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ABSTRACT. The charge simulation method has been applied to solve a lot of problems

in electrical engineering. However, the principle of the method is not known enough even now.

This paper is devoted to giving the theoretical and mathematical base for the charge simulation

method of numerical conformal mappings in ring domains. Therefore for example, the uniform

,convergence of approximations, the theoretical distribution of charge points, and the charges
will be mathematically discussed. An example is shown to help understanding of theoretical

considerations.
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1. INTRODUCTION

The charge simulation method is very useful to solve partial differential equations in electrical

engineering, and has been studied and developed by a lot of researchers. The method is easy

to understand, and can be applied only by solving a system of simultaneous linear equations.

Many examples show that the method makes possible to get rather precise solutions [or the

boundary value problems with respect to domains bounded by smooth curves.

However, many parts of the method depend on the experiment from the examles. For instance.

the best distribution of charge points is not known.

In this paper we will give the theoretical and mathematical base for the charge simulation

method of numerical conformal mappings in ring domains.

Then, the potential theory [10,16], especially the asymptotic theorems [5-9,11-14] on extremal

weighted hyperbolic polynomials play fundamental roles. The theorems depend on the notion

introduced in 1992 by Mhaskar and Saff [13]. We note that numerical conformal mappings not

depending on the charge simulation method have been shown in [4,15].

The results established in this paper are as follows:

(la) A new scheme for approximations is proposed for the numerical conformal mapping of

a ring domain.

(lb) The ditribution of charge points is characterized by the weighted extremal points.

(lc) It is theoretically shown that the numbers of charge points in the complements of a ring

domain must be equal to each another.
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(ld) If the outer boundary is the unit circle with a center at the origin, the charge points
exterior to it are represented by ( 1/,,, }=t, where {z,,,}= are the charge points interior to

the inner boundary.

(le) The approximations converge uniformly in the domain and on the boundary, if the charge
points are theoretically distributed.

The outline of this paper is as follows. In sections 2 and 3, the definition of weighted hyperbolic
capacity (shortly wh-capacity) and asymptotic lemmas on extremal wh-polynomials will be

introduced, respectively. In section 4 the lemmas are applied to establishing algorithms of a new

charge simulation method for numerical conformal mappings in ring domains whose each outer

boundary is the unit circle with a center at the origin. In section 5 the theoretical distribution
of charge poins is discussed. In section 6 a simple example is shown to help understanding of
theoretical considerations for the new charge simulatin method.

2. DEFINITIONS

In approximation theory, the asymptotic behavior of extremal polynomials has been studied

by a lot of researchers. In this section we describe the notions of weighted hyperbolic polynomials

(shortly wh-polynomials) and weighted hyperbolic capacity (wh-capacity) introduced by the

author [5] and Mhaskar-Saff [12,13], respectively.

Let D be a ring domain whose outer and inner boundaries are the unit circle 9’0 with a center

at the origin and a Jordan curve ", respectively. For the numerical conformal mapping of a

ring domain we establish a new charge simulation method depending on asymptotic lemmas on

extremal weighted hyperbolic polynomials. There the distance between z, and zj is defined by

[lZ’-,z,z, I(z,)(=, ),

where w(z) is a weight function.

All of the definitions for the usual weighted polynomials hold analogously for hyperbolic ones.

Let w w(z) be an arbitrary, continuous, positive function defined on the complex plane C.
For each integer n _> 1, we let P,, denote the class of all polynomials of the form

,(z) (1- ,z)()(,,)] (2.1)

which we call wh-polynomials of degree n.

Let M{’) denote the class of all positive unit Borel measures whose support is -. We define

wh-capacity by

where

and

caph(w, "),) exp(V,), (2.2)

/ z-
lw(z)w(t.)]da(z)da(t) (2.3)I,(a) log [It z

V, V(w, "y) sup I(a). (2.4)

Throughout the remainder of this paper, we assume that every p,.,.,(z) has all of the zeros on ".

Though this assumption is rather strong, it is the key point to establish the new charge

simulation method.
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Let # 6 M(7) be an extremal measure such that

I(tt)--- V,. (2.5)
The existence and the uniqueness of # were shown in [13,Theorem 3.1(b)]. We assume that

S 7, where S is the support of t.
For polynomials p,,(z) of degree n, the discrete unit measure defined on compact sets in the

complex plane C with mass 1In at each zero of p,,,(z) will be denoted by/,, t(p,.). It
will be called the normalized counting measure on the zeros of p,,,(z). If p,,,(z) has multiple

zeros, the obvious modification will be considered.

The weak convergence of v to v as n x will be defined by

lira /fdv,,--/fdv (2.7)

for every continuous function in the complex plane C with compact support.

3. LEMMAS

We present the fundamental lemmas on extrmal wh-polynomials that are devoted to mathe-

matical considerations of the new charge simulation method.

Since all of the lemmas established for usual weighted polynomials hold analogously for hy-
perbolic ones, we omit the proofs (see [5-9,11-14]).

Under the assumption mentioned in section 2, we state the main lemma which has been

verified in [6].

Lemma 3.1. Let - .... (z)(,,)]

be wh-polynomJals of degree n satis@ing the conditions (3a) and (35) below:

(3a) lim sup,,_.oo Ilp,,.(z)ll/" < caph(w,
(35) liminf,,._.oo ’],, log w(z,,.,) > flogw(t)dt(t).
Then, there holds the equality

lim ip,,(z)l ’/’ exp{g(z)} (3.1)

uniformly on every compact subset of D, where

(z) log[I
1 lw()w(t)]d,,(t).. (a.2)

We note that if (a.1) holds uniformly on every compact subset of D, the property (ab) follows

without inf and wih equality. It is easily shown by letting tend to 1 in (3.1).
Now, we show the converse of Lamina a.1.

Lemma 3.2. Let

lit(v.,(z) . ,z)(z)(z-,’)l
be wh-polynomials of degree n satisfying the equa/ity

im Iv.,(z)l ’" x{(z)} (3.)

uniformly on every compact subset o[D.

Then, there hold the relations

(a) nm up,_ IIV,,(z)ll/" < (,).

With the above notation we state a well-known theorem on the zeros distribution of extremal

polynomials which has been established in [12,p.88-89].
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/.,emma 3.3. Let

n Z- Z,,,,() [()()w(,,)]
and bt, t(p,,,) be wh-polynomials of degree n and the normalized counting measure ofp,
respectively, satisfying the equality

lim i,(z)l/ exp{g(z)} (3.4)

uniformly on every compact subset of D. Then, there holds

(A); g, converges weakly to

In fact, Lemma 3.3 has been proved for the case when 7 lies on the real axis and for the

w-polynomials

=HI( _: . ,)()1. (3.5)

Since the proof for the case of Lemma 3.3 is similar, we will omit it.

The following theorem has recently established by the author.

Lemma 3.4. Let #,, converge weakly to Iz as n oo. Then, we have

limsup IIr,,,.,o(z)ll’/" <_ ,ph(o,,z). (a.6)

From Lemmas 3.3 and 3.4 we have the following lemma under the assumption mentioned

above.

Lemma 3.5.

_m Ir,,,.,()l ’/" exp{g(z }

holds uni[ormly on every compact subset of D if and only if (A) holds.

(3.7)

We transform (3.3) to the form

li_m. 1-[ (lZ--,%’ )(,,)1,/ =exp{ logtl _tzlw(t)]dti(t)}. (3.8)

It is known that the equality

z-t
exp{ log[I

1 Zz Iw(z)w(t)]dg.(t)} caph(w, 7) (3.9)

holds quasi-everywhere (q.e.) on 7 [13]; that is, with the possible exception of a set having

capacity zero. Therefore, we obtain the equalities

p{/og[l( t)/(1 Zz)lw(t)ldg(t)}

exp{f log[l(z t)/(1 z)lw(z)w(t)]d(t)}

1

=w(z) (3.10)

q.e. on 7- Combining (3.10) and Lemma 3.5, we have the following
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Lemma 3.6.

2i-={I-[ l(i-,)I(’’)}’ =P{I lg[l
I -z (3.11)

=l

holds ufory on every comp sue of D ifd only if (A) hM. rhermore, if it is

saisHed, he

p( om[l( 0/(1 )()].()} 1
(3.)

hMds q.e. on %

t D’ be a ring doma who outer and inner boundaries e he unit ccle with a center

at the orion d a Jordan curve ’, respectively.

e sume that he function w f(z) maps D U 0 onto D’U , corresponding
The hnction f(z) is uniquely determined under the condition f(1) I. When the domain D
given, the modulus o D uniquely determined [I].

The ymptotic formula or the nth root of p,(z) can be obtained from one of ]p,(z)[.
Th follows from he fact that

og(m,()), -og im,()l, + arg(p,(z))’/ (3.13)

is analytic in D and Cauchy-Riemann relation holds between the real and imaginal parts [14].
Thus, using Lemma 3.6 with w(z) I/If(z)l the asymptotic formula for f(z) can be obtained

from the nth root of the weighted polynomial

s--I

and caph(w, "y).

Lemma 3.7. Under the condit/on (A), the approximation f(z) of f(z) can be obtained by

/() ’o{1-[ ’’ / (;)

for a sull]ciently large number n. Then f,(z) converges to f(z) uniformly on every compact

subset of D. 0 is determined by the condition f,(1) i.

4. ALGORITHMS

Using the terminologies of the charge simulation method, Lemma 3.7 is mentioned aa follows

for the numerical conformal mapping of a ring domain.

Algorithm 4.1. The approximation f(z) of f(z) is obtained as follows:

(4a) The charge points {z,,},__ satisfying the condition (A) are chosen on %

(4b) The charge at every charge point is assumed to be 1/n.
(4c) The approximation f(z) of f(z) can be obtained by

Z- Zr,,t

for a sufl]ciently large number n. Then f,(z) converges to f(z) uniformly on every compact

subset of D. is determined by the condition f (1) 1.

Algorithm 4.1 suggests us the following algorithm for the charge simulation method on the

numerical conformal mapping of a ring domain.
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Algorithm 4.2. The approximation f z) of f z) is obtained as follows:

(4d) The charge points {z,}= are ’theoretically’ chosen interior to ".
(4e) The charge at every charge point is assumed to be 1/n.
(4f) The approximation f(z) is represented by

f,(z) e’"{H 1 ,,z }1/’ (O;real) (4.2)
t=l

for a stdticiently large number n. Then f(z) converges to f(z) uniformly on every compact
subset of D U ". O, is determined by the condition f(1) 1.

Algorithm 4.2 suggests us the following

Algorithm 4.11. The approximation f,(z) of f(z) is obtained as follows:

(49) The charge points {z,, }[’=, and the collocation points {(,, }’:, are ’appropriately’ chosen
inteior to 7 and on 7, respectively.

(4h) When a, (i 1, 2,..., n) are the solutions of a system ofsimultaneous linear equations

a, log li -_ ":,,-,k log If(,,,k)l (k 1, 2,..., n), (4.3)

a + 32 +". + an 1, (4.4)

the charges tit {,r,, =1 tire giwen by {l, }..1
(4i) The approximation A (z) is represented by

2I z
)"’ (0,,; real) (4.,5)f(z)--e’" (1 g,,z-..z,,.,

for a sutticiently large number n. 0,, is determined by the condition f, (1) 1.

Algorithm 4.3 requires n- 1 values I(,)1 within k 1,2,...,n to be given. However, all

of the values are not required when the image domain D’ is a disk with a center at the origin

(o=ly the value II(C,)I- (k 1,2,...,,t) is =ot k=ow). From Algorithm 4.3 for this case,

we have the following

Algorithm 4.4. The approximation f(z) off(z) is obtained as follows:

(4j) The charge points {z,,,}l’= and the collocation points {,,, },=, are appropriately chosen

inteior to / and on % respectively.

(4k) When a, (i 0, 1, 2,..., n) are the solutions ofa system ofsimultaneous linear equations

’., ,o ( , 2,...,,), (4.)

cq + 32 +-" + c,, 1, (4.7)

(4/) The approximation f,(z) is represented by

,=

for a scJently large number n. 8, Js deterned by the contJon f(1) 1.

The numerical experiments show that the approximations

1
a0logp, a,- (i=l,2,...,n)

n

(4.8)

(4.9)



NUMERICAL CONFORMAL MAPPINGS IN A RING DOMAIN 295

with

p cph(1, "),,,) (4.10)

hold, when the charge points and the collocation points are theoretically distributed. The
method introduced in this section has the following advantages compared to the standard one:

(4m) The charge points
1

exterior to 70 is uniquely determined by ones {z.,,
(4n) The number of charge points exterior to % is equal to one of them interior to -yp.
(40) When the charge points on the analytic curve whose image is a circle with center at the

origin, typical examples show that numerical results of high accuracy can be obtain.

5. DISTRIBUTION OF CHARGE POINTS

In this section we show two kinds of weighted extremal points satisfying the condition (A).
For each integer n >_ 1, let Q. be a set of wh-polynomials

where the zeros {z., },= lie on the boundary 7 of D.
Let q,(z) be a polynomiM such that

IIq2,(z)ll inf IIq.,(z)ll.

The existence of q,,,(z) is easily proved by the usual method. Then, q,,(z) is called a wh-

Chebyshev polynomial with zeros on 7- It is known that it satisfies the condition (A) [5].

To show another polynomial satisfying he condition (A), we introduce the definition of wh-

transfinite diameter. For each integer n > 9., let

z,,,,- z,,,, lw(z,,.,)w(z,,,,)]}_/(,,(,,_,)) (5.3).(,) sup

{ l-[ [I_,,:,,

(,) im .(,) (.4)

is called wh-transfinite diameter of 7. It is said that {z,,},"=, are wh-Fekete points. It is then

known that wh-polynomials

z-
k,.(z) (.)

2=I

stisfy the condition (A) [11].

B. NUMERICAL EXPERIMENTS

In this section, a simple example is shown to help understanding of theoretical considerations

or the new method introduced in the previous section.
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Let
z--a

(0<a< ).I()
-z

This function maps conformally a domain D onto

(6.1)

{; p < I1 < 1} (6.2)

where D is a ring domain whose outer boundary is the unit circle.

Let f(z) map a ring domain Do bounded by % and a Jordan curve /p onto an annulus

{w; 1 > Iwl > p} bounded by % and a Jordan curve 7’p, corresponding % to "p with p > 0.

The inverse function of f(z) is

w+a

The charge points (z,, },1 on "r. and the collocation points {.,, },=1 on 7 are chosen as the

images of the points

pexp(2rj(i- 1)), j v/-Z (6.4)

being distributed on Iw] p under the mapping z h(w). We consider the case where p 0.1

and 0.6. It is known that these points are uniformly distributed (which means that these points

satisfy the condition (A)) on the circles 7 and 7, respectively [3].
For n 10, the charge points with p 0.1 and the collocation points with p 0.6, we solve

a system of simultaneous linear equations (4.6) and (4.7) and obtain the following results (to
know the distribution precisely, all of the charges are denoted)-

Table 1: Charges by Algorithm 4.4 for n 10

ao -0.51082563E+00
a3 0.99986970E-01
as ’10003428E+00
a 0.99997138Ffi01

a 0.10000704E+00
a 0.10002397EA:00
c7 0.99970734E-01
al0 0.99993097E-01

a 0.10000i23E+00
a 0.99968159E-01
as 0.10001742E+00

The solution satisfies the relation (4.9)

1
a0-- log0.6 =-0.510825623..., a,-- ]- (i 1,2,..., 10) (6.5)

with high accuracy (it is remarkable that the number of charge points is only 10).
Using the charges {a,}’__ obtained above, the approximations (4.8) are represented. The

accuracy of the errors are estimated by the maximum of

If.(.,,+,/) (6.6)

where ,,+/2 is the middle point between ,,, and ,,,+1. In fact, we must estimate the errors

also at the collocation points. However, we can obtain anlogous results there.

Applying reflexion principle and maximum principle, the error on the unit circle will be

estimated by one on the inner boundary %. Then, the accuracy may decrease by order of 10-1

at most.

We obtain the errors as follows (to know the distribution precisely, all of the errors are

denoted):
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Table 2: Errors of (4.8) for n I0

4.4703483E-08 6.6fi40019E-08 1.2435162E-07 I. 1920929E-07
1.1920929E-07 8.4293693E-08 1.1920929E-07 9.2534291E-08
8.4293693E-08 5.9604644E-08 ******

Applying Algorithm 4.2 with n I0, using the above distribution of charge points and the

theoretical values
1

(i 1:2, 10), (6.7)a0=log0.6, ,=-6
the errors IJ’ (z)- f(z)l of the approximation (4.2) are estimated. Then the errors are as follows:

Table 3: Errors of (4.2) for n 10

1.2731556E-07 1.0745380E-07 8.2987058E-08 1.2287812E-07
7.4505805E-08 1.2731556E-07 1.4901161E-07 1.4790153E-07
1.999’2004E-07 6.6640019E-08 ***** *****

For the above example we have used the parameter p 0.1 for the charge points. If the charge

points are not too near the boundary, analogous accuracy is obtained.

The numerical caluculation has been performed by Runfort-f77 (PC98-486AV) and single

precision.

7. REMARKS

We have shown that the method introduced in this papar has the advantages copared to the

standard one, when the charge points are theoretically distributed.

Amano’s method [2] for the conformal mapping from a general ring domain to a standard

one is applicable, even when the theoretical distribution is not known. It has also been shown

that the approximations with high accuracy can be obtained.

Algorithm 4.4 is applicable when the charge points and collocation points are distributed by

the way of Amano.
We wish that this paper would contribute to presenting the theoretical base also for Amano’s

method.
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