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ABSTRACT. We use Minimax Methods and explore compact embedddings in the context of
Orlicz and Orlicz-Sobolev spaces to get existence of weak solutions on a class of semilinear elliptic
equations with nonlinearities near critical growth. We consider both biharmonic equations with
Navier boundary conditions and Laplacian equations with Dirichlet boundary conditions.
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1. INTRODUCTION

Our concern in this paper is on finding weak solutions for the problem

(--1)’A’u f(x,u) in , B,(u)=O on OR (1.1)

where A is the elliptic operator

+(-) 2,

f x is a Carath4odory function, C is a bounded domain with smith boundary
0 and the boundary operator B is given by

B=() (, (m- l)&),

that is, B() 0 means either the Dirichlet or the Navier boundary conditions according to
m=lorm=2.

By a weak solution of (i.I) we mean n element E H= HJ(fl) H(fl) satisfying

with & 0 on 0fl when m 2, where
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By the way <., ">r is an inner product in H,, we denote by I1-11 its corresponding norm and
we remark that H, is a Hilbert space.

Now let a [0, oo) -+ be a right continuous, nondecreasing function satisfying the following
conditions

and let

a(0)=0, a(t)>0 fort>0, a -- cx as - c (1.2)

2N
A(t) a(]sl)ds and p"

(N 2m)"
We shall assume that both

If(x,t)l < C1 + C a(Iti), (x,t) (5 f (1.3)

for some Ct > 0, C2 > 0 and

A(t) o(tp’) as . (1.4)
Now consider the functional

t,(u)- llull%- F(x, u)dx, u

where F(z,t)= f f(z,a)ds. It follows under conditions (1.2)(1.3)(1.4) and condition (1.5) below
that I, (5 CI(H,, ) and its derivative is given by

(I(u), o) (u, v), Jn f(z, u)v u, v (5 H,.

We shall look for weak solutions of (1.1) by finding critical points of I,. Our main result is
the following.

THEOREM . Assume (1.2)(1.3)(1.4). Assume in addition that

a(It]) <_ Itl 0’’-’) (5 1:l, (1.5)

f(z, t) o(t) O, uniformly x (5 f (1.6)

0 < OF(z,t) < tf(z,t) a.e. z (5 f Itl > M (1.7)

for some M > 0, 6t > 2.

Then (1.1) has a non zero weak solution.

Our Theorem improves results by Rabinowitz [15], Gu [7], deFigueiredo, Clement & Mitidieri
[3] in the sense that we allow less restrictive growth on f(x, t). It is also related to some results
in Brdzis & Nirenberg [14], Pucci & Serrin [12], van der Vorst [13].

We employ the Ambrosetti & Rabinowitz Mountain Pass Theorem as in some of the above
mentioned papers and the main point here is the use of Orlicz and Orlicz-Sobolev spaces to
overcome compactness difficulties.

2. PRELIMINARIES

We shall apply the following variant of the Ambrosetti & Rabinowitz [2] Mountain Pass The-
orem (see Mawhin & Willem [6]).
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THEOREM 2. Let X be a Banach space and let I E C(X,) with I(0) 0. Assume in
addition that

I(u) > r when Ilull p, for some r,p > 0 (2.1)

t(e) < 0, for some e E X with I111 > p. (2.2)

Then there is a sequence u, X such that

I(u,) --} c and l’(u)-+ 0

where
c=infmaxI(7(t)), c >_ r

-EF 0<t<l

and
r {, c([o,1],x) 7(0) 0 -r(1) e}.

We shall apply theorem 2 with I I, and X H,,,. The two lemmas below are crucial in
applying theorem 2 to prove theorem 1.

LEMMA ;3. (The Mountain Pass Geometry) Assume (1.2)-(1.7). Then (2.1)-(2.2) hold true.

We remark that by lemma 3 there is a sequence un H, such that

I,(un) --> c and I(u) --> O.

Such a sequence is called a (PS)c sequence.

We are going to show, (see lemma 5 below), that u has a convergent subsequence. The proof
of lemma 5 uses a crucial compactness type result (see lemma 4 below).

Prior to stating lemma 4 we shall recall some notations and basic results on Orlicz and Orlicz-
Sobolev spaces. We refer the reader to Krasnosels’kii & Rutickii [5], Gossez [4], Adams [1] for an
accounting on the subject. In this regard a function A satisfying the set of conditions:

A is convex, even, continuous (2.3)

A(t) O ff t=O (2.4)

0 when --+ 0-- (2.5)oc when

is referred to in the literature on Orlicz Spaces as an N-function. An Orlicz space is defined by

La(f’t) {u f -+ :l u is measurable and ff A(llul) < oc forsome > o}

and the norm given by

]u]a infoe {a>O] fnA([)<_ l}
turns it into a (not necessarily reflexive) Banach space and as a matter of fact L,(f/) -4 LX(f).

Corresponding to A there is an N-function labeled called the conjugate function of A which
satisfies the so called Young’s inequality
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and in addition

st < A(t) + A(s)

ta(t) A(t) + -A(a(t))
where

A(t) a(lal)ds

and a satisfies (1.2).

Moreover one also has a H61der inequality namely

/ u.v < 21ulLlvl.
Now the Orlicz-Sobolev space is defined by

WmLa() {u 6 LA() Du 6 LA(), Il _< m)

and the norm

Ilull-- IDul
turns it into a Banach space.

LEMMA 4. Assume (1.4). Then Hm LA(f), m 1,2

LEMMA 5. Assume (1.2) (1.7). Then the sequence u, has a convergent subsequence.

3. PROOFS.

PROOF OF LEMMA 3.

At first given > 0 there is by (1.6) some > 0 such that

f(z,t) <e, Itl<6 a.e. zefl

so that
F(x t)< e__?, itl < g a.e. x 6 f.

On the other hand from (1.3), (1.5) we have

If(x,t)l <_ Cx + C2ltl
so that

CZltl"F(x,t) < Caltl / -’: a.e. z f,
p-

Hence

Now observing that

F(x,t)< 5t +C a.e. x6f/, te

(m -1) / lAul + (2 m) / lVul > /lm /f2 U2
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where AI, is the first eigenvalue of

(-1)’A=u= Au in f
B,,,(u) 0 on 0O

and using (3.1) we get

CLAIM 1.

so that

Using CLAIM 1, we get

() > (
Therefore there are p > O, r > 0 such that

On the other hand using (1.7) it follows that

F(x,t) >_ Cltle, Itl >_ M a.e. xel2.

Now takeCEC,_>0,0andk>0. Then

t() TIIII F(,x)- F(,)

Since

we get

F(z, k) _> -C,M) C2A(M)

Now, by Lebesgue Theorem

Thus

VERIFICATION OF CLAIM 1. If rn CLAIM holds by the Sobolev inequality. So let
us assume m 2. Letting

it is an easy matter to check that the space H2 endowed with 11.112,2 is complete. We claim that

Indeed,



326 J. V. GONCALVES AND S. MEIRA

(m,ax_qu ]’
j (max]D")

Hence we also have

and by Sobolev embedding we get lulls- < Cllll2, showing CLAIM and thus proving lemma 3.

The proof of lemma 4 is a consequence of a general result due to Donaldson & Trudinger [9]
(see also Adams [1, Theorem 8.40]). For the sake of completeness we recall that result in an
Appendix. (see THEOREM A.1)

PROOF OF LEMMA 4.

Case m 2. Applying the notations of theorem A.1 let

s-’(t) ,/t, > o

and

We claim that

and

(B)-’() fo’ (B(r)dr >_ 0, k 1,2.
T

for k 0,1.

for some k _> 2. (3.4)

By (3.3) and (3.4) J is defined and 2 _< d < N.

Indeed by computing we find that

B?(t) ’n-)t- (3.1
and

B’ ,V(N-2) t-- (3.6)2N

Now using (3.5) and (3.6) and computing again we get (3.3). Thus J > 2.
In order to show (3.4) it suffices to evaluate

But

and from this

j(o (BN_,)-’(r) dr.
7"

B[l(t) CN,kt-- > O, CN,k > 0, k >

BI(r)_... dr < oo.
7" Iv

By computing again we find that
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rl1( ,B,-’,r,dr < k= 2.
d0 T

Therefore by theorem A.1 we have

W2Ls0(f) - La(),

since we have shown above J 2 and yet by (1.4)

(t) c,ltl" as t, A>O.
a(t) A(t)

The case m that is

W1LBo(Ft) LA()
is similar and even more direct.

Hence
W’LBo(f) LA(l) rn 1,2.

Using (3.2) we finally get
H, - LA(f) m 1,2.

This completes the proof of lemma 4.

Before proceding to the proof of lemma 5 we consider the function a’(t) 2Ca(t). We remark
that a’(t) has the same properties of a(t) and in addition its potential A’(t) f a’(r)dr is an
N-function having the same properties as A(t). In particular A" satisfies (1.4) and moreover

If(x,t)l C1 + -a (t).

PROOF OF LEMMA 5.

Using (1.7) we have

c > 511ull f F(z, u.) k 1/211ull c f u.f(z, u.). (3.7)

Now since I’m(U,, --+ 0 we have

<I%(u), u)l_< ,llull for largen

that is

Hence

Ilull -/ unf(x, u,)l < llull for largen.

c }11.11 c- llu.ll-

showing that un is bounded in H,. Hence by lemma 4 there is some u 6 Hm such that

u,,---" u in H, and u,, --+ u in

On the other hand, since I’(u.) - 0 we have

<u,,)r-/af(x,u,)=o(1 ), Ce H,.
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We claim that

[f(z, U,,)[LA. < C, for some C > 0. (3.8)

Assume (3.8) for a while. Using H61der inequality in Orlicz spaces for Lt. and LA. where
is the conjugate function of A* (see e.g. Adams [1, pg 234]) we get

[<u,,> < o(1) / If(z, u=)lL. I[LA. (:3.9)

Now replacing by un u in (3.9) and using (3.8) we have

0 lim (u,, u, u), lim (u,, u,,), lim (u,, u,), (u,

showing that u,,, u in H.

VERIFICATION OF (.8). We have

f A" (a’(ll))

C + Cx [f lu.I" + f lu.I’] C

showing (3.8) and consequently lemma 5.

PROOF OF THEOREM 1.

We have already shown using the lemmat above that 1 h a critical point u 6 H so that

(, v) f, f(, ), H.

In the ce m 1, we have H H2 and so u is a weak solution of (,).

In the ce m 2 it remains to show that Au 0 on Off. We use here an argument of [4].

By (1.3) and (1.5), we have

f(z, u) e L"" (fl) with --+ 1.
p" p-

Letting #(z)= f(z, u) using the fact that p" > 2 it follows that W W’’(fl) W’"" (fl) C H
and we have

L AuAz L g(z)z, z W.

Since g(x) e L" (fl) there is a unique w e W’" (fl) W’" (fl) such that

Aw g(z), z e .
Hence

On the other hand given h L’(), there is a unique z W, such that

Az h(z), z e .
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Thus

showing that

and so

This proves theorem 1.

/a(Au- w)h 0, h C LP’(f)

Au=0, on

4. APPENDIX

At first we recall a general result due to Donaldson & Trudinger [9] (see also Adams [1, theorem
S.40l).

Let C be an N-function and consider the sequence of N-functions

It follows that

Bo(t) C(t), >_ o

fot (Bk-)-l(r)
dr, k= 2,... > O.(Sk)-’(t) =_ .

T

r dr<c for some k_> 1.

Let us label J =_ J(C) the least such k.

THEOREM A.1. Assume f C JiN is a bounded domain with the cone property. Assume also
that

fo (S)-(r)dr < o, k 1,2

Then

provided J >_ m,

W’L.o(a) L,(a)

provided both J >_ rn and A is an N-function such that

B,,(,t) oc as t-o, ,>0.
A(t)

Next we present an example to illustrate our assumptions (1.2) (1.5).

(3.10)

(3.11)

EXAMPLE A.2. Let a [0, o) - / be given by a(t) v’-I if 0 < < 1, a(t)
t(._)_ t(’-)if l<t<3anda(t) ’o(’o,(", if n<t<(n+l) for n 3, 4,

Then a satisfies (1.2), (1.5) and it is a straightfoward calculation to show that A satisfies (1.4).
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