LUCAS PARTITIONS

NEVILLE ROBBINS

Mathematics Department
San Francisco State University
San Francisco, CA 94132, U.S.A.
(Received April 1, 1996)

ABSTRACT. The Lucas sequence is defined by: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. Let $V(n), r(n)$ denote respectively the number of partitions of n into parts, distinct parts from $\left\{L_{n}\right\}$. We develop formulas that facilitate the computation of $V(n)$ and $r(n)$.

KEY WORDS AND PHRASES:

1991 AMS SUBJECT CLASSIFICATION CODES: 11P81, 11P83, 11B35.

1. INTRODUCTION

Let S denote a non-empty subset of N, the set of all natural numbers. Let $V(n), r(n), r_{E}(n)$, $r_{0}(n)$ denote respectively the number of partitions of n into parts, distinct parts, evenly many distinct parts, oddly many distinct parts from S. Define $V(0)=r(0)=r_{E}(0)=1, r_{0}(0)=0$. Let $V(n)$ have the generating function:

$$
\begin{equation*}
F(z)=\sum_{n=0}^{\infty} V(n) z^{n} \tag{1.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
1 / F(z)=\sum_{n=0}^{\infty} a(n) z^{n} \tag{1.2}
\end{equation*}
$$

It follows from (1.1) and (1.2) that

$$
\begin{equation*}
\sum_{k=0}^{n} a(n-k) V(k)=0 \quad \text { for } \quad n \geq 1 \tag{1.3}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
a(n)=r_{E}(n)-r_{0}(n) \tag{1.4}
\end{equation*}
$$

REMARK. Apostol [1], p. 311 and Hardy [3], p. 285 prove that (1.4) holds when $S=N$, but the same reasoning applies to the more general case. Since also

$$
\begin{equation*}
r(n)=r_{E}(n)+r_{0}(n) \tag{1.5}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
a(n)=2 r_{E}(n)-r(n)=r(n)-2 r_{0}(n) \tag{1.6}
\end{equation*}
$$

In this note, we consider the case where S is the set of all Lucas numbers, L_{n}, where $n \geq 0$. (The Lucas numbers are defined by: $L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}$ if $n \geq 2$.) We will show how to compute the $r(n)$ and the $a(n)$: via explicit formulas if $n=L_{k}$ or $n=1+L_{2 k+1}$ for some k, recursively otherwise. The $V(n)$ can then be computed recursively via (1.3).

2. PRELIMINARIES

Notation and Definitions

$F_{k}=k^{\text {th }}$ Fibonacci number $\left(F_{0}=0, F_{1}=1, F_{k}=F_{k-1}+F_{k-2}\right.$ if $\left.k \geq 2\right)$
$L_{k}=k^{t h}$ Lucas number ($L_{0}=2, L_{1}=1, L_{k}=L_{k-1}+L_{k-2}$ if $k \geq 2$)
$E(n)=\sum_{k=1}^{n}|a(k)|$
$[x]$ denotes the integer part of the real number x
$[a, b]$ denotes the set of all integers, t, such that $a \leq t \leq b$.
In particular, if $k \geq 3$, then

$$
\begin{aligned}
I_{k} & =\left[L_{k+1}, L_{k+2}-1\right] \\
I_{k, 1} & =\left[L_{k+1}, 2 L_{k}-1\right] \\
I_{k, 2} & =\left[2 L_{k}, 5 F_{k}-1\right] \\
I_{k, 3} & =\left[5 F_{k}, L_{k+2}-1\right]
\end{aligned}
$$

Lucas Identities

(1) $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$, with $L_{0}=2, L_{1}=1$
(2) $L_{j}<L_{k}$ iff $j<k$, unless $j=k-1=0$
(3) $\left\{L_{n}\right\}$ is strictly increasing if $n \geq 1$
(4) $L_{n}=\alpha^{n}+\beta^{n}$, where $\alpha=\frac{1}{2}\left(1+5^{\frac{1}{2}}\right), \beta=\frac{1}{2}\left(1-5^{\frac{1}{2}}\right)$
(5) $L_{2 n}=L_{n}^{2}-2(-1)^{n}$
(6) $L_{n}>1.6^{n}$ if $n \geq 4$
(7) $\sum_{i=0}^{k+1} L_{i}=L_{k+3}-1$
(8) $\sum_{i=0}^{\left.\left[\frac{1}{2}\right]\right]} L_{\jmath-2 i}=L_{\jmath+1}+t$, where $t=\left\{\begin{array}{r}1 \text { if } 2 \mid j \\ -2 \text { if } 2 \nmid j\end{array}\right.$
(9) $\mathrm{L}_{n+1}+L_{n-1}=5 F_{n}$
(10) $L_{k+2}-5 F_{k}=2 L_{k}-L_{k+1}=L_{k-2}$

REMARKS. (1) is the definition of the Lucas sequence (2) and (3) follow from (1). (4) follows from (1), using induction and the fact that α, β are the roots of $u^{2}-u-1=0$. (5) and (6) follow from (4). (7) through (9) may be proved using induction on n. (10) follows from (1) and (9).

3. THE MAIN THEOREMS

Let n be a natural number. We first address the issue of the representability of n as a sum of distinct Lucas numbers. Such a representation will be called a Lucas representation of n. If in addition, the summands are non-consecutive Lucas numbers, we say that the Lucas representation of n is special. We will show that every natural number has a special Lucas representation. If the special Lucas representation of n is unique, which is usually the case, we call it the minimal Lucas representation of n. Otherwise, n has two special Lucas representations. In this case, we define the minimal Lucas representation of n as the special Lucas representation that does not include $L_{0}=2$ as a summand.

For example, 13 has the unique special (and hence minimal) Lucas representation $13=11+2=L_{5}+L_{0} ; 12$ has two special Lucas representations: $12=11+1=L_{5}+L_{1}$, and $12=7+3+2=L_{4}+L_{2}+L_{0}$. The former is the minimal Lucas representation of 12.

THEOREM 1. Every natural number, n, has a special Lucas representation:

$$
\begin{equation*}
n=L_{k_{1}}+L_{k_{2}}+\text { etc. }+L_{k_{r}} \tag{3.1}
\end{equation*}
$$

where $k_{i}-k_{2+1} \geq 2$ for all i such that $1 \leq i \leq r-1$, if $r \geq 2$.
PROOF. (Induction on n) It suffices to consider the case where $n \neq L_{k}$. Therefore there exists unique $k_{1} \geq 3$ such that $L_{k_{1}}<n<L_{k_{1}+1}$. Let $n_{1}=n-L_{k_{1}}$. Now (1) implies $0<n_{1}<L_{k_{1}-1}$. By induction hypothesis, we have $n_{1}=L_{k_{2}}+L_{k_{3}}+$ etc. $+L_{k_{r}}$, with $r \geq 2$ and $k_{i}-k_{i+1} \geq 2$ for all i such
that $2 \leq i \leq r$, if $r \geq 3$. Thus $L_{k_{2}} \leq n_{1}$, hence $L_{k_{2}}<L_{k_{1}-1}$. Since $k_{1} \geq 3$, (2) implies $k_{2}<k_{1}-1$, that is, $k_{1}-k_{2} \geq 2$. Since $n=L_{k_{1}}+n_{1}$, the conclusion now follows.

LEMMA 1. Let $n=L_{\jmath_{1}}+L_{\jmath_{2}}+$ etc. $+L_{j_{3}}$, with $s \geq 2$ and $j_{i}-j_{i+1} \geq 2$ for all i such that $1 \leq i \leq s-1$. Let $j=j_{1}$. Then $n \leq L_{j+1}+(-1)^{j}$. Furthermore, $n=L_{j+1}+(-1)^{j}$ iff $s=1+\left[\frac{1}{2} j\right], j_{s}=0$, and $j_{i}=j-2(i-1)$ for all i such that $1 \leq i \leq s-1$.

PROOF. Using (2) and our hypothesis, we have $L_{J_{1}} \leq r+L_{j-2(2-1)}$ where $r=\left\{\begin{array}{l}1 \text { if } j_{i}=0 \text { and } j=2 i-1 \\ 0 \text { otherwise }\end{array}\right.$. Thus we have:

$$
\begin{equation*}
n=\sum_{i=1}^{s} L_{j_{\imath}} \leq r+\sum_{i=1}^{s} L_{j-2(\imath-1)}=r+\sum_{i=0}^{s-1} L_{j-2 i} \leq r+\sum_{i=0}^{\left.\left[\frac{1}{2}\right]\right]} L_{J_{-2}} . \tag{3.2}
\end{equation*}
$$

Now (8) implies $n \leq L_{j+1}+(-1)^{j}$. If $s=1+\left[\frac{1}{2} j\right], j_{s}=0$, and $j_{\imath}=j-2(i-1)$ for all i such that $1 \leq i \leq s-1$, then the weak inequalities in (3.2) may be replaced with equalities, which yields $n=L_{j+1}+(-1)^{j}$. Conversely, if $n=L_{j+1}+(-1)^{j}$, then the weak inequalities in (3.2) become equalities. This implies $s=1+\left[\frac{1}{2} j\right], L_{j_{1}}=L_{j-2(i-1)}$ (and hence $j_{i}=j-2(i-1)$) for all i such that $1 \leq i \leq s-1$, and $j_{s}=0$.

LEMMA 2. $L_{i}=L_{j}+1$ iff $(i, j)=(0,1),(2,0)$, or $(3,2)$.
PROOF. Suppose $L_{i}=L_{j}+1$. If $j=0$, then $L_{i}=3$, so $i=2$. If $j=1$ and $i<j$, then $i=0$. Now suppose $i>j \geq 1$. Then (3) and (1) imply $1=L_{i}-L_{j} \geq L_{i}-L_{i-1}=L_{i-2}$. Therefore $L_{\imath-2}=1$, so $i=3$ and $j=2$. The converse follows by direct substitution.

LEMMA 3. If

$$
\begin{equation*}
n=L_{k} \tag{3.3}
\end{equation*}
$$

then this special Lucas representation of n is unique.
PROOF. Let k be the least index such that the special representation (3.3) is not unique. By inspection, $k \geq 4$. Thus n has a second special Lucas representation:

$$
\begin{equation*}
n=L_{\jmath_{1}}+L_{\jmath_{2}}+\text { etc. }+L_{\jmath_{3}} \tag{34}
\end{equation*}
$$

with $j_{i}-j_{i+1} \geq 2$ for all i such that $1 \leq i \leq s-1$. In fact, (2) implies $s \geq 2$. Let $j=j_{1}$. Now (3.4) implies $L_{j}<n$, so $L_{\jmath}<L_{k}$. If $2 \chi_{j}$, then Lemma 1 implies $L_{k} \leq L_{\jmath+1}-1$, so $L_{k}<L_{j+1}$ But then $L_{j}<L_{k}<L_{j+1}$, an impossibility. If $2 \mid j$, then Lemma 1 implies $L_{k} \leq L_{j+1}+1$. Since $k \geq 4$, Lemma 2 implies $L_{k} \neq L_{\jmath+1}+1$. Therefore $L_{k}<L_{\jmath+1}+1$, so that $L_{k} \leq L_{j+1}$. Since $L_{\jmath}<L_{k} \leq L_{j+1}$, we must have $L_{k}=L_{j+1}$, hence $k=j+1$. Now (3.4) yields $L_{k}=L_{k-1}+L_{\rho_{2}}+$ etc. $+L_{j_{3}}$, hence $L_{k-2}=L_{j_{2}}+$ etc. $+L_{j_{2}}$. By definition of k, we must have $s=2, j_{2}=k-2$. But then $j_{1}-j_{2}=1$, an impossibility.

THEOREM 2. Let n have two distinct special Lucas representations:

$$
\begin{array}{ll}
n=L_{k_{1}}+L_{k_{2}}+\text { etc. }+L_{k_{r}} & \begin{array}{l}
\text { with } k_{i}-k_{2+1} \geq 2 \text { for all } i \\
\text { such that } 1 \leq i \leq r-1 ;
\end{array} \\
n=L_{j_{1}}+L_{\jmath_{2}}+\text { etc. }+L_{\jmath_{s}} & \begin{array}{l}
\text { with } j_{i}-j_{2+1} \geq 2 \text { for all } i \\
\text { such that } 1 \leq i \leq s-1
\end{array}
\end{array}
$$

Assume also that $j=j_{1}<k_{1}$. Then $k_{1}=2 s-1, k_{2}=k_{r}=1$, and $j_{i}=2(s-i)$ for all i with $1 \leq i \leq s$.

PROOF. Let $k_{1}=k$. Note that Lemma 3 implies $\operatorname{Min}\{r, s\} \geq 2$. Thus $n \geq 5$ and $j \geq 2$. Let $j=k-m$, where $m \geq 1$. Lemma 1 implies $n \leq L_{j+1}+(-1)^{\jmath}=L_{k-m+1}+(-1)^{k-m}$. By hypothesis, $L_{k}<n$, so that $L_{k}<L_{k-m+1}+(-1)^{k-m}$. If $m \geq 2$, then $L_{k-m+1} \leq L_{k-1}$ by (2), since if $k=2$, then $j=1=s$. Thus $L_{k}<L_{k-1}+(-1)^{k-m}$, which implies $L_{k-2}<1$, an impossibility, since $L_{n} \geq 1$ for all n. Therefore $m=1$, so $0<(-1)^{k-1}$ implies k is odd. Since $L_{k}<n \leq L_{k}+1$, we
must have $n=L_{k}+1=L_{k}+L_{1}$, so $k_{2}=k_{r}=1$. Now (3.6) and Lemma 1 imply $j_{2}=2(s-i)$ for all i such that $1 \leq i \leq s$.

THEOREM 3. Let n have the special Lucas representation:

$$
\begin{equation*}
n=L_{k_{1}}+L_{k_{2}}+\text { etc. }+L_{k_{r}} \tag{3.7}
\end{equation*}
$$

This special Lucas representation is unique unless $k_{r}=1$ and $k_{r-1}=2 h+1$ for some $h \geq 1$, in which case n has a second special Lucas representation:

$$
\begin{equation*}
n=L_{k_{1}}+L_{k_{2}}+\text { etc. }+L_{k_{r-2}}+L_{2 h}+L_{2 h-2}+\text { etc. }+L_{2}+L_{0} \tag{3.8}
\end{equation*}
$$

PROOF. If $r=1$, then the special Lucas representation (3.7) is unique by Lemma 3 If $r \geq 2$, suppose that n has a second special Lucas representation:

$$
\begin{equation*}
n=L_{j_{1}}+L_{\jmath_{2}}+\text { etc. }+L_{J_{s}} \tag{3.9}
\end{equation*}
$$

Again, by Lemma 3, $s \geq 2$. If $j_{1}<k_{1}$, then the conclusion follows from Theorem 2, with $r=2$ and $h=s$. Now suppose that $j_{i}=k_{i}$ for all i such that $1 \leq i \leq u-1$ (for some $u \geq 2$), but $j_{u}<k_{u}$. Let

$$
m=n-\sum_{i=1}^{u-1} L_{k_{1}}=L_{k_{u}}+L_{k_{u+1}}+\text { etc. }+L_{k_{r}}
$$

also

$$
m=n-\sum_{\imath=1}^{u-1} L_{\jmath_{i}}=L_{\jmath_{u}}+L_{j_{v+1}}+\text { etc. }+L_{\jmath_{s}}
$$

Now Theorem 2 implies $j_{u+i}=2(s-u-i)$ for all i such that $0 \leq i \leq s-u, u=r-1$, $k_{u}=k_{r-1}=2(s-u)-1=2(s-r)+1, k_{r}=1$. The conclusion now follows from Theorem 2, with $h=s-r$.

Combining the results of Theorems 1,2 , and 3 , we have:
THEOREM 4. Every natural number, n, has a unique minimal Lucas representation:

$$
\begin{equation*}
n=L_{k_{1}}+L_{k_{2}}+\ldots+L_{k_{r-1}}+L_{k_{r}} \tag{310}
\end{equation*}
$$

where (i) $k_{i}-k_{i+1} \geq 2$ for all i such that $1 \leq i \leq r-1$, if $r \geq 2$; (ii) if $r \geq 2$ and $k_{r}=0$, then $k_{r-1} \geq 3$.

LEMMA 4. Let n have the minimal Lucas representation given by (3.10) in Theorem 4 above. Then $L_{k_{1}}<n<L_{k_{1}+1}$, if $r \geq 2$.

PROOF. (Induction on r) Clearly, $L_{k_{1}}<n$, so it suffices to show that $九<L_{k_{1}+1}$. Let $r=2$, so $n=L_{k_{1}}+L_{k_{2}}$. If $k_{2} \geq 1$, then by hypothesis, $k_{2} \leq k_{1}-2$, so (2) implies $L_{k_{2}} \leq L_{k_{1}-2}<L_{k_{1}-1}$. Thus $n \leq L_{k_{1}}+L_{k_{1}-2}<L_{k_{1}}+L_{k_{1}-1}=L_{k_{1}+1}$. If $k_{2}=0$, then by (1) and (2), we have $n=L_{k_{1}}+L_{k_{2}}=L_{k_{1}}+L_{0}=L_{k_{1}}+2<L_{k_{1}}+3=L_{k_{1}}+L_{2} \leq L_{k_{1}}+L_{k_{1}-1}=L_{k_{1}+1}$, so $n<L_{k_{1}+1}$. If $r \geq 3$, let $n_{1}=n-L_{k_{1}}=L_{k_{2}}+$ etc. $+L_{k_{r}}$. Clearly, this is a minimal Lucas representation of n_{1}, so by induction hypothesis, we have $n_{1}<L_{k_{2}+1}$, hence $n<L_{k_{1}}+L_{k_{2}+1}$. Since $1 \leq k_{2}+1 \leq k_{1}-1$ by hypothesis, (2) implies $L_{k_{2}+1} \leq L_{k_{1}-1}$. Therefore $n<L_{k_{1}}+L_{k_{1}-1}=L_{k_{1}+1}$.

The three following theorems permit the computation of $r\left(L_{n}\right)$ and $a\left(L_{n}\right)$.
THEOREM 5. $r\left(L_{n}\right)=\left[\frac{1}{2}(n+2)\right]$ if $n \geq 0$.
PROOF. (Induction on n) The statement is true by inspection if $n=0$ or 1 . If $n \geq 2$, and if L_{n} is partitioned into several distinct parts, then (7) implies that the largest part must be L_{n-1}. Therefore, by (1), we have $r\left(L_{n}\right)=1+r\left(L_{n-2}\right)=1+\left[\frac{1}{2} n\right]$ (by induction hypothesis) $=\left[\frac{1}{2}(n+2)\right]$. (The " 1 " in the last equation arises from the trivial partition: $L_{n}=L_{n}$.)

THEOREM 6. $r_{E}\left(L_{n}\right)=\left[\frac{1}{4}(n+2)\right]$ if $n \geq 0$.

PROOF. (Induction on n) The statement is true by inspection if $n=0$ or 1 . If $n \geq 2$, then reasoning as in the proof of Theorem 5, we have $r_{E}\left(L_{n}\right)=r_{0}\left(L_{n-2}\right)=r\left(L_{n-2}\right)-r_{E}\left(L_{n}-2\right)=$ $\left[\frac{1}{2} n\right]-\left[\frac{1}{4} n\right]=\left[\frac{1}{4}(n+2)\right]$ by Theorem 5 and induction hypothesis.

THEOREM 7. $a\left(L_{n}\right)=\left\{\begin{aligned} 0 & \text { if } n \equiv 2,3(\bmod 4) \\ -1 & \text { if } n \equiv 0,1(\bmod 4)\end{aligned}\right.$.
PROOF. This follows from (1.6) and from Theorems 5 and 6.
Having settled the case where n is a Lucas number, we now consider the case where n is a sum of two or more distinct, non-consecutive Lucas numbers. Then, by Theorem $4, n$ has a unique minimal Lucas representation:

$$
\begin{equation*}
n=\sum_{k=1}^{r} L_{k_{1}} \tag{3.11}
\end{equation*}
$$

where $r \geq 2, k_{i}-k_{i+1} \geq 2$ for all i such that $1 \leq i \leq r-1$, and if $k_{r}=0$, then $k_{r-1} \geq 3$.
Alternatively, we could write:

$$
\begin{equation*}
n=\sum_{j=0}^{s} c_{j} L_{j} \tag{3.12}
\end{equation*}
$$

where (i) $c_{s}=1$; (ii) $c_{\jmath}=0$ or 1 for all j such that $0 \leq j \leq s-1$; (iii) $c_{\jmath-1} c_{j}=0$ for all j such that $1 \leq j \leq s$; (iv) if $c_{0}=1$, then $c_{2}=0$.

If we omit the conditions (iii) and (iv), then (3.12) corresponds to a Lucas representation of n. The c, will be called the digits of the representation.

Referring again to (3.11), let $n_{1}=n-L_{k_{1}}>0, n_{2}=n_{1}-L_{k_{2}} \geq 0$. Given any Lucas representation of n, define the initial segment as the first $k_{1}-k_{2}$ digits; define the terminal segment as the remaining digits. In the minimal Lucas representation of n, the initial segment consists of a 1 followed by $k_{1}-k_{2}-10$'s, and corresponds to the minimal Lucas representation of $L_{k_{1}-k_{2}-1}$, while the terminal segment corresponds to the minimal Lucas representation of n_{1}. Lucas representations of n may be obtained as follows:

Type 1. Arbitrary combinations of Lucas representations of the integers corresponding to the initial and terminal segments in the minimal Lucas representation of n, namely $L_{k_{1}-k_{2}-1}$ and n_{1}. Clearly, the number of Type I Lucas representations of n is $r\left(L_{k_{1}-k_{2}-1}\right) r\left(n_{1}\right)=\left[\frac{1}{2}\left(k_{1}-k_{2}+1\right)\right] r\left(n_{1}\right)$.

Type II. Suppose that in a non-minimal Lucas representation of n, the initial segment ends in 10 , while the terminal segment starts with 0 . If this block of digits, consisting of 100 , is replaced by 011 , then a new Lucas representation of n is obtained. A necessary condition for the existence of Type II Lucas representations is that $2 \mid\left(k_{1}-k_{2}\right)$.

Type III. In the minimal Lucas representation of n, if $k_{r}=1$ and $k_{r-1}=2 h+1$ for some $h \geq 1$, then by Theorem 3, a new Lucas representation of n is obtained by replacing $L_{2 h+1}+L_{1}$ by $L_{2 h}+L_{2 h-2}+$ etc. $+L_{2}+L_{0}$.

The three following theorems enable us to compute $r\left(1+L_{2 k+1}\right)$ and $a\left(1+L_{2 k+1}\right)$.
THEOREM 8. If $k \geq 1$, then $r\left(L_{2 k+1}+1\right)=k+1$.
PROOF. Let $n=L_{2 k+1}+1=L_{2 k+1}+L_{1}$. Here $n_{1}=L_{1}$, so the number of Type I Lucas representations of n is $r\left(L_{2 k-1}\right) r\left(L_{1}\right)=\left[\frac{2 k+1}{2}\right]\left[\frac{3}{2}\right]=k$. Since L_{1} has no Lucas representation but the minimal one, there are no Type II Lucas representations of n. By hypothesis and Theorem 3, there is a unique Type III Lucas representation of n. Therefore $r\left(L_{2 k+1}+1\right)=k+1$.

THEOREM 9. If $k \geq 1$, then $r_{E}\left(L_{4 k+1}+1\right)=k ; r_{E}\left(L_{4 k-1}+1\right)=k+1$.
PROOF. Let $n=L_{2 j+1}+1=L_{2 j+1}+L_{1}$. As in the proof of Theorem $8, n$ has no Type II Lucas representations. A Type I Lucas representation has an even number of terms iff its initial segment has an odd number of terms. Therefore the number of such Type I Lucas representations of n is $r_{0}\left(L_{2 j-1}\right)=r\left(L_{2 \jmath-1}\right)-r_{E}\left(L_{2 \jmath-1}\right)=\left[\frac{1}{2}(2 j+1)\right]-\left[\frac{1}{4}(2 j+1)\right]=j-\left[\frac{1}{4}(2 j+1)\right]$ by (1.5) and Theorems 5 and 6. Whether $j=2 k$ or $2 k-1$, the number of Type I Lucas representations of n with evenly many terms is k, since $2 k-\left[\frac{1}{4}(4 k+1)\right]=k=(2 k-1)-\left[\frac{1}{4}(4 k-1)\right]$. The unique Type III

Lucas representation of n has $j+1$ terms, and thus contributes to $r_{E}\left(L_{2 j+1}+1\right)$ iff j is odd. The conclusion now follows.

THEOREM 10. If $k \geq 1$, then $a\left(L_{4 k+1}+1\right)=-1 ; a\left(L_{4 k-1}+1\right)=2$.
PROOF. This follows from (1.6) and from Theorems 8 and 9.
In Theorems 11, 12, and 13 below, we develop formulas for $r(n), r_{E}(n)$, and $a(n)$ in the case where $n \neq L_{k}, n \neq L_{2 k+1}+1$. In order to do so, we must be able to count the number of Type II Lucas representations of n. We therefore need to determine the number of Lucas representations of n that do not include the largest possible Lucas number as a part. This question is addressed by Lemma 5.

LEMMA 5. Let n have the minimal Lucas representation:

$$
n=L_{k_{1}}+L_{k_{2}}+\text { etc. }+L_{k_{r}}
$$

Let $n_{1}=n-L_{k_{1}} \geq 0$. Let $\bar{r}(n)$ denote the number of Lucas representations of n that do not include $L_{k_{1}}$ as a part; let $r_{E}(n), r_{0}(n)$ denote respectively the number of such representations consisting of evenly, oddly many parts. Then

$$
\begin{gather*}
\bar{r}(n)=r(n)-r\left(n_{1}\right) \tag{3.13}\\
\bar{r}_{E}(n)=r_{E}(n)-r_{0}\left(n_{1}\right) \tag{3.14}\\
\bar{r}_{0}(n)=r_{0}(n)-r_{0}(n)-r_{E}\left(n_{1}\right) \tag{3.15}
\end{gather*}
$$

PROOF. It follows from the definitions of $\bar{r}(n), \bar{r}_{E}(n), \bar{r}_{0}(n)$ that $r(n)-\bar{r}(n)$ is the number of Lucas representations of n that do include $L_{k_{1}}$ as a part; $r_{E}(n)-\bar{r}_{E}(n), r_{0}(n)-\bar{r}_{0}(n)$ are respectively the number of such representations consisting of evenly, oddly many parts. If $n \neq L_{k}$ let

$$
\begin{equation*}
n=L_{k_{1}}+L_{\jmath_{2}}+\text { etc. }+L_{j_{s}} \quad(\text { with } s \geq 2) \tag{3.16}
\end{equation*}
$$

be a Lucas representation of n that includes $L_{k_{1}}$ as a part. (It follows from Lemma 4 that $L_{k_{1}}$ is the largest part.) Corresponding to (3.16), there is a Lucas representation of n_{1} :

$$
\begin{equation*}
n_{1}=L_{j_{2}}+\text { etc. }+L_{ر_{s}} \tag{3.17}
\end{equation*}
$$

This correspondence is clearly a bijection, so that $r(n)-\bar{r}(n)=r\left(n_{1}\right)$. Furthermore, the number of parts in (3.16) and (3.17) differ in parity. Therefore $r_{E}(n)-\bar{r}_{E}(n)=r_{0}\left(n_{1}\right)$ and $r_{0}(n)-\bar{r}_{0}(n)=r_{E}\left(n_{1}\right)$. The conclusions (3.13), (3.14), (3.15) now follow if $n \neq L_{k}$. If $n=L_{k}$, so that $n_{1}=0$, then clearly no other Lucas representation of n includes L_{k} as a part. Therefore $\bar{r}(n)=r(n)-1=r(n)-r(0)=r(n)-r\left(n_{1}\right)$. Furthermore, $\bar{r}_{E}(n)=r_{E}(n)=r_{E}(n)-0=r_{E}(n)-r_{0}\left(n_{1}\right)$; $\bar{r}_{0}(n)=r_{0}(n)-1=r_{0}(n)-r_{E}\left(n_{1}\right)$.

THEOREM 11. Let n have the minimal Lucas representation:

$$
\begin{equation*}
n=L_{k_{1}}+L_{k_{2}}+\text { etc. }+L_{k_{r}} \tag{3.18}
\end{equation*}
$$

where (i) $r \geq 2$; (ii) if $k_{r}=1$, then $2 \mid k_{r-1}$. Let $n_{1}=n-L_{k_{1}}, n_{2}=n_{1}-L_{k_{2}} \geq 0$. Then

$$
r(n)= \begin{cases}\frac{1}{2}\left(k_{1}-k_{2}+1\right) r\left(n_{1}\right) & \text { if } 2 \gamma\left(k_{1}-k_{2}\right) \\ \left(1+\frac{1}{2}\left(k_{1}-k_{2}\right)\right) r\left(n_{1}\right)-r\left(n_{2}\right) & \text { if } 2 \mid\left(k_{1}-k_{2}\right)\end{cases}
$$

PROOF. By hypothesis, there are no Type III Lucas representations of n. As mentioned earlier, the number of Type I Lucas representations of n is $\left[\frac{1}{2}\left(k_{1}-k_{2}+1\right)\right] r\left(n_{1}\right)$. If $2 \chi\left(k_{1}-k_{2}\right)$, then there are no Type II Lucas representations of n, so that $r(n)=\left[\frac{1}{2}\left(k_{1}-k_{2}+1\right)\right] r\left(n_{1}\right)=\frac{1}{2}\left(k_{1}-k_{2}+1\right) r\left(n_{1}\right)$. If $2 \mid\left(k_{1}-k_{2}\right)$, then the number of Type II Lucas representations of n is the number of Lucas representations of n_{1} that do not include $L_{k_{2}}$ as a part, namely $\bar{r}\left(n_{1}\right)$. By Lemma 5 , we have $\bar{r}\left(n_{1}\right)=r\left(n_{1}\right)-r\left(n_{2}\right)$. Therefore

$$
r(n)=\left[\frac{1}{2}\left(k_{1}-k_{2}+1\right)\right] r\left(n_{1}\right)+r\left(n_{1}\right)-r\left(n_{2}\right)=\left(1+\frac{1}{2}\left(k_{1}-k_{2}\right)\right) r\left(n_{1}\right)-r\left(n_{2}\right)
$$

COROLLARY 1. If $n \geq 2$, then $r\left(L_{n}-3\right)=\left[\frac{1}{2} n\right]$.
PROOF. (Induction on n) By inspection, the conclusion is true if $2 \leq n \leq 5$. If $n \geq 6$, then $L_{n}-3=L_{n-1}+\left(L_{n-2}-3\right)=L_{n-1}+L_{n-3}+\left(L_{n-4}-3\right)$. Now Theorem 11 implies $r\left(L_{n}-3\right)=$ $2 r\left(L_{n-2}-3\right)-r\left(L_{n-4}-3\right)$. By induction hypothesis, we have $r\left(L_{n-2}-3\right)=\left[\frac{1}{2}(n-2)\right]=\left[\frac{1}{2} n\right]-1$, and $r\left(L_{n-4}-3\right)=\left[\frac{1}{2}(n-4)\right]=\left[\frac{1}{2} n\right]-2$. Therefore $r\left(L_{n}-3\right)=2\left(\left[\frac{1}{2} n\right]-1\right)-\left(\left[\frac{1}{2} n\right]-2\right)=\left[\frac{1}{2} n\right]$.

COROLLARY 2. If $n \geq 1$, then $r\left(L_{n}^{2}-1\right)=n$.
PROOF. If $m \geq 1$, then via (5), we have $r\left(L_{2 m}^{2}-1\right)=r\left(L_{4 m}+1\right)=r\left(L_{4 m}+L_{1}\right)$. Now Theorem 11 implies $r\left(L_{2 m}^{2}-1\right)=(2 m) r\left(L_{1}\right)=(2 m) 1=2 m$. again, via (5), we have $r\left(L_{2 m-1}^{2}-1\right)=r\left(L_{4 m-2}-3\right)$. Now Corollary 1 implies $r\left(L_{2 m-1}^{2}\right)=\left[\frac{1}{2}(4 m-2)\right]=2 m-1$.

REMARK. Corollaries 1 and 2 imply (independently) that the function $r(n)$ is a surjection from N to N.

THEOREM 12. Let $n \neq L_{k}, n \neq L_{2 k+1}+1$. Then

$$
r_{E}(n)= \begin{cases}\frac{1}{4}\left(k_{1}-k_{2}+1\right) r\left(n_{1}\right) & \text { if } k_{1}-k_{2} \equiv 3(\bmod 4) \\ \frac{1}{4}\left(k_{1}-k_{2}+3\right) r\left(n_{1}\right)-r_{E}\left(n_{1}\right) & \text { if } k_{1}-k_{2} \equiv 1(\bmod 4) \\ \frac{1}{4}\left(k_{1}-k_{2}+2\right) r\left(n_{1}\right)-r_{0}\left(n_{2}\right) & \text { if } k_{1}-k_{2} \equiv 2(\bmod 4) \\ \left(1+\frac{1}{4}\left(k_{1}-k_{2}\right)\right) r\left(n_{1}\right)-r_{E}\left(n_{1}\right)-r_{E}\left(n_{2}\right) & \text { if } k_{1}-k_{2} \equiv 0(\bmod 4)\end{cases}
$$

PROOF. By hypothesis and Theorem 3, any Type III Lucas representation of n must arise from a corresponding Type III Lucas representation of $n_{1}=n-L_{k_{1}}$. Thus it suffices to count the Type I and II Lucas representations of n consisting of evenly many parts. A Type I Lucas representation of n with evenly many parts will occur whenever the initial and terminal segments agree in parity. Therefore the number of such representations is given by:

$$
\begin{aligned}
& r_{E}\left(L_{k_{1}-k_{2}-1}\right) r_{E}\left(n_{1}\right)+r_{0}\left(L_{k_{1}-k_{2}-1}\right) r_{0}\left(n_{1}\right)= \\
& \quad\left[\frac{1}{2}\left(k_{1}-k_{2}+1\right)\right] r_{E}\left(n_{1}\right)+\left(\left[\frac{1}{2}\left(k_{1}-k_{2}+1\right)\right]-\left[\frac{1}{4}\left(k_{1}-k_{2}+1\right)\right]\right)\left(r\left(n_{1}\right)-r_{E}\left(n_{1}\right)\right)= \\
& \quad\left(\left[\frac{1}{2}\left(k_{1}-k_{2}+1\right)\right]-\left[\frac{1}{4}\left(k_{1}-k_{2}+1\right)\right]\right) r\left(n_{1}\right)+\left(2\left[\frac{1}{4}\left(k_{1}-k_{2}+1\right)\right]-\left[\frac{1}{2}\left(k_{1}-k_{2}+1\right)\right]\right) r_{E}\left(n_{1}\right)
\end{aligned}
$$

If $2 \gamma\left(k_{1}-k_{2}\right)$, then no Type II Lucas representations of n can arise. In particular, if $k_{1}-k_{2} \equiv 3(\bmod 4)$, by simplifying the last formula, we obtain $r_{E}(n)=\frac{1}{4}\left(k_{1}-k_{72}+1\right) r\left(n_{1}\right)$. Similarly, if $k_{1}-k_{2} \equiv 1(\bmod 4)$, we obtain $r_{E}(n)=\frac{1}{4}\left(k_{1}-k_{2}+3\right) r\left(n_{1}\right)-r_{E}\left(n_{1}\right)$. If $2 \mid\left(k_{1}-k_{2}\right)$, we wish to count the number of Type II Lucas representations on n that have evenly many terms. Each such representation originates from a Lucas representation of n whose initial segment has $\frac{1}{2}\left(k_{1}-k_{2}\right)$ terms, and whose terminal segment's number of terms therefore differs in parity from $\frac{1}{2}\left(k_{1}-k_{2}\right)$. If $k_{1}-k_{2} \equiv 2(\bmod 4)$, then the number of Type II Lucas representations of n is $\bar{r}_{E}\left(n_{1}\right)=r_{E}\left(n_{1}\right)-r_{0}\left(n_{2}\right)$, by Lemma 5. In this case, the number of Type I Lucas representations of n is $\frac{1}{4}\left(k_{1}-k_{2}+2\right)-r_{E}\left(n_{1}\right)$. Thus we obtain: $r_{E}(n)=\frac{1}{4}\left(k_{1}-k_{2}+2\right) r\left(n_{1}\right)-r_{0}\left(n_{2}\right)$. If $k_{1}-k_{2} \equiv 0(\bmod 4)$, then the number of Type II Lucas representations of n is $\bar{r}_{0}\left(n_{1}\right)=r_{0}\left(n_{1}\right)-r_{E}\left(n_{2}\right)$, by Lemma 5. In this case, the number of Type I Lucas representations of n is $\frac{1}{4}\left(k_{1}-k_{2}\right) r\left(n_{1}\right)$. Therefore we obtain:

$$
r_{E}(n)=\frac{1}{4}\left(k_{1}-k_{2}\right) r\left(n_{1}\right)+r_{0}\left(n_{1}\right)-r_{E}\left(n_{2}\right)=\left(1+\frac{1}{4}\left(k_{1}-k_{2}\right)\right) r\left(n_{1}\right)-r_{E}\left(n_{1}\right)-r_{E}\left(n_{2}\right)
$$

THEOREM 13. Let $n \neq L_{k}, n \neq L_{2 k+1}+1$. Then

$$
a(n)=\left\{\begin{array}{ll}
-a\left(n_{1}\right)-a\left(n_{2}\right) & \text { if } k_{1}-k_{2} \equiv 0(\bmod 4) \\
-a\left(n_{1}\right) & \text { if } k_{1}-k_{2} \equiv 1(\bmod 4) \\
a\left(n_{2}\right) & \text { if } k_{1}-k_{2} \equiv 2(\bmod 4) \\
0 & \text { if } k_{1}-k_{2} \equiv 3(\bmod 4)
\end{array} .\right.
$$

PROOF. This follows from (1.6) and from Theorems 11 and 12.

LEMMA 6. If $n \geq 1$, then

$$
a\left(L_{n}-1\right)=\left\{\begin{aligned}
1 & \text { if } n \equiv 1(\bmod 4) \\
-1 & \text { if } n \equiv 2(\bmod 4) \\
0 & \text { if } n \equiv 0,3(\bmod 4)
\end{aligned}\right.
$$

PROOF. (Induction on n) The conclusion holds by inspection if $1 \leq n \leq 4$ If $n \geq 5$, then $L_{n}-1=L_{n-1}+\left(L_{n-2}+1\right)=L_{n-1}+L_{n-3}+\left(L_{n-4}-1\right)$. Now Theorem 13 implies $a\left(L_{n}-1\right)=$ $a\left(L_{n-4}-1\right)$, so the conclusion follows from the induction hypothesis.

LEMMA 7. If $n \geq 1$, then $a\left(2 L_{n}-1\right)=(-1)^{n}$.
PROOF. The conclusion holds by inspection if $1 \leq n \leq 4$. If $n \geq 5$, then $2 L_{n}-1=L_{n+1}+\left(L_{n-2}-1\right)=L_{n+1}+L_{n-3}+\left(L_{n-4}-1\right)$. Now Theorem 13 implies $a\left(2 L_{n}-1\right)=$ $-a\left(L_{n-2}-1\right)-a\left(L_{n-4}-1\right)$. The conclusion now follows from Lemma 6.

LEMMA 8. If $j \leq n \leq L_{k-3}-1$, then $a\left(2 L_{k}+n\right)=0$.
PROOF. $a\left(2 L_{k}+n\right)=a\left(L_{k+1}+L_{k-2}+n\right)$ by (1), so the conclusion follows from the hypothesis and Theorem 13.

LEMMA 9. If $0 \leq n \leq L_{k-2}-1$, then $a\left(5 F_{k}+n\right)=a(n)$.
PROOF. By (9), we have $a\left(5 F_{k}+n\right)=a\left(L_{k+1}+L_{k-1}+n\right)$. The conclusion now follows from the hypothesis and Theorem 13.

THEOREM 14. If n belongs to I_{k}, where $k \geq 2$, and $m=L_{k+3}-1-n$, then (i) $r(m)=r(n)$ and (ii) $a(m)=(-1)^{k} a(n)$.

PROOF. It is easily seen that m belongs to I_{k} iff n does. Now (7) implies there is a bijection between the partitions of m, n respectively into distinct Lucas parts. Thus $r(m)=r(n)$. Furthermore, since the left side of (7) has $k+2$ terms, it follows that under this bijection, corresponding partitions of m and n will have numbers of parts that agree or disagree in parity accordingly as k is even or odd. Therefore $a(m)=(-1)^{k} a(n)$.

COROLLARY 3. If $k \geq 1$, then $a\left(L_{4 k-2}-2\right)=-1 ; a\left(L_{4 k}-2\right)=2$.
PROOF. This follows from Theorems 10 and 14.
THEOREM 15. If $k \geq 3$, then $E\left(L_{k+2}-1\right)=E\left(L_{k+1}-1\right)+2 E\left(L_{k-2}-1\right)+2$.
PROOF. If $1 \leq i \leq 3 \leq k$, let $x_{k, i}=\Sigma\left\{|a(n)|: n \in I_{k, i}\right\}$. Thus $x_{k, 1}+x_{k, 2}+x_{k, 3}=$ $E\left(L_{k+2}-1\right)-E\left(L_{k+1}-1\right)$. Now $x_{k, 3}=\Sigma\left\{|a(n)|: 5 F_{k} \leq n \leq L_{k+2}-1\right\}=E\left(L_{k+2}-1\right)-E\left(5 F_{k}-1\right)$. But Lemma 9 implies $a\left(5 F_{k}\right)=a(0)=1$, so $E\left(5 F_{k}\right)=1+E\left(5 F_{k}-1\right)$. Thus $x_{k, 3}=E\left(L_{k+2}-1\right)-$ $E\left(5 F_{k}\right)+1$. But (10) implies $L_{k+2}=5 F_{k}+L_{k-2}$, so $x_{k, 3}=E\left(5 F_{k}+L_{k-2}-1\right)-E\left(5 F_{k}\right)+1$. Now Lemma 9 implies $x_{k, 3}=E\left(L_{k-2}-1\right)+1$. Also, $x_{k, 2}=\Sigma\left\{|a(n)|: 2 L_{k} \leq n \leq 5 F_{k}-1\right\}=0$ by Lemma 8. Now $x_{k, 1}=\Sigma\left\{|a(n)|: L_{k+1} \leq n \leq 2 L_{k}-1\right\}$. Theorem 14 implies that $x_{k, 1}=\Sigma\left\{|a(n)|: 5 F_{k} \leq n \leq L_{k+2}-1\right\}=x_{k, 3}$. Thus we have: $E\left(L_{k+2}-1\right)-E\left(L_{k+1}-1\right)=$ $2\left(1+E\left(L_{k-2}-1\right)\right)$, from which the conclusion follows.

THEOREM 16. If $k \geq 2$ and if $L_{k+1} \leq n \leq L_{k+2}-1$, then

$$
E(n)= \begin{cases}E\left(2 L_{k}\right)-E\left(2 L_{k}-2-n\right)-1 & \text { if } L_{k+1} \leq n \leq 2 L_{k}-2 \\ E\left(2 L_{k}\right) & \text { if } 2 L_{k}-1 \leq n \leq 5 F_{k}-1 \\ E\left(2 L_{k}\right)+E\left(n-5 F_{k}\right)+1 & \text { if } 5 F_{k} \leq n \leq L_{k+2}-1\end{cases}
$$

PROOF. If $2 L_{k}-1 \leq n \leq 5 F_{k}-1$, then Lemma 8 implies $E(n)=E\left(2 L_{k}\right)$. If $5 F_{k} \leq n \leq L_{k+2}-1$, then $E(n)-E\left(5 F_{k}\right)=\sum_{j=1}^{n-5 F_{k}}\left|a\left(5 F_{k}+j\right)\right|=\sum_{j=1}^{n-5 F_{k}}|a(j)|=E\left(n-5 F_{k}\right)$ by Lemma 9. Also, Lemmas 8 and 9 imply $E\left(5 F_{k}\right)=1+E\left(2 L_{k}\right)$, so $E(n)=1+E\left(2 L_{k}\right)+E\left(n-5 F_{k}\right)$. Finally, if $L_{k+1} \leq n \leq 2 L_{k}-2$, let $m=2 L_{k}-n$, so that $2 \leq m \leq L_{k-2}$. We must show that $E\left(2 L_{k}-m\right)=E\left(2 L_{k}\right)-E(m-2)-1$. Now Lemmas 8 and 9 imply $a\left(2 L_{k}\right)=0$ and $\left|a\left(2 L_{k}-1\right)\right|=1$. Therefore $E\left(2 L_{k}\right)=E\left(2 L_{k}-1\right)=1+E\left(2 L_{k}-2\right)$. Thus it suffices to show that
$E\left(2 L_{k}-m\right)=E\left(2 L_{k}-2\right)-E(m-2)$ when $2 \leq m \leq L_{k-2}$. This is trivially true when $m=2$. If $3 \leq m \leq L_{k-2}$, then $L_{k+1}+3 \leq 2 L_{k}-m \leq 2 L_{k}-3$, so that by (1), (9), Lemma 9 and Theorem 14, we have $\left|a\left(2 L_{k}-m\right)\right|=\left|a\left(L_{k+3}-1-2 L_{k}+m\right)\right|=\left|a\left(5 F_{k}+m-1\right)\right|=|a(m-1)|$. Therefore $E\left(2 L_{k}-2\right)-E\left(2 L_{k}-m\right)=\sum_{j=2}^{m-1}\left|a\left(2 L_{k}-j\right)\right|=\sum_{j=2}^{m-1}|a(j-1)|=\sum_{i=1}^{m-2}|a(i)|=E(m-2)$, so we are done

THEOREM 17. $\lim _{n \rightarrow \infty} \frac{E(n)}{n}=0$.
PROOF. If $k \geq 2$, let $t_{k}=\max \left\{E(n) / n: n \in I_{k}\right\}$. It suffices to show that $\lim _{k \rightarrow \infty} t_{k}=0$. If $n \in I_{k}$, then by Theorem 16, we have: $E(n) \leq E\left(2 L_{k}\right)+E\left(n-5 F_{k}\right)+1$. Since $E(n)$ is non-decreasing and $n-5 F_{k} \leq L_{k-2}$, it follows that $E(n) \leq E\left(2 L_{k}\right)+E\left(L_{k-2}\right)+1$. By Theorem 16 , we have $E\left(L_{k+1}\right)=E\left(2 L_{k}\right)-E\left(L_{k-2}-2\right)-1$, so we obtain $E(n) \leq E\left(L_{k+1}\right)+E\left(L_{k-2}\right)+E\left(L_{k-2}-2\right)+2$, hence $E(n) \leq E\left(L_{k+1}\right)+2 E\left(L_{k-2}\right)$. Since $n \leq L_{k+1}$, we get $\frac{E(n)}{n} \leq \frac{E\left(L_{k+1}\right)}{L_{k+1}}+2 \frac{E\left(L_{k-2}\right)}{L_{k+1}}$, so that $t_{k} \leq E\left(L_{k+1}\right) / L_{k+1}+2 E\left(L_{k-2}\right) / L_{k+1}$. Since $E(n)$ is non-decreasing and L_{k} tends to infinity with k, it suffices to show that $\lim _{k \rightarrow \infty} E\left(L_{k}\right) / L_{k}=0$. In fact, since $E\left(L_{k}\right) \leq 1+E\left(L_{k}-1\right)$, it suffices to show that $\lim _{k \rightarrow \infty} E\left(L_{k}-1\right) / L_{k}=0$. If $k \geq 1$, let $c_{k}=E\left(L_{k}-1\right)$. Thus $c_{1}=0, c_{2}=c_{3}=2, c_{4}=4$. By Theorem 15, we have: $c_{k+2}=c_{k+1}+2 c_{k-2}+2$. Let the $\left\{c_{k}\right\}$ have the generating function: $F(z)=\sum_{k=1}^{\infty} c_{k} z^{k}$. Using the method of [2], p. 337-350, we obtain: $F(z)=\left(2 z^{2}-2 z^{3}+2 z^{4}\right) /\left(1-z^{2}\right)$ $\left(1-2 z+2 z^{2}-2 z^{3}\right)$. Therefore $c_{k}=b_{1} t_{1}^{k}+b_{2} t_{2}^{k}+b_{3} t_{3}^{k}+b_{4}+b_{5}(-1)^{k}$, where the b_{i} are constants, and the t_{i} are the roots of the equation: $x^{3}-2 x^{2}+2 x-2=0$. Using Cardan's formula, if $u=\frac{1}{3}(17+3 \sqrt{33})^{1 / 3}, v=\frac{1}{3}(17-3 \sqrt{33})^{1 / 3}$, then $t_{1}=\frac{2}{3}+u+v \doteq 1.544, t_{2}=\frac{2}{3}-\frac{1}{2}(u+v)+$ $\frac{i \sqrt{3}}{2}(u-v), t_{3}=\bar{t}_{2}$. Thus $\left|t_{2}\right|=\left|t_{3}\right| \doteq 1.138, b_{2}=b_{3}$, and $\left|b_{2} t_{2}^{k}+b_{3} t_{3}^{k}\right|=\left|2 b_{2} \operatorname{Re}\left(t_{2}^{k}\right)\right| \leq 2\left|b_{2}\right|\left|t_{2}^{k}\right|$. Now $0<\left|c_{k} / L_{k}\right| \leq\left(\left|b_{1}\right| 1.544^{k}+2\left|b_{2}\right| 1.138^{k}+\left|b_{4}\right|+\left|b_{5}\right|\right) / L_{k}$. But (6) implies that the right side of the last inequality tends to 0 as k tends to infinity. Therefore $\lim _{k \rightarrow \infty} c_{k} / L_{k}=0$, we are done.

THEOREM 18. $a(n)$ assumes each of the values $0, \pm 1, \pm 2$ infinitely often.
PROOF. Theorem 7 implies $a(n)=0,-1$ infinitely often, while Theorem 10 implies $a(n)=2$ infinitely often. By Theorems 13 and $7, a\left(L_{4 k+5}+L_{4 k}\right)=-a\left(L_{4 k}\right)=1$. Therefore $a(n)=1$ infinitely often. Finally, with $k \geq 2$, let $n=L_{4 k}+5=L_{4 k}+L_{3}+L_{1}$. Now Theorem 13 implies $a(n)=-a(5)=-2$. Therefore $a(n)=-2$ infinitely often.

THEOREM 19. $|a(n)| \leq 2$ for all n.
PROOF. If $|a(n)| \geq 3$ for some n, let n be the least such integer. By Theorems 7 and $10, n \neq L_{k}$, $L_{2 k+1}+1$. Let n have the minimal Lucas representation:

$$
n=n_{0}=L_{k_{1}}+L_{k_{2}}+\text { etc. }+L_{k_{r}} \text { where } r \geq 2 ; \text { let } n_{i}=n_{2-1}-L_{k_{1}}
$$

for $1 \leq i \leq r$, with $n_{r}=0$. By hypothesis and Theorem 13, we must have: $a(n)=-\left(a\left(n_{1}\right)+a\left(n_{2}\right)\right)$, with $k_{1}-k_{2} \equiv 0(\bmod 4)$. By Theorem 13 implies

$$
a\left(n_{1}\right)+a\left(n_{2}\right)= \begin{cases}-a\left(n_{3}\right) & \text { if } k_{2}-k_{3} \equiv 0(\bmod 4) \\ 0 & \text { if } k_{2}-k_{3} \equiv 1(\bmod 4) \\ a\left(n_{2}\right)+a\left(n_{3}\right) & \text { if } k_{2}-k_{3} \equiv 2(\bmod 4) \\ a\left(n_{2}\right) & \text { if } k_{2}-k_{3} \equiv 3(\bmod 4)\end{cases}
$$

Therefore $a(n)=-\left(a\left(n_{2}\right)+a\left(n_{3}\right)\right)$, with $k_{2}-k_{3} \equiv 2(\bmod 4)$. If we apply Theorem 13 repeatedly, we eventually get $a(n)=-\left(a\left(n_{r-1}\right)+a\left(n_{r}\right)\right)=-\left(a\left(L_{k_{r}}\right)+a(0)\right)$. Now Theorem 7 implies $|a(n)| \leq 1$, contrary to hypothesis.
ACKNOWLEDGMENT. Theorems 14 through 17 are Lucas analogues of results about Fibonacci partitions announced by Weinstein in [4]. For each integer n, such that $0 \leq n \leq 100$, Table 1 lists $r(n), r_{E}(n), a(n), E(n)$, and $V(n)$.

Table 1

n	$r(n)$	$r_{E}(n)$	$a(n)$	$E(n)$	$V(n)$	n	$r(n)$	$r_{E}(n)$	$a(n)$	$E(n)$	$V(n)$
0	1	1	1	0	1	51	6	3	0	30	6308
1	1	0	-1	1	1	52	6	2	-2	32	6877
2	1	0	-1	2	2	53	6	3	0	32	7491
3	2	1	0	2	3	54	8	4	0	32	8155
4	2	1	0	2	5	55	5	3	,	33	8862
5	2	2	2	4	6	56	5	3	1	34	9622
6	2	1	0	4	9	57	7	3	-1	35	10438
7	3	1	-1	5	12	58	6	3	0	35	11316
8	2	1	0	5	16	59	6	3	0	35	12247
9	2	1	0	5	20	60	6	3	0	35	13249
10	3	2	1	6	26	61	6	3	0	35	14319
11	3	1	-1	7	33	62	6	3	0	35	15464
12	3	1	-1	8	41	63	6	3	0	35	16678
13	3	2	1	9	50	64	6	3	0	35	17981
14	4	2	0	9	62	65	7	4	1	36	19369
15	3	2	1	10	75	66	5	2	-1	37	20845
16	3	1	-1	11	90	67	5	2	-1	38	22413
17	3	1	-1	12	107	68	8	4	0	38	24089
18	4	2	0	12	129	69	6	3	0	38	25868
19	3	2	1	13	151	70	6	4	2	40	27754
20	3	2	1	14	178	71	6	3	0	40	29759
21	5	2	-1	15	208	72	7	3	-1	41	31893
22	4	2	0	15	244	73	4	2	0	41	34149
23	4	2	0	15	281	74	4	2	0	41	36541
24	4	2	0	15	326	75	5	3	1	42	39078
25	5	3	1	16	375	76	7	3	-1	43	41771
26	3	1	-1	17	431	77	5	2	-1	44	44609
27	3	1	-1	18	491	78	5	3	1	45	47619
28	4	2	0	18	561	79	8	4	0	45	50802
29	4	2	0	18	638	80	7	4	1	46	54170
30	4	3	2	20	723	81	7	3	-1	47	57715
31	4	2	0	20	816	82	7	3	-1	48	61471
32	6	3	0	20	922	83	9	5	1	49	65434
33	5	2	-1	21	1037	84	6	3	0	49	69613
34	5	2	-1	22	1163	85	6	3	0	49	74013
35	5	3	1	23	1302	86	7	3	-1	50	78664
36	6	3	0	23	1458	87	8	4	0	50	83561
37	4	2	0	23	1624	88	8	5	2	52	88715
38	4	2	0	23	1808	89	8	4	0	52	94140
39	6	3	0	23	2009	90	6	3	0	52	99862
40	5	3	1	24	2231	91	7	3	-1	53	105871
41	5	2	-1	25	2467	92	7	3	-1	54	112190
42	5	2	-1	26	2729	93	7	4	1	55	118835
43	6	3	0	26	3012	94	8	4	0	55	125830
44	4	2	0	26	3321	95	6	3	0	55	133160
45	4	3	2	28	3651	96	6	3	0	55	140867
46	4	2	0	28	4014	97	10	5	0	55	148958
47	5	2	-1	29	4406	98	8	4	0	55	157456
48	4	2	0	29	4828	99	8	4	0	55	166353
49	4	2	0	29	5282	100	8	4	0	55	175400
50	7	4	1	30	5777						

REFERENCES

[1] APOSTOL, T.M., Introduction to Analytic Number Theory, Springer Verlag, 1976.
[2] GRAHAM, R.L., KNUTH, D.E. and PATASHNIK, O., Concrete Mathematics, Addison-Wesley, 2nd Ed., 1994.
[3] HARDY, G.H. and WRIGHT, E.M., An Introduction to the Theory of Numbers, Oxford University Press, 4th Ed., 1960.
[4] WEINSTEIN, F.V., private communication.

