchange the roles of f and g. This implies that either f and

g have a common periodic point or both have a rich orbit structure. By a rich orbit structure we

mean that they have a homoclinic point and positive topological entropy see Block [7] ). Thus

we have the following:

THEOREM 2.6. Suppose f and g are two commuting continuous selfmaps of the unit

interval. Then one of the following holds:

(i) either P(f)f’l P(g) ,
(ii) or both f and g have periodic points of all even orders.
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