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ABSTRACT. We use Minimax Methods and explore compact embedddings in the context of
Orlicz and Orlicz-Sobolev spaces to get existence of weak solutions on a class of semilinear elliptic
equations with nonlinearities near critical growth. We consider both biharmonic equations with
Navier boundary conditions and Laplacian equations with Dirichlet boundary conditions.
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1. INTRODUCTION

Our concern in this paper is on finding weak solutions for the problem

(=1)"A™u = f(z,u) in Q, Bn(u)=0 on 00N (1.1)
where A™ is the elliptic operator
. N a*m N m
AT = g —3.7:,2"‘ + (m - 1)‘2‘ ——_axf"aa:;" m = 1,?,

1#)

f: QxR — Ris a Carathéodory function, @ C R" is a bounded domain with smooth boundary
09 and the boundary operator B,, is given by

B’"(u) = (u1 (m - I)Au) )

that is, Bm(u) = 0 means either the Dirichlet or the Navier boundary conditions according to
m=1lorm=2.
By a weak solution of (1.1) we mean an element u € H,, = H}(Q2) N H™(Q) satisfying

u7l‘ - I,u v’ v E }im
{ ) m /nf( )
with Au = 0 on 90 when m = 2, where

(u,v)mE(m—l)/ﬂAuAv+(2—m)/ﬂVqu u,v € Hp,.
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By the way (.,.),, is an inner product in H,, we denote by ||.||. its corresponding norm and
we remark that H,, is a Hilbert space.

Now let a : [0,00) = IR be a right continuous, nondecreasing function satisfying the following
conditions

a(0)=0, a(t)>0 fort >0, a(t)—> o0 as t = o0 (1.2)
and let . oN
At) = /; a(|s|)ds and p* = N —om)’
We shall assume that both
|[f(z,t)| < C1 + Cya(lt]), (z,t) €2 x R (1.3)
for some C; > 0, C; > 0 and
A(t) = o(tF") as t — oo. (1.4)

Now consider the functional .
_ 1y
In(w) = 3wl = [ F(z,w)de, € Hy

where F(z,t) = J; f(z,s)ds. It follows under conditions (1.2)(1.3)(1.4) and condition (1.5) below
that I,, € C'(Hn, IR) and its derivative is given by

(I (), 0) = (u,v),, — /n F(zu)y uyv € Hn.

We shall look for weak solutions of (1.1) by finding critical points of I,. Our main result is
the following.

THEOREM 1. Assume (1.2)(1.3)(1.4). Assume in addition that

alt) < 1) te R, (15)
f(z,t) =o(t) t— 0, uniformly z € Q (1.6)
0<0F(z,t) <tf(z,t) ae. 2€Q [t|>M (1.7)

for some M >0, 6 > 2.

Then (1.1) has a non zero weak solution.

Our Theorem improves results by Rabinowitz [15], Gu [7], deFigueiredo, Clement & Mitidieri
[3] in the sense that we allow less restrictive growth on f(z,t). It is also related to some results
in Brézis & Nirenberg [14], Pucci & Serrin [12], van der Vorst [13].

We employ the Ambrosetti & Rabinowitz Mountain Pass Theorem as in some of the above
mentioned papers and the main point here is the use of Orlicz and Orlicz-Sobolev spaces to
overcome compactness difficulties.

2. PRELIMINARIES

We shall apply the following variant of the Ambrosetti & Rabinowitz [2] Mountain Pass The-
orem (see Mawhin & Willem [6]).
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THEOREM 2. Let X be a Banach space and let / € C!(X, R) with I(0) = 0. Assume in
addition that

I(u) > r when |u|| =p, forsome r,p>0 (2.1)
I(e) <0, forsome e€ X with |le|| > p. (2.2)

Then there is a sequence u, € X such that
I(up) = ¢ and I'(u,) =0
where

=i >
c=inf max I(y(t)), c2r

and

[={yeC((0,1],X) | 7(0) =0 7(1) =€}.

We shall apply theorem 2 with I = I, and X = H,,. The two lemmas below are crucial in
applying theorem 2 to prove theorem 1.

LEMMA 3. (The Mountain Pass Geometry) Assume (1.2)-(1.7). Then (2.1)-(2.2) hold true.
We remark that by lemmma 3 there is a sequence u, € H,, such that
In(us) = ¢ and I (un) = 0.
Such a sequence is called a (PS), sequence.

We are going to show, (see lemma 5 below), that u, has a convergent subsequence. The proof
of lemma 5 uses a crucial compactness type result (see lemma 4 below).

Prior to stating lemma 4 we shall recall some notations and basic results on Orlicz and Orlicz-
Sobolev spaces. We refer the reader to Krasnosels’kii & Rutickii [5], Gossez [4], Adams [1] for an
accounting on the subject. In this regard a function A satisfying the set of conditions:

A is convez, even, continuous (2.3)
A(t)=0 iff t=0 (2.4)

A 0 whent—0
e 7 {oo when t — oo (2:5)

is referred to in the literature on Orlicz Spaces as an N-function. An Orlicz space is defined by

La(®) = {u:Q = R | u is measurable and /ﬂA(llul) < oo forsome | > 0}

|u|A_;:1%{a>o| /ﬂA(a <1

turns it into a (not necessarily reflexive) Banach space and as a matter of fact L4(Q2) = L*(92).

and the norm given by

Corresponding to A there is an N-function labeled A called the conjugate function of A which
satisfies the so called Young’s inequality
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st < A(t) + A(s)

and in addition
ta(t) = A(t) + A(a(t))

where .
At) = [ a(lsl)ds

and a satisfies (1.2).

Moreover one also has a Hélder inequality namely

/u v < 2ulz,foles-
Now the Orlicz-Sobolev space is defined by
W™La(Q) = {u € La(Q) | D*u € La(Q), |of < m}
and the norm .
H

llull = [ 2 ID"uIiA}_

lof<m

turns it into a Banach space.

LEMMA 4. Assume (1.4). Then H,, < L4(), m =1,2

LEMMA 5. Assume (1.2) — (1.7). Then the sequence u, has a convergent subsequence.
3. PROOFS.

PROOF OF LEMMA 3.

At first given € > 0 there is by (1.6) some § > 0 such that

f(%t)-SC, ] <dé ae z€f

so that ¢
F(z,t) < §t2’ [t/|<é ae z€Q.

On the other hand from (1.3),(1.5) we have
|£(2,0)| < Cy + Calt|®™V

so that c
F(z,t) < CiJt| + p—j|t|r‘, ae. z€Q, te R

Hence

F(z,t) S 2+ Golt]", ae z€9Q, te R (3.1)

Now observing that

(m—l)/ﬂ]Aulz+(2—m)/|Vu|22 Al,,,/nuz
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where A, is the first eigenvalue of

(=D)™A™u=Au in Q
B.(u)=0 on 09
and using (3.1) we get
€

< : P
P < glulfy + G [ ol
CLAIM 1. |ulgr < Clltfim, 4 € Hm .

Using CLAIM 1, we get

€ .
< 2 4
J P < gr=liulf + Clully

so that

1 € .
In(u) 2 (5 = gl = Cllull

Therefore there are p > 0,7 > 0 such that
In(w) 27, ullm = p.
On the other hand using (1.7) it follows that
F(z,t) > CJtf, t|> M ae. z€Q.

Now take ¢ € C§°, ¢ 20, ¢ £ 0 and A > 0. Then

AZ
In(3) = Sl - [ @)= [ Fa.)

Since

F(z,0¢) > —C1)¢ — C2A(M9)

we get

LIGIE + hoca (CAG + C2ADS)) = fugom F(z,6)
SR, + Lrgre (CLM + CoA(M)) = o X >0

LNSI2 + Crr = X fo x5 22
Now, by Lebesgue Theorem
'/‘2¢9X¢>LA’. - Ld’a

In(Ap) = —o0 as A — oo.

VERIFICATION OF CLAIM 1. If m = 1 CLAIM 1 holds by the Sobolev inequality. So let
us assume m = 2. Letting

In(A9)

IN INIA

Thus

-— a
lull22 = fgglng ulra,
it is an easy matter to check that the space H, endowed with ||.|2,2 is complete. We claim that
llullz < Cllullzz.

Indeed,
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0%u
2 _ 2 ¢ OUn) < a2, ) = 2
Il = [ 180 < € (max [ 1537) < € (maxioults) = i,
Hence we also have
llull22 < Cllullz (3.2)
and by Sobolev embedding we get |u|;,+ < C|ul|2, showing CLAIM 1 and thus proving lemma 3.

The proof of lemma 4 is a consequence of a general result due to Donaldson & Trudinger [9]
(see also Adams [1, Theorem 8.40]). For the sake of completeness we recall that result in an
Appendix. (see THEOREM A.1)

PROOF OF LEMMA 4.

Case m = 2. Applying the notations of theorem A.1 let
Byl(t)=V2th, t 20

" (Ber)~'(7)
- t(Bk-1)" (7
(B0 = [ e 120, k=12

T N

We claim that
SR B0 = 00 for k=0,1. (3.3)

and

Il L $dr < 0o for some k > 2. (3.4)

By (3.3) and (3.4) J is defined and 2 < J < N.

Indeed by computing we find that

By\(t) = 2=, 5 (3.5)
and
Byl(t) = AN-2 55 (3.6)

Now using (3.5) and (3.6) and computing again we get (3.3). Thus J > 2.
In order to show (3.4) it suffices to evaluate

¢ (Bn-1)~M(r)

(N+41
0 TN

dr.

But -
Bi'(t) = Cnat ™ t20, Cni>0, k>1

and from this

= BR\(r)
/1 e dr < oo.

By computing again we find that
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1 -1
/ (B (r) [)N“( )T)d‘r<oo, k=1,2
L e

Therefore by theorem A.1 we have
W2Lp, () = La(Q),
since as we have shown above J > 2 and yet by (1.4)

By(M) _ Cwaltf”
A A

The case m =1 that is

— 00 as t—>o00, A>0.

WILBD(Q) — LA(Q)

is similar and even more direct.

Hence
W™ Lg,(Q) — La(Q) m =1,2.

Using (3.2) we finally get
H, = Ls() m=1,2.

This completes the proof of lemma 4.

Before proceding to the proof of lemma 5 we consider the function a*(t) = 2Cza(t). We remark
that a*(t) has the same properties of a(t) and in addition its potential A*(t) = f¢ a*(7)dr is an
N-function having the same properties as A(t). In particular A* satisfies (1.4) and moreover

1
[f(z,t)| < Cy + §a'(t).
PROOF OF LEMMA 5.

Using (1.7) we have
C 2 3llully, = Jo F(z,un) 2 Jllull = C = § Jounf(z,un). (3.7)

Now since I} (u,) — 0 we have
[{I}.(un), un) | < €|luflm for largen

that is
el = | unf(z,un)| < elfullm for largen.

Hence

C = Yl = C = HluallZ, — Selltnllm
(4= 1) lluallZ, = Sellunlln — C

showing that u, is bounded in H,,. Hence by lemma 4 there is some u € H,, such that

v

un, = uin H, and u, = u in La ().

On the other hand, since I}, (u.) — 0 we have

(tmr )y, — /n f(z,un)é = 0(1), $€ Hn.
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We claim that
|f(z,un)lz,. <C, for some C > 0. (3.8)

Assume (3.8) for a while. Using Hélder inequality in Orlicz spaces for L4- and L 4. where A
is the conjugate function of A* (see e.g. Adams [1, pg 234]) we get

| (s @) | S 0(1) + [ f(z,un)|L 1 |8lL,4e (3.9)

Now replacing ¢ by u, — u in (3.9) and using (3.8) we have
0 = lim (un, un — u),, = lim (un, un),, = im(un, u,),, — (u,u),,
showing that u, = u in H,.
VERIFICATION OF (3.8). We have

Ja A (1 (=, un)]) C1 + 30 (un)))
(201) + 5 Jo A% (a* (Jua)))
A (lun]) + o uala” (|un|)

%
Cy [fn lunl”" + fo ual"] <

INININ DA
Q Q-~

showing (3.8) and consequently lemma 5.
PROOF OF THEOREM 1.
We have already shown using the lemmata above that I, has a critical point u € Hp, so that
=/ﬂf(:c,u)v, veEH,.
In the case m = 1, we have H; = H! and so u is a weak solution of (*);.
In the case m = 2 it remains to show that Au = 0 on Q. We use here an argument of [4].
By (1.3) and (1.5), we have

f(z,u) € L”" (Q) with l_ + —1—, =1
I

Letting g(z) = f(z,u) using the fact that p* > 2 it follows that W = W2*"(Q) n W2*'(Q) C H,

and we have
AAqu:/Qg(z)z, zeW.

Since g(z) € L?* () there is a unique w € W2?" () N W™ () such that
Aw=g(z), ze€q

Hence

/Aqu:/sz:/wAz, zeW.
Q Q Q
On the other hand given h € LP"(Q), there is a unique z € W, such that

Az =h(z), z€Q.
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Thus
/Q(Au —wh=0, he " (Q)

showing that
Au=w in §

and so
Au=0, on 0NQ.

This proves theorem 1.
4. APPENDIX

At first we recall a general result due to Donaldson & Trudinger [9] (see also Adams [1, theorem
8.40]).

Let C be an N-function and consider the sequence of N-functions

Bo(t)=C(t), t>0

_ ¢ (Be-1) 7' (r
(By)™'() = A —"Ti—‘,,_ﬂﬂ—)d k=1,2,---, t>0.
It follows that B!
/ (Be) (T)d T < oo for some k> 1.

Let us label J = J(C) the least such k.

THEOREM A.1. Assume Q C R" is a bounded domain with the cone property. Assume also

e 1 (By)7M(7)

TNT”"_—G'T <oo, k=12,....

Then

W™ Lp,(?) = Lp,(Q) (3.10)
provided J > m,

W™ Lgy(Q) = La(®) (3.11)
provided both J > m and A is an N-function such that

Bn(Xt)

—00 as t— 00, A>0.

A

Next we present an example to illustrate our assumptions (1.2) — (1.5).

EXAMPLE A.2. Let a: [0,00) = IR be glven by a(t) = *"7' if 0 <t <1, aqa(t) =
i o T <t<3anda(t)=2""1" Tl if n <t<(n+1)forn=3,4,..

Then a satisfies (1.2), (1.5) and it is a straightfoward calculation to show that A satisfies (1.4).
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