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ABSTRACT. The Lucas sequence is defined by: L0 2, L, 1, L, L,-1 + L,-2 for n >_ 2. Let

V(n), r(n) denote respectively the number of partitions of n into parts, distinct parts from (L,). We

develop formulas that facilitate the computation ofV(n) and r(n).
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1. INTRODUCTION
Let S denote a non-empty subset of N, the set of all natural numbers. Let V(n), r(n), rE(n),

r0(n) denote respectively the number of partitions of n into parts, distinct parts, evenly many distinct

parts, oddly many distinct parts from S. Define V(0) r(0) rE(0) 1, r0(0) 0. Let V(n) have

the generating function:

F(z) E V(n)z". (1.1)
n=0

Let

It follows from (1.1) and (1.2) that

Furthermore,

1/F(z) E a(n)z". (1.2)

’a(n- k)V(k) 0 for n >_ 1. (1.3)
k=O

a(n) rE(n) tO(n). (1.4)

REMARK. Apostol [1], p.311 and Hardy [3], p.255 prove that (1.4) holds when S N, but the

same reasoning applies to the more general case. Since also

(,) (,) + o(,) (.5)

it follows that

a(n) 2rE(n) r(n) r(n) 2r0(n). (1.6)

In this note, we consider the case where S is the set of all Lucas numbers, L,,, where n >_ 0. (The
Lucas numbers are defined by: L0 2, L1 1, L, L,_I + L,-2 if n _> 2.) We will show how to

compute the r(n) and the a(n)" via explicit formulas if n Lk or n 1 + L2k+l for some k,

recursively otherwise. The V(n) can then be computed recursively via (1.3).
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2. PRELIMINARIES
Notation and Definitions

Fk kth Fibonacci number (F0 0, F1 1, Fk F-I + F-2 if k > 2)
Lk kth Lucas number (L0 2, L1 1, L L_t + Lk-2 if k > 2)
E(n)

k=l

[z] denotes the integer part ofthe real number

[a, b] denotes the set of all integers, t, such that a < t < b.

In particular, if k > 3, then

Ik [Lk+l,Lk+2 I]
I, [L+,,2Lt I]
Ik,2 [2Lk, 5Fk- 1]
h,3 [SF,

Lucas Identities

(1) L. L.-1 + L.-2 for n >_ 2, with Lo 2, L1 1

(2) L < Lk iffj < k, unless j k- 1 0

(3) {L.} is strictly increasing if n _> 1

(5) L2. L. 2(-
(6) L. > 1.6" ifn _> 4

k+l
(7) L, Lk+3 1

[1/2
(8) La-2, Lz+, + t, where t

i--o

(9) L,+I + Ln-1 5F,

(10) L,+2 5Fk 2L L+ Lk-2
REMARKS. (1) is the definition of the Lucas sequence (2) and (3) follow from (1). (4) follows

from (1), using induction and the fact that a,/9 are the roots ofu2 u 1 0. (5) and (6) follow from

(4). (7) through (9) may be proved using induction on n. (10) follows from (1) and (9).

3. THE MAIN THEOREMS
Let n be a natural number. We first address the issue ofthe representability ofn as a sum of distinct

Lucas numbers. Such a representation will be called a Lucas representation’of n. If in addition, the

summands are non-consecutive Lucas numbers, we say that the Lucas representation ofn is special. We

will show that every natural number has a special Lucas representation. If the special Lucas

representation of n is unique, which is usually the ease, we call it the minimal Lucas repreentati0n of n.

Otherwise, n has two special Lucas representations. In this case, we define the minimal Lucas

representation ofn as the special Lueas representation that does not include L0 2 as a summand.

For example, 13 has the unique special (and hence minimal) Lucas representation

13 11 + 2 L5 + L0; 12 has two special Lucas representations: 12 11 + 1 L5 + L, and

12 7 + 3 + 2 L4 + L2 q- L0. The former is the minimal Lucas representation of 12.

THEOREM 1. Every natural number, n, has a special Lucas representation:

n Lk +L + etc. + Lg (3.1)

where k k,+t > 2 for all such that I < < r 1, if r > 2.

PROOF. (Induction on n) It suffices to consider the ease where n :/: L. Therefore there exists

unique kl > 3 such that L < n < LI+I. Let nl n- Lk:. Now (1) implies 0 < nl < L_I. By

induction hypothesis, we have nx Lk +L + etc. + L,, with r > 2 and k, k,+ > 2 for all such
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that 2 < < r, if r _> 3. Thus L < n], hence Ln < L1_1. Since kl > 3, (2) implies k2 < kl 1,
that is, k] k2 _> 2. Since n LI + rq, the conclusion now follows.

LEMMA 1. Let n Lj +L + etc. + L,, with s > 2 and ji j,+] _> 2 for all such that
1 < < s 1. Let j j]. Then n < Lj+] + 1)J. Furthermore, n L+I + 1)J iff
s 1 + [1/2 j], j 0, and j, j 2(i 1) for all such that 1 < < s 1.

PROOF. Using (2) and our hypothesis, we have La, < r+L-2(,_]) where
1 ifji=0 andj=2i- 1

r
0 otherwise

Thus we have:

, L, _< + L_(,_) + L_2, _< + L,_. (3.)
=1 =1 i=0 i=0

Now (8) implies n < Lj+I + (- 1). Ifs 1 + [ j], js 0, and jz j- 2(i 1) for all such that
1 < < s- 1, then the weak inequalities in (3.2) may be replaced with equalities, which yields
n La+] + (- 1). Conversely, if n Lj+I + (- 1)j, then the weak inequalities in (3.2) become
equalities. This implies s 1 + [ j], La, L-2(,-]) (and hence ji j- 2(i 1)) for all such that
1 <i<s-l, andj=O.

LEMMA 2. L L + liff(i,j) (0,1), (2,0), or (3,2).
PROOF. Suppose L, L + 1. If j 0, then L, 3, so 2. If j 1 and < j, then 0.

Now suppose > j > 1. Then (3) and (1) imply 1 Li L >_ Li La-1 L-2. Therefore
L,-2 1, so 3 and j 2. The converse follows by direct substitution.

LEMMA 3. If
n L (3.3)

then this special Lueas representation ofn is unique.
PROOF. Let k be the least index such that the special representation (3.3) is not unique. By

inspection, k > 4. Thus n has a second special Lueas representation:

n L +L + etc. + Lj (3 4)

with ji ji+l > 2 for all such that 1 < < s 1. In fact, (2) implies > 2. Let j jl. Now (3.4)
implies L < n, so L < L. If 2[j, then Lemma implies L <_ Lj+] 1, so L < La+] But then

L < L < L+I, an impossibility. If21j, then Lemma implies Lk < Lj+] + 1. Since k > 4, Lemma 2
implies Lk La+] + 1. Therefore L < La+l + 1, so that L < L+]. Since L < L < L+, we

must have Lk La+], hence k j + 1. Now (3.4) yields Lk L.] + Ln + etc. + L,, hence

L_2 L + etc. + L,. By definition of k, we must have s 2, J2 k 2. But then j] ./2 1, an

impossibility.
THEOREM 2. Let n have two distinct special Lueas representations:

n L +L + etc. + L, with k,+] > 2 for all
such that 1 < < r- 1; (3.5)

n L + Ln + etc. + L, with ji- j+l _> 2 for all
such that 1 < < s- 1. (3.6)

Assume also that j=jl<kl. Then k]=2s-l, kn=k=l, and ji=2(s-i) for all with

l<i<s.

PROOF. Let k] k. Note that Lemma 3 imphes Min{r, s} > 2. Thus n > 5 and j > 2. Let

j k- m, where m > 1. Lemma implies n < Lz+] + (- 1) L_,,+] + (- 1)-. By
hypothesis, L < n, so that L < L_,,,+] + 1)-. Ifm > 2, then La-,+l < L_ by (2), since if

k 2, then j 1 s. Thus L, < L_] + 1)a-’, which implies L-2 < 1, an impossibility, since

L, > 1 for all n. Therefore m 1, so 0 < (- 1)-] implies k is odd. Since L < n < L + 1, we
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must have n L + 1 L + L1, so k,z k 1. Now (3.6) and Lemma imply j, 2(s i) for all
such that I _< < s.

THEOREM 3. Let n have the special Lucas representation:

n L +L + etc. + Lk,. (3.7)

This special Lucas representation is unique unless kr 1 and kr-1 2h + 1 for some h > 1, in which
case n has a second special Lucas represemation:

n L + Lk2 + etc. + Lk_2 + L2h + L2h-2 + etc. + L2 + L0. (3.8)

PROOF. If r 1, then the special Lucas representation (3.7) is unique by Lemma 3 If r _> 2,
suppose that n has a second special Lucas representation:

n L, + La + etc. + L,. (3.9)

Again, by Lcmma 3, s > 2. If jl < kl, then the conclusion follows from Theorem 2, with r 2 and
h s. Now suppos that j, k/for all such that 1 _< _< u 1 (for some u > 2), but j,, < k,. Let

u--1

m n- E L_ L +L+ + etc. + L;

also

u-1

m n E L, L3, + Lj,+ + etc. + L3,.
=1

Now Theorem 2 implies j,+, 2(s-u-i) for all such that 0<_ <_ s-u, u =r-1,

k, k-i 2(s u) 1 2(s r) + 1, k, 1. The conclusion now follows from Theorem 2, with

Combining the results ofTheorems 1, 2, and 3, we have:

THEOREM 4. Every natural number, n, has a unique minimal Lucas representation:

n LI +L + + Lk,_, + Lg (3 10)

where (i) k,-ki+l >_2 for all such that l_<i_<r-1, if r_>2; (ii) fir_>2 and k=0, then

k_ >_ 3.

LEMMA 4. Let n have the minimal Lucas representation given by (3.10) in Theorem 4 above.

Then Lk < n < L+1, fir _> 2.

PROOF. (Induction on r) Clearly, Lkt < n, so it suffices to show that n < L+. Let r 2, so

n L + Lk. If k2 _> 1, then by hypothesis, k2 _< kl 2, so (2) implies Lk _< L-2 < L_.
Thus n <_ L +La-2 <L +L-I =LI+I. If k=0, then by (1) and (2), we have

n=L+Lk=Lt+L0=L+2<L+3=L+L2_<La+L_I=L+, so n<Lt+.
If r >_ 3, let nl n L L + etc. + L,. Clearly, this is a minimal Lucas representation ofn, so

by induction hypothesis, we have nl < L+I, hence n < LI + Lk+l. Since 1 _< k + 1 <_ kl 1 by

hypothesis, (2) implies Lh+l _< L_. Therefore n < L +L_
The three following theorems permit the computation ofr(L) and a(L).
THEOREM 5. r(Z) [(n + 2)] ifn _> 0.

PROOF. (Induction on ) The statement is tree by inspection ifn 0 or 1. Ifn _> 2, and if L, is

partitioned into several distinct parts, then (7) implies that the largest part must be L,_. Therefore, by

(1), we have r(L.) 1 + r(L,_2) 1 + [ n] (by induction hypothesis) [(n + 2)]. (The "1" in

the last equation arises from the wivial partition: L, L,.)
THEOREM 6. rE(L,) [1/4(n + 2)] ifn _> 0.
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PROOF. (Induction on n) The statement is true by inspection if n 0 or 1. If n _> 2, then
reasoning as in the proof of Theorem 5, we have rE(L,)= ro(L,-2)= r(L,-2)- rF(L,- 2)=
[ n] [1/4 n] [(n + 2)] by Theorem 5 and induction hypothesis.

THEOREM 7. a(L,) I 0 if n 2, 3 (mod 4)
-1 if n 0,1(mod 4)"

PROOF. This follows from (1.6) and from Theorems 5 and 6.

Having settled the case where n is a Lucas number, we now consider the case where n is a sum of
two or more distinct, non-consecutive Lucas numbers. Then, by Theorem 4, n has a unique minimal
Lucas representation:

n L (3.
k-1

where r >_ 2, k ki+l >_ 2 for all such that _< _< r 1, and ifk 0, then k_ _> 3.
Alternatively, we could write:

n E cjLj (3.12)

where (i) c, 1; (ii) % 0 or 1 for all j such that 0 _< j <_ 8 1; (iii) %-lcj 0 for all j such that
1 _< j _< 8; (iv) if co 1, then c2 0.

If we omit the conditions (iii) and (iv), then (3.12) corresponds to a Lucas representation of n. The

% will be called the digits ofthe representation.
Referring again to (3.11), let n =n-L >0, n2 =n-L >0. Given any Lucas

representation of n, define the initial segment as the first k -/c2 digits; define the terminal se_arnent as
the remaining digits. In the minimal Lucas representation of n, the initial segment consists of a 1

followed by kl M 1 O’s, and corresponds to the minimal Lucas representation ofL
__

, while the
terminal segment corresponds to the minimal Lucas representation ofnl. Lucas representations ofn may
be obtained as follows:

T_vpe I. Arbitrary combinations of Lucas representations of the integers corresponding to the initial
and terminal segments in the minimal Lucas representation of n, namely Lt__ and n. Clearly, the
number ofType Lucas representations ofn is r(Lt_M_x)r(nl)= [(k- k2 + 1)]r(n).

Typ_e II. Suppose that in a non-minimal Lucas representation of n, the initial segment ends in 10,
while the terminal segment starts with 0. If this block of digits, consisting of 100, is replaced by 011,
then a new Lucas representation of n is obtained. A necessary condition for the existence of Type II
Lucas representations is that 21(kl ).

Type III. In the minimal Lucas representation of n, if k 1 and k_ 2h + 1 for some
/z > 1, then by Theorem 3, a new Lucas representation of rt is obtained by replacing L2a+l + L by

L2 + L2-2 + etc. + L2 + L0.
The three following theorems enable us to compute r(1 + L2I,+I) and a(1 +
THEOREM 8. If k > 1, then r(/-,2/+1 + 1) k + 1.

PROOF. Let n =/nt+ + 1 L2+1 + L1. Here nl LI, so the number of Type Lucas
representations of n is r(L2_)r(L1) [g-] [] k. Since/-,1 has no Lucas representation but the

minimal one, there are no Type II Lucas representations of n. By hypothesis and Theorem 3, there is a

unique Type III Lucas representation ofn. Therefore r(L2+ + 1) k + 1.

THEOREM 9. Ifk > 1, then rf(L4+ + 1) k; rE(L4i- + 1) k + 1.

PROOF. Let n L2j+I + 1 L2j+ + L1. As in the proof ofTheorem 8, n has no Type II Lucas
representations. A Type I Lucas representation has an even number of terms iff its initial segment

has an odd number of terms. Therefore the number of such Type Lucas representations of n is

ro(Lj-) r(La_) r(L2a-1) [{(2j + 1)] [(2j + 1)] j [1/4(2j + 1)] by (1.5) and

Theorems 5 and 6. Whether j 2k or 2k 1, the number of Type Lucas representations of n with

evenly many terms is k, since 2k I1/4(4k + 1)] k (2k 1) [(4k 1)]. The unique Type III
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Lucas representation of n has j + 1 terms, and thus contributes to rEL2+ + 11 iff j is odd. The

conclusion now follows.
THEOREM 10. If k > 1, then a(L4k+l + 1) 1; a(L4k_ + 1) 2.

PROOF. This follows from (1.6) and from Theorems 8 and 9.

In Theorems 11, 12, and 13 below, we develop formulas for r(n), rE(n), and a(rt) in the case

where n :fi Lk, n L2k+l + 1. In order to do so, we must be able to count the number of Type II
Lucas representations of n. We therefore need to determine the number of Lucas representations of n

that do not include the largest possible Lucas number as a part. This question is addressed by Lemma 5.

LEMMA 5. Let n have the minimal Lucas representation:

n L +L + etc. + L,.

Let n n- LI > 0. Let T(n) denote the number of Lucas representations of n that do not include

LI as a part; let rE(n), to(n) denote respectively the number of such representations consisting of

evenly, oddly many parts. Then

(,) ,(,) ,(,);

Tg(n) rE(n) r0(nl);

T0(n) to(n) to(n) rE(nl ).

(3.3)

(3.14)

(3.5)

PROOF. It follows from the definitions of T(n), TE(n), T0(n) that r(n)- T(n) is the number of

Lucas representations of n that do include Lk as a part; rE(n) TE(n), to(n) To(n) are respectively
the number ofsuch representations consisting of evenly, oddly many parts. Ifn L let

n LI +L + etc. + Lj, (with s > 2) (3.16)

be a Lucas representation of n that includes L, as a part. fit follows from Lemma 4 that L is the

largest part.) Corresponding to (3.16), there is a Lueas representation ofn"

n Lh + etc. + La,. (3.17)

This correspondence is clearly a bijection, so that r(n)-T(n)=r(n). Furthermore, the

number of parts in (3.16) and (3.17) differ in parity. Therefore rE(n)--TE(n)=r0(nl) and

to(n) -T0(n) rE(nl). The conclusions (3.13), (3.14), (3.15) now follow ifn Lk. Ifn L, so

that nl 0, then dearly no other Lueas representation of n includes L as a part. Therefore

T(n)=r(n)-l=r(n)-r(0)=r(n)-r(nl). Furthermore, (n)=rE(n)=rE(n)--O=rE(n)--ro(nl);
To(n) to(n) 1 to(n) r(n).
TaORM 11. n have the minima Lucas representation:

n L + Ltn + etc. + L, (3.18)

where (i) r > 2; (ii) if kr 1, then 21k-. Let nl n L1, n2 n Ln > 0. Then

r(n)={ik-k2+l)r(n,) if 21(kl k2)
+ 1/2(/q k2))r(n)- r(n2) if 2l(/q )"

PROOF. By hypothesis, there are no Type IH Lucas representations of n. As mentioned earlier,

the number of Type Lucas representations of n is [1/2(k- k2 + 1)]r(n). If2[(kl- k2), then there

are no Type II Lueas representations of n, so that r(n)=
If 21(kl- k), then the number of Type II Lucas representations of n is the number of Lucas

representations of n that do not include Lk_ as a part, namely T(n). By Lemma 5, we have

T(nl) r(n)--r(n2). Therefore
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COROLLARY I. If

_
2, then r(L, 3) [

PROOF. (Induction on n) By inspection, the conclusion is true if 2 _< n _< 5. If n >_ 6, then

Ln 3 Ln-1 + (Ln-2 3) L,-1 + L,-3 + (L-4 3). Now Theorem 11 implies r(Ln 3)
2r(L,_2 3) r(L_4 3). By induction hypothesis, we have r(L,_2-3) [(n-2)] [ n]-1,
and r(L,_4- 3)= I(n-4)] [1/2 n]-2. Therefore r(L-3)= 2([1/2 n]- 1) ([1/2 n]-2) [ hi.

COROLLARY :2. Ifn _> 1, then r(L2, 1) n.

PROOF. If m _> 1, then via (5), we have r(L22, 1) r(L4m + 1) r(L,n + L1).
Now Theorem 11 implies r(L,- 1) (2m)r(L1) (2m)l 2m. again, via (5), we have

r(L,,_ 1) r(L4,-2 3). Now Corollary implies r(L22,_) [(4m- 2)] 2m- 1.

REMARK. Corollaries and 2 imply (independently) that the function r(n) is a surjeetion from N
to N.

THEOREM 12. Let n : L, n - L2+1 + 1. Then

(kl k2 + 1)r(nl) if k 1’2 3(mod4)

(kl k2 + 3)r(nl) rE(n1) if kl k2 l(mod4)
"E() (kl k2 + 2)r(nl) ro(n2) if k k2 2(mod4)

(1 + (kx- k2))r(n)- rE(n)- rE(n2) if kl- km 0(rood 4)

PROOF. By hypothesis and Theorem 3, any Type HI Lucas representation of n must arise from a

corresponding Type HI Lucas representation of nl n Lk. Thus it suffices to count the Type and

II Lucas representations of n consisting of evenly many parts. A Type Lucas representation of n with

evenly many parts will occur whenever the initial and terminal segments agree in parity. Therefore the

number ofsuch representations is given by:

(L__)rE(n) + ro(L__)o(,U)

[(k k, --l)]rE(rtl)+ ([(k k2 --l)]- [1/4(kl- k2 -l)])(r(rtl)
([(1- k2 --l)]- [1/4(]fl- k2 -l)])l"(r/,1)+ (2[1/4(Jfl- If,2 --1)] [(1

If 2J’(kl-k2), then no Type II Lucas representations of n can arise. In particular, if

kl k2 3(rood 4), by simplifying the last formula, we obtain rE(n)
Similarly, if kl k2 l(mod4), we obtain rE(n) 1/4(kl k2 + 3)r(nl) rE(hi). If2[(kl k,2), we
wish to count the number ofType II Lucas representations on n that have evenly many terms. Each such

representation originates from a Lucas representation of n whose initial seent has 1/2 (kl k2) terms,

and whose terminal segment’s number of terms therefore differs in parity from (kl- k2). If

kl-k2 2(rood 4), then the number ofType II Lucas representations ofn is E(nl)
by Lemma 5. In this case, the number ofType Lucas representations ofn is 1/4(kl k2 + 2)
Thus we obtain: rE(n) ](kl k2 + 2)r(nl) to(n2). If kl k2 0(rood 4), then the number of

Type II Lucas representations of n is 0(n) to(hi) rE(n2), by Lernma 5. In this case, the number

ofType Lucas representations ofn is 1/4(kl k2)r(n). Therefore we obtain:

1 (k k))(l) E() (2).E() (k 2)(x) + 0(’) E() ( +

THEOREM 13. Let n : Lk, n - D2+l / 1. Then

a(n) a(n2) if kl k2 0 (rood4)
a(nl) if kl k2 1 (rood 4)

a(n) a(n2) if k k2 2 (rood 4)
0 if kl k2 --- 3 (rood 4)

PROOF. This follows from (1.6) and from Theorems and 12.
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LEMMA 6. Ifn _> 1, then

1

1)-- 1
0

if n 1 (mod 4)
if n 2 (rood 4)
if n 0, 3 (mod 4)

PROOF. (Induction on n) The conclusion holds by inspection if 1 _< n _< 4 If n > 5, then

Ln 1 Ln-1 + (Ln-2 q- 1) Ln-1 -b Ln-3 -b (Ln-4 1). Now Theorem 13 implies a(L, 1)
a(Ln_4 1), so the conclusion follows from the induction hypothesis.

LEMMA 7. Ifn _> 1, then a(2L, 1) (- 1)".
PROOF. The conclusion holds by inspection if 1 _< n_< 4. If n_> 5, then

2Ln 1 L.+ + (Ln-2 1) L,+ + Ln-3 + (Ln-4 1). Now Theorem 13 implies a(2L- 1)
a(L.-2 1) a(L.-4 1). The conclusion now follows from Lemma 6.

LEMMA 8. Ifj < n < L_3- 1, then a(2L + n) O.
PROOF. a(2L + n) a(L+ + L-2 + n) by (1), so the conclusion follows from the hypothesis

and Theorem 13.

LEMMA 9. If0 < n < L-2 1, then a(SF + n) a(n).
PROOF. By (9), we have a(SF + n) a(L+l + Lk- + n). The conclusion now follows from

the hypothesis and Theorem 13.

THEOREM 14. If n belongs to I, where k > 2, and m L+3 1 n, then (i) r(m) r(n)
and (ii) a(m) 1)a(n).

PROOF. It is easily seen that m belongs to I iff n does. Now (7) implies there is a bijection
between the partitions of m, n respectively into distinct Lueas parts. Thus r(m) r(n). Furthermore,

since the left side of (7) has k + 2 terms, it follows that under this bijectiort, corresponding partitions of

m and n will have numbers of parts that agree or disagree in parity accordingly as k is even or odd.

Therefore a(m) 1)a(n).
COROLLARY 3. If k > 1, then a(L4k-2 2) 1; a(L4k 2) 2.

PROOF. This follows from Theorems 10 and 14.

THEOREM IS. Ilk > 3, then E(L+2 1) E(L+ 1) + 2E(L_2 1) + 2.

PROOF. If 1 < < 3 < k, let k.i E {la(n)l n E I.,}. Thus x, + z.2 + z,3

E(L+-I)-E(L+-I). Now z,3 E{la(n)l SF <n<L+2-1} E(L+-I)-E(SF-I).
But Lemma 9 implies a(SF)=a(O)=l, so E(SF)=I+E(SF-I). Thus z,z=E(L+2-1)-
E(SF)+I. But (10) implies L+2 5F + L-2, so Zk,3 E(SF + Lk-2 1) E(SF) + I. Now

Lernma 9 implies z,3 E(L_2 1) + 1. Also, zk,2 E{la(n)l L < n < 5F 1} 0

by Lemma 8. Now zk,a E{la(n)l" L+, < n < 2Lk 1}. Theorem 14 implies that

Z,l E{la(n)l 5F < n < L+2 1} z,. Thus we have: E(Lk+2 1) E(Lk+ 1)
2(1 + E(L_2 1)), from which the conclusion follows.

TtlEOREM 16. If k > 2 and ifLk+ < n < Lk+2 1, then

E(2L) E(2L 2- n) 1 if L+I <_ n _< 2L 2

E(n) E(2L) if 2Lk 1 <_ n <_ 5F, 1

E(2L) + E(n 5Fk) + 1 if 5F < n _< L+2 1

PROOF. If 2L- 1 _< n _< 5F- 1, then Lemma $ implies E(n) E(2L). If
n-SF n-SF

5Fk _< n _< Lk+2 1, then E(n) E(SF,) la(5F, + j)[ Y [a(j)l E(n 5Fk) by Lemma

9. Also, Lemmas 8 and 9 imply E(SF)= 1 +E(2Lt), so E(n)= 1 + E(2Lk)+ E(n-5Fk).
Finally, if L+I_<n_<2L-2, let m=2L-n, so that 2_<m_<Lk_2. We must show that

E(2L-m)=E(2Lk)-E(m-2)-I. Now Lemmas 8 and 9 imply a(2L)=0 and

la(2L 1)1 1. Therefore E(2L) E(2L 1) 1 + E(2L 2). Thus it suffices to show that
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E(2bk -m) E(2Lk-2)-E(rn-2) when 2 _< m _< L-2. This is trivially true when m 2. If
3 _< m _< L-2, then Lk+1 + 3 _< 2Lt m _< 2L 3, so that by (I), (9), Lemma 9 and Theorem 14,
we have la(2Lk-rn)l---Ia(L+3-1-2L, +rn)] la(SF, +m- I)] ]a(rn- 1)I. Therefore

rn-1 m-1 rn-2
E(2Lk-2) E(2Lk-m) ]a(2Lk-j)] ]aCj-1)] ]a(i)] E(m-2), so we are done.

3=2 3=2 =I

TIIEOREM 17. lira 0.

PROOF. Ifk _> 2, lett max{E(n)/n’n 6 I}. It suffices to show that lira t 0. Ifn e Ii,

then by Theorem 16, we have: E(n) <_ E(2Lk) + E(n- 5Fi) + I. Since E(n) is non-decreasing and

n-SFk _< Li-2, it follows that E(n)< E(2L)+E(L_2)+I. By Theorem 16, we have

E(Lk+I) E(2L) E(L_2-2)- I, so we obtain E(n) _< E(LI+) + E(L_2) + E(/-,k-2-2) + 2,
hence E(n) < E(Lk+) + 2E(Lk_2). Since n < Lk+l, We get E(n) < E(L+l) Jr" 2 E(L.)

SO thatL+ L+
tk <_ E(Lk+)/Lk+ + 2E(Lk-2)/Lk+I. Since E(n) is non-decreasing and Lk tends to infinity with k,
it suffices to show that lira E(Lk)/L 0. In fact, since E(Lk) <_ 1 + E(Lk 1), it suffices to show

that limE(L,-1)/Lk=0. Ifk_>l, letck=E(Lk-1). Thusc=0, c2=c3=2, c4=4. By

Theorem 15, we have: ck+2--Ck+l-}-2ck-2 +2. Let the {ck} have the generating function:

F(z) c,z. Using the method of [2], p. 337-350, we obtain: F(z) (2z2 2z3 + 2z4)/(1 z2)
k=l

(1 2z + 2z2 2z3). Therefore ck bt + b2t + bst + b4 + bs( 1)k, where the bi are constants,
and the ti are the roots of the equation: x- 2x2+ 2x- 2 0. Using Cardan’s formula, if

u (17+3X/’)/3, v= (17-- 3V/) /3, then t=+u+v-:-l.544, t2 1/2(u+v) +
@ (u v), t3 2. Thus It2l It31 "-- 1.138, b b3, and Ib2t + bztl 12/Re(t)l < 2 Itl Itl.
Now 0 < le/LI < (IbalX.5 + 21tlX.la8 + Ibi + Ibsl)/L. But (6) implies that the fight side of
the last inequality tends to 0 as k tends to infinity. Therefore lim c/L 0, we are done.

THEOREM 15. a(n) assumes each ofthe values 0, -1-1, +/- 2 infinitely often.
PROOF. Theorem 7 implies a(n) 0, 1 infinitely often, while Theorem 10 implies a(n) 2

infinitely often. By Theorems 13 and 7, a(L4+s +L4)=-a(L4k) 1. Therefore a(n)= 1

infinitely often. Finally, with k > 2, let n L4k + 5 L +L + L1. Now Theorem 13 implies

a(n) a(5) 2. Therefore a(n) 2 infinitely often.

THEOREM 19. la(n)l _< 2 for all n.

PROOF. If la(n)l > 3 for some n, let n be the least such imeger. By Theorems 7 and 10, n -7: L,
L+ + 1. Let n have the minimal Lucas representation:

n no L +L + etc. +L where r > 2; let ni nt-1 L
for 1 < < r, with n 0. By hypothesis and Theorem 13, we must have: a(n) (a(n) + a(n)),
with k 0 (mod 4). By Theorem 13 implies

a(n) if/ k 0 (rood 4)

a(n) + a(r)
0 if k k3 1 (mod4)
a(n:) + a(na) if ka 2 (mod4)
a(n2) if k ka 3 (rood 4)

Therefore a(n) (a(n) + a(n)), with k2 k _= 2 (mod4). If we apply Theorem 13 repeatedly,
we eventually get a(n) (a(n_) + a(n)) (a(L,) + a(0)). Now Theorem 7 implies

la(n)l < 1, contrary to hypothesis.

ACKNOWLEDGMENT. Theorems 14 through 17 are Lueas analogues of results about Fibonacci

partitions announced by Weinstein in [4]. For each integer n, such that 0 < n < 100, Table lists

r(n), rE(n), a(n), E(n), and V(n).
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Table

0 0 51 6 3 0 30 6308
0 -1 52 6 2 -2 32 6877

2 0 -1 2 2 53 6 3 0 32 7491
3 2 0 2 3 54 8 4 0 32 8155
4 2 0 2 5 55 5 3 33 8862
5 2 2 2 4 6 56 5 3 34 9622
6 2 0 4 9 57 7 3 -l 35 10438
7 3 -1 5 12 58 6 3 0 35 11316
8 2 0 5 16 59 6 3 0 35 12247
9 2 0 5 20 60 6 3 0 35 13249
lO 3 2 6 26 61 6 3 0 35 14319
ll 3 -I 7 33 62 6 3 0 35 15464
12 3 -1 8 41 63 6 3 0 35 16678
13 3 2 9 50 64 6 3 0 35 17981
14 4 2 0 9 62 65 7 4 36 19369
15 3 2 10 75 66 5 2 -1 37 20845
16 3 -1 11 90 67 5 2 -1 38 22413
17 3 -1 12 107 68 8 4 0 38 24089
18 4 2 0 12 129 69 6 3 0 38 25868
19 3 2 13 151 70 6 4 2 40 27754
20 3 2 14 178 71 6 3 0 40 29759
21 5 2 -1 15 208 72 7 3 -1 41 31893
22 4 2 0 15 244 73 4 2 0 41 34149
23 4 2 0 15 281 74 4 2 0 41 36541
24 4 2 0 15 326 75 5 3 42 39078
25 5 3 16 375 76 7 3 -1 43 41771
26 3 -1 17 431 77 5 2 -1 44 44609
27 3 -1 18 491 78 5 3 45 47619
28 4 2 0 18 561 79 8 4 0 45 50802
29 4 2 0 18 638 80 7 4 46 54170
30 4 3 2 20 723 81 7 3 -1 47 57715
31 4 2 0 20 816 82 7 3 -1 48 61471
32 6 3 0 20 922 83 9 5 49 65434
33 5 2 -1 21 1037 84 6 3 0 49 69613
34 5 2 -1 22 1163 85 6 3 0 49 74013
35 5 3 23 1302 86 7 3 -1 50 78664
36 6 3 0 23 1458 87 8 4 0 50 83561
37 4 2 0 23 1624 88 8 5 2 52 88715
38 4 2 0 23 1808 89 8 4 0 52 94140
39 6 3 0 23 2009 90 6 3 0 52 99862
40 5 3 24 2231 91 7 3 -1 53 105871
41 5 2 -1 25 2467 92 7 3 -1 54 112190
42 5 2 -1 26 2729 93 7 4 55 118835
43 6 3 0 26 3012 94 8 4 0 55 125830
44 4 2 0 26 3321 95 6 3 0 55 133160
45 4 3 2 28 3651 96 6 3 0 55 140867
46 4 2 0 28 4014 97 10 5 0 55 148958
47 5 2 -1 29 4406 98 8 4 0 55 157456
48 4 2 0 29 4828 99 8 4 0 55 166353
49 4 2 0 29 5282 100 8 4 0 55 175400
50 7 4 30 5777
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