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1. INTRODUCTION.
Some fundamental results on fixed points are proved by Hicks (1992) [1],

and Hicks and Rhoades (1992) [2] in d-complete topological spaces (Kasahara,
1975a&b [3,4]).
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Recently, Popa (1990) [5] has improved previous results on fixed points for

expansion mappings (Kahn et al., 1986 [6]; Popa, 1987 [7] ), by using a

supplementary condition. Here, the object of this paper is twofold. One to

extend the conditions of Popa (1986) [5], for non-surjective expansion mappings.
Two to prove fixed point results in d-complete topological spaces.

This goal will be reached by using semi-compatible pairs of mappings. Our
results improve a number of results, including Kang and Rhoades (1992) [8], Kahn

et al. [6], Popa [5,7], Rhoades (1985) [9], Hicks and Rhoades [2], Wang et al. [10], in

a non-metric setting under semi-compatible conditions.

2. PRELIMINARIES
Let (X, t) be a topological space and d: X X [O, oo ), such that a distance is

defined by: d(x, y) 0 iff x y. Space X is said to be d-complete if: (n=l*o) d(xn,

Xn/l) < oo implies that {xn} is a Cauchy sequence in X
A mapping T: X X is w-continuous at x if xn x implies T(xn) T(x), also

written Tx. Recall the topological definition: let //(x) a neighborhood of x. Then: V

a //(x), :1 f(a) //(f(x)). More detailed studies of d-complete topological spaces
can be found in Kasahara [3,4].
DEFINITION 2.1 A symmetric on a set X is a real-valued function d on X suct
that:

(i): d(x,y)> 0andd(x,y)=0: x=y

(ii): d(x,y)=d(y,x)

This kind of distance essentially differs from a deviation (5) in that: 5(x, y)
O=x=y.

Let d a symmetric on a set X, and

(VE>O), (x X): S(x, I) {y X: d(x, y) < E)

which provides open topological balls. The latter are convex spaces, thus

provided with the triangular inequality.
From Hicks and Rhoades [2], we define a topology, t(d) on (X) by // t(d) iff

for each x // and each E > 0, S(x, E) is neighborhood of (x) in the topology t(d).

(Vx //), (e > 0), S(x, e) //(x), (//(x) t(d)
A topological space X is said to be symmetrizable if its topology is induced

by a symmetric on X. Alternatively, let e a neutral element:

(Vx X),(3y, x+/-y=e,y+/-x=e)

DEFINITION 2.2 Let F, G two self-maps of a topological space (X,t). These

mappings are said to be semi-compatible if the following conditions hold:

(D1): (p X),(Fp=Gp) FGp=GFp
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(D2) the w-continuity of G at some point p in X implies:
lim FGxn Gp, whenever {xn} is a sequence in X such that:

lim Fxn lira Gxn p, for some p in X.
n---- n-

REMARK 2.1 The d-complete symmetrizable space forms an importanl
class of examples of d-complete topological spaces [1].

REMARK 2.2 Compatibility [12] is defined in metric while semi-

compatibility [11] is defined in non metric setting. Therefore, axioms D1 and D2
are independent.

3. NOTATIONS AND AUXILIARY RESULT.
Throughout this paper, we will adopt the following notations" M is an

arbitrary set with values in a Hausdorff topological space (X, t); N is the set of all
positive integers, FI + is the set of all non-negative real numbers, and I’ is the

family of all functions -(FI+)3 FI+, satisfying the following properties"

( 1) (qt) is continuous on (FI+)3.

(W-2)" W(1, 1, 1)=h> whereh I:1+.
(q/-3) let (ct, I)e FI+ such that (12):

(g-3-A) t _> (1, fl, ct) h.fl
(-3-B) tx > (1, ix, I) h.l
(-3-C) /x0, q/(a, 00)>tt
For condition (-1), the theorem of Tychonoff states that the product of a

family of compact spaces is compact, that is, Hausdorff separated, and each open
cover contains a finite subcover (Heine-Borel-Lebesgue property), if each space
of the family is compact.

Condition (-3) is that already used by Popa [5,7] for expansion mappings.
Alternative forms will be discussed below.

We also need the following important statement.

PROPOSITION 3.1 Let A, B, S and T be self-maps of M, such that each of th
pairs A, S and B, T are semi-compatible, and that, for all x, y in M, and

(3.1) d(Sx, Ty) > v(d(Ax, By), d(Ax, Sx), d(By, Ty)).

If there exists u, v, and z in M such that Au Su Bv Tv z, then Az Bz

Sz z z.

PROOF Since A and S are semi-compatible mappings, and Au Su z by
property (D1), we have Az ASu SAu Sz. From 3.1 we also have:

d(Sz, z) d(Sz, Tv)

> (d(Sz, z), O, O)

> d(Sz, z)
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by property (g-3-C). From this contradiction, it follows that Sz z. By symmetry,

Bz=Tz =z.

4 MAIN RESULTS.
We now state and prove our main two theorems and emphasize some of

their corollaries and related theorems.
THEOREM 4.1 Let A, B, S, T, be self-maps of M such that each of the pairs A,
and B, T are semi-compatible mappings and satisfy both the previous condition

3.1, and the following 4.2 and 4.3:

(4.2) A(M)
_
T(M), and B(M)

_
S(M)

(4.3) S(M) is d-complete.
Then, A, B, S, T have a unique common fixed point in M.

PROOF.
4.1-a Existence of a common fixed point.

For an arbitrary point xo in M, by 4.2 we define a sequence {xn} in M such
that; for all n 0, 1, 2

(4.4)
Tx2n+l Ax2n Y2n (say),

Sx2n+2 Bx2n+l Y2n+l (say),

Define

obtain"
dn d(yn, Yn+l) for all n 0, 1, 2 Then, by applying (4.4), we

d2n d(Sx2n+2 Tx2n+l

-> lg(d(Ax2n+2, Bx2n+l), d(Ax2n+2, Sx2n+2), d(Bx2n+l, Tx2n+l))

Ip’ (d2n+ 1, d2n+X, d2n)

-> h.d2n+l by property (g-3-A)

This implies that d2n+l -< 1/h. d2n. Similarly, we can get d2n+2 --< 1/h. d2n+l.
In general, we have for do > 0, dn < l/h. dn-1 < < l/hn. do for all n e N. Since

h > 1, this implies that lim dn 0. Since {dn} is nondecreasing, d2n =0 for some n.
n--> oo

Consequently, d2n+l --0. Thus, we have clearly lim(n-.o)dn 0

It follows that (n=l-,** d(yn, Yn+l is convergent.

Since, in addition, S(M) is d-complete, sequence {Yn} converges to some z in

S(M) hence, the subsequences {Ax2n}, {Bx2n+l}, {Sx2n}, {Tx2n+l}, of {Yn}, also

converge to z.
LetSu=z for someuinM.

Putting x u and y x2n+l in relation 3.1, we obtain:

(4.5)" d(Su, TXn+l ) -> v(d(Au, Bx2n+l), d(Au, Su), d(Bx2n+l, Tx2n+l)).
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Letting n --> oo in 4.5, we get:

0 _> (d(Au, z), d(Au, z), 0)
_> h.d(Au, z) by property (g-3-A),

which implies that Au z.
Since z Au A(M) T(M), there exists a point v in M such that Au Tv.

Again, replacing x by u and y by v in 3.1, we obtain:

0 d(Su, Tv) _> g(d(Au, By), d(Au, Su), d(Bv, Tv))

g (d(z, av), 0, d(Bv, z))
>_ h.d(Bv, z) by property (-3-B),

which implies that Bv = z.
Therefore, we have Au Su Bv Tv z, and hence, by proposition 3.1, it

follows that z is a common fixed point of A, B, S, and T.

4.1-b Unia_ueness of the common .fixed point.
Let us suppose that there exists a second distinct common fixed point w of

A, B, S, and T. Then, from relation 3.1, we have:

d(z, w) d(Sz, Tw)

_> v(d(Az, Bw), d(Az, Sz), d(Bw, Tw))

d(z, w), O, O)

> d(z, w) by property (F-3-C),

which is a contradiction.
Hence, z is the unique common fixed point of A, B, S, and T.
This completes the proof.

REMARK 4.1 Theorem 4.1 improves and generalizes Theorem 1 of Popa [7]
and theorem 3 of Khan, Khan and Sessa [6], to d-complete topological spaces,
under semi-compatible conditions.

Two corollaries and an infering theorem are worth noting.
COROLLARY 4.1 Let A, B, S, T be self-mappings of Hausdorff space M, suct
that pairs A, S and B, T are semi-compatible and satisfy both conditions 4.2, 4.3,
and the following condition 4.6:
(4.6) There exists a, b, c I:1 + with a>l, b<l,c <1, and a+b+c >1, such

that, if:

d (Sx, Ty) > a.d (Ax, By) + b.d (Ax, Sx) + c.d (By, Ty)

for all x, y in M with r a positive integer.

Then, (A), (B), (S), (T), have a unique common fixed point in M.
PROOF Let us further define the mapping (1:1+)3 -> I:1+ as follows:

V (tl, t2, t3) [:1 +, :! r >0 such that
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g (tl, t2, t3) (a.tl r + b.t2r + c.t3r) 1/r

Then, gt I’ and thus, by Theorem 4.1, this corollary follows.

REMARK 4.2 It should be noted that corollary 4.1 improves and generalizes
Theorem 1 of Popa [5] to this non-metric setting.

If we put b c 0 in Corollary 4.1, we obtain the following:
(Ol:lOl.l.,l:lY 4.2 Let A, B, S, T be self-mappings of M, such that pairs A, S ant

T are semi-compatible and satisfy both conditions 4.2, 4.3, and the following
condition 4.7:
(4.7):There exists a constant k (1:1+) with k > 1, such that

d(Sx, Ty) >_ k.d(Ax, By),
for all x, y in (M)

then, A, B, S, and T have a unique common fixed point in M.
If we replace A=B S by S2, and T by TS in Theorem 4.1, then we obtain the

following result in which it is important to note that the semi-compatibility
coqdition is no longer necessary:
THEOREM 4.2 Let S and T be self-mappings of M, such that S(M) TS(M)
S(M)

_
S2(M) and S(M) is d-complete. Suppose, in addition, that there exists such:

(3F), Vx, y M,

d(S2x, TSy)>_ t (d(Sx, Sy), d(Sx, S2x), d(Sy, TSy)).
Then S and T have a unique common fixed point in M.

REMARK 4.3.a If we define as in the proof of Corollary 4.1, then the resub

obtained in this new setting improves and generalizes Theorem 2.4 of Pathak et

al., (1996) [13]. The original theorem of this type was proved by these authors in

a complete metric space.
Now let denote the family of all functions #:1:1+ -> I:1 + which are non-

decreasing, upper semi-continuous from the right, with:
(0) 0, (t) < and Z(n_-l--,**) n(t) < for each > 0,

We finally formulate the following interesting theorem:
THEOREM 4.3 Let A, B, S, T, self-mappings of M, such that pairs A, S, and B, 1
are semi-compatible and satisfying both of conditions 4.2, 4.3 and the following
condition 4.8:

(4.8) # (d(Sx, Ty)) _> max {d(Ax, By), d(Ax, Sx), d(By, Ty)}

for all x, y in M where e ).
Then, A, B, S, T, have a unique common fixed point in M.

PROOF -4-2a. Existence of a common fixed p0..int.
For an arbitrary point Yo e M, define a sequence {Yn} as in 4.4. Also define

dn as

dn d(yn Yn+ ), V (n 0, I, 2

Then, by properties (4.4)and (4.8), we have:



FIXED POINTS FOR NON-SURJECTIVE EXPANSION MAPPINGS 283

(4.9) # (dEn) (d(SxEn+2 TXEn+1 )

> max {d(AXEn+2, BXEn+l), d(AXEn+2, SXEn+2),
d(BXEn+l, TXEn.+l)

max {dEn+l, den

Now, suppose that max {dEn+l, den} dEn for some n. Then from 4.9 we
have (dEn)>- dEn which is a contradiction. Hence, max {dEn+l, den} dEn+l for
each n. From 4.9 wc have dEn+l-< (dEn) and similarly dEn+2-< (dEn+l).

In general, for do > 0, and n N dn -< (dn-1) -< -< i(dn-i) -< n(do)

Since Z(n=l) n(t) is convergent for each > 0, it follows that Z(n=l-**))
d(yn, Yn+l is convergent. In addition, since S(M) is d-complete, the sequence
{Yn} converges to some z in S(M), and hence this states that the subsequences

,{AX2n}, {Bx2n+l}, {Sx2n}, and {Tx2n+l}, of {Yn} also converge to z.

Let Su z for some u in X. Putting x u and y X2n+l in inequality 4.8 and
then, letting limits as n -->oo, we obtain:

(0) 0 _> d(Au, z)
which implies that Au z. Since A(M) T(M), there is a point v in M such that Au
Tv z. Again, replacing x by u and y by v in inequality 4.8, we obtain:

(0) 0 d(Su, Tv) > d(Bv, z)

which means that Bv z.
Therefore, Au Su Bv Tv z.

However, since A and S are semi-compatible mappings and Au Su z,

then, by property DI, in definition 2.2, we have Az ASu SAu Sz.
By property 4.8 we also have:

(d(Sz, z)) , (d(Sz, Tv)),
> max {d(Az, Bv), d(Az, Sz), d(Bv, Tv}

d(Sz, z)

which is a contradiction, since for each > 0:

(t) < ** (for: d(Sz, z) > 0), (d(Sz, z)) < d(Sz, z)
Therefore, Sz z, and by symmetry, Bz Tz z, which demonstrates the

existence of z as a common fixed point of A, B, S, and T.
4-2b. Unioucncss of the common fixed t)oint.

This property readily follows from property 4.8, which completes the

proof.
Now, the last two theorems infer from replacing the expression: max { d(Ax,

By), d(Ax, Sx), d(By, Ty)} by d(Ax, By), and other terms.

THEOREM 4.4 Let A, B, S, T, be mappings from M into itself, such that tM
pairs A, S, and B, T are semi-compatible and fulfill on one hand the previous
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properties 4.2,4.3, and on the other, at least one of the additional following

conditions:

V x, y (OI), (),

(4.10) (d(Sx, Ty)) > d(Ax, By)

(4.11) (d(Sx, Ty))> 1/2 [d(Ax, By) + d(Ax, Sx)]

(4.12): (d(Sx, Ty))> 112 [d(Ax, By)+ d(By, Ty)]

(4.13) (d(Sx, Ty)) > 1/3 [d(Ax, By) + d(Ax, Sx) + d(By, Ty)]

Then, A, B, S, T have a unique common fixed point in M.

If lastly we replace A B by S, S by S2, and T by TS, then we obtain the

following result in which, again, the semi-compatibility concept is not necessary.
THEOREM 4.5 Let S and T, be mappings from M into itself, such that S(M)

_
TS(M), S(M)

___
S2(M), and S(M) is d-complete. Suppose that in addition:

(=1 @), ’ (x, y) (M), at least one of the following conditions holds:

(4.|4) (d(S2x, TSy))> d(Sx, Sy)

(4.15) (d(S2x, TSy))> 1/2 [d(Sx, Sy) + d(Sx, S2x)]

(4.16) (d(S2x, TSy))> 1/2 [d(Sx, Sy) + d(Sy, TSy)]

(4.17) (d(S2x, TSy))> 1/3 [d(Sx, Sy) + d(S, $2) + d(Sy, TSy)]

Then, S and T have a unique common fixed point in M.

Some subsequent remarks will be raised in discussion.

5 DISCUSSION.
The above results can be examined both from a pure mathematical

viewpoint and also with respect to some implications in mathematical physics.

5-1 Some mahemical remarks.
REMARK 4.1. An alternative form of condition (-3) ’was used first b
Delbosco (1981) [17] and then by Fisher and Sessa (1986) [18], for contraction

maps in metric spaces. This would be: if ct, I I:1+ are such that" t > (1, l, t), or

a > gt (tt, 13, I), or t > gt (1, a, 13), then a > h.13 In such case, proposition 3.1 of this

paper cannot be proved. The question of whether theorem 4.1 could be proved
with the latter definition remains open.
REMARK 4.2 It should be noted that if condition 4.8 was changed into:

(d(Sx, Ty))> sup {d(Ax, By), d(Ax, Sx), d(By, Ty)} with d(Ax, Sx)=0, d(By, Ty)=0,

then one could meet the following condition" (d(Sx, Ty))> d(Ax, By). Only in this

case would Theorem 4.2 fall into the category of a special case in metric space of

the contractive condition of Theorem 2.3 of Kang and Rhoades [8]. Since the

authors have proved that surjectivity condition is necessary for this theorem to

hold, then Theorem 4.3 of the present paper would not be true in this particular

setting, which differs from the one considered here. While the condition of
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surjectivity is necessary to prove theorem 4.3 in complete metric space, it is not

required for this purpose if one considers S(M) d-complete, i.e. a nonmetric

setting.
REMARK 4.3.b In Theorem 4.1 the results could not be extended to

deviation instead of a symmetric, since a null distance between two points would

not necessarily infer from the identity of these two points. The same remark

holds for the demonstration of Theorem 4.3, with:
d(Au, z)<0 Au=z,

while in contrast:

5(Au, z) _< 0 "-= Au z.

REMARK 4.4 If we take X M, and S and T surjective, in Theorem 4.4, with

condition 4.10, then we obtain a result in this new setting. It is worthwhile

mentioning that the original theorem of this type was proved in 1992 by Kang
and Rhoades [8], under the condition of compatibility, in a complete metric space.
REMARK 4.5 If we put M X, we obtain the original theorem of this type.
,namely Theorem 2.1 proved by Pathak, Kang and Ryu [13] for a complete metric

space, in this new setting.
REMARK 4.6 If for0O, we define 0:1:1+ FI+ by0 (t) 1/k.t, where k >
then from Theorem 4.4 we obtain Corollary 4.2, which improves Theorem 2.6 of

Kang and Rhoades [8] in this non-distance metric setting.
REMARK 4.7 If in Theorem 4.2 we replace max {-,-, .} by rain {-,.,-} and take

X M, and if S and T are un-equal surjective, then the statement is false even if

A B I, the identity mappings.
REMARK 4.8 Our results improve and generalize several previous results b
Dafter and Kaneko (1992) [14], Kang (1993) [15], Rhoades [9], Taniguchi (1989)
[16], and Wang et al. [10].
REMARK 5.1 -Theorem 2 transposed to topological aspects suggests that metric

distances could surprisingly provide a finer filtering than the symmetric
difference previously proposed by some of us (Bounias and ,Bonaly, 1996) [19] as

a non-metric distance between sets. A metric distance between (A) and (B) can
be defined by:

d(A, B) {(x e A, y e B), inf d(x, y)}

while the non-metric distance would be:

A(A, B) [A,B(AoB)
Now, this raises an interesting problem. Let sets A, B, S, T, be such that A c

S, B c T. What are the conditions for: A(A, B) c A(S, T), with respect to d(A, B)
d(S, T)?

The latter result is nearly trivial in the metric space FI + However, the
former involves the following necessary conditions:

AcB
_
(ScT)

and"
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[B(A) c [s(T), CA(B) c CT(S)
to be related to conditions 3.1 and 4.8.

Interestingly, when AnB (SrT) the obtained set contains the fixed points
of the mappings (F) of S x T into itself, and when it reduces to one point, it

identifies with the fixed points. The role of topological dimensions of the involved
sets will be further examined. Let Fix (S x T)ts T the set of fixed points of the
mappings F: (S x T S x T). Then:

Fix (S x T)s r (ScT)
PROPOSITION 5.1 Let A, B, S, T topological spaces, such that A c S, B c T,
and T are complete and having respective topological dimensions ns * nT, if A
and B are closed, then the mappings (S x T)ts a0 have a common fixed point.
PROOF. If A and B are closed, they contain a Brouwer’s type fixed point,
denoted a and b. Let //(a) and //(b) neighborhoods of these points. The topological
continuity in S and T suffices to state that the reciprocal image of //(a) by any
mapping f: A -> S is//(a) and the reciprocal image of//(b) by any mapping f:B
T is //(b) Now, provided S and T have topological dimensions ns and nT, such
that ns nT, space (ScT) is a closed and has a Brouwer’s fixed point. Since AcB
(ScT) this fixed point is u a as well as u b, that is a b u, and the

proposition is proved in these strictly non-metric conditions.

This brings us now to some last points more closely related to fundamental

physics.

5-2 Some physically relevant remarks,
REMARK 5.2.1 Conditions (V-3-A) and (V-3-B) lead to the same scalar h, and
condition (-3-C) defines a projection of (1:13)into (FI). It should be pointed that

the case of a projection of (FI4)into (FI) will not be immediate, since major
differences lie betwen respective topological properties of 3-spaces and 4-spaces.

The introduction of scalar h makes the case essentially relevant with linear

physics. However, later, in corollary 4.1, exponent r addresses to Euclidean-like

norms if it is an integer. In contrast, if it is not integer, th system could be
related to fractal scaling. However, it does not match with the alternative non-
distance coordinates defined through intersections of sets (Bounias and Bonaly,
1996) [19], since exponents should be a sequence of the following type: {r, r-l, r-
2 }, with coefficients (b, c) < 0 in relation 4.6.
REMARK 5.2.2 In remark 4.6, we have not called " (t) 1/k.t" a metric

setting. In fact, it essentially deviates from so-called natural metrics, deriving
from Euclidean ones, but it does represent a kind of metric. In contrast, the

symmetric difference between sets and its newly defined norm [19], would allow
topological generalizations escaping the critical problem of scale inconsistency, in

physics. It would then be interesting to re-examine as follows the theory of fixed

points with respect to distances defined this way. We thus raise the conjecture
that our results on fixed points could further contribute to provide some
foundations to the still needed basic justification of the invariance of some
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physical quantities (see Ashtekar and Magnon-Ashtekar, 1979) [20]. The

question of antinomic parity conservation versus parity violation at extreme

scales (see Magnon, 1996 [21] for review) could then find some clarification

through basic topologies governing the embedded spacetime.
Lastly, we are currently working on purely mathematical aspects of biology

[22, 23] in which semi-compatibility condition [11] could provide previously
missing basis for the justification of some brain functions.
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