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INTRODUCTION
The dihedral (co)homology of unital algebra with an involution, symmetry, bisymmetry and Weile

has been studied by Looder [1 ], Krasauskas, Lapin and Solovev [2], Kolosov [3] and others 1987-89 In

the present work we are concerned with Adam’s and Steenrod’s operators in the dihedral homology.

1. THE ADAM’S OPERATOR IN THE DIHEDRAL HOMOLOGY
We recall the Adam’s operator k in the cyclic homology from [4] and [5]. Let A be a commutative,

associative, and unital K-algebra with an involution (. A----, A is an automorphism of degree zero,

id, (a + b)" a* + b*, (ab)* b’a*, a, b 6 A), and K is a field with characteristic zero. Let
Ak A k(1. n) be the kh exterior dimension representation of the Lie algebra g(k) and n is the

direct sum of the one dimensional representation (n-argument). Following [6], the ring R(g(k))
isometric to the ring of polynomial K[A1, A"]. Let R(g[(k))=lR(g(k)). Consider, for an

arbitrary representation p ofan algebra g,(k), the following sequence:

cc() s, ^(())) p, ^(())<) o,
:CC.(MOO(A)) Tr ,CCo.(A),

where A’(g[(k)),t(k is the coinvariant complex of Cherilley-Eilenberg Complex A (g[(k)) (see [4]),

Moo(A) =)lm M,,,(A), M,(A) is the (n x n) matrix with coefficients in A. The composition maps

(1.1) are denoted by o: where x lira x The morphism S is given by:
4----

S(al (R)a2 (R) @an) El2at A F__e8o/2 A A E,_,,,a,_ A

where E, is the matrix, whose only non zero elements are the identity element I 6 k. The map is

given by:

(x, ^ ^ x..) (x,), ^ ^ p(x.)., x, e

(Zo ^ ^ z,) sgn (o)( )"Zo (R) Z<,) (R) (R) Z<,), Z, e ,(),

p" g[n(k)--- D[/v (k), and Tr is the trace map defined by:

T(X,, (R) (R) X.=.) (X, X.), (R) (R) ..
We can easily check ([4]) that, cx (p + ) o (R) ), where p and " are representations of
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From the above discussion we have the homomorphism a’R(g[(k))--, End(CC.(A)). Clearly, for

any f E K[A1, A", ...], the homomorphism a(f)coincides with the homomorphism a [5]. Suppose
k

that Qk, k > 1 is the Newton Polynomial, which is given by the symmetric function (u,)k, such that
k ,=1

Z U, ...Ui,, 1 _< r _< k. By acting with the morphism a on the Newton Polynomial, we get
tl

the Adams operators q a(Q) a(( 1)k.k Ak), since (-- 1)k.k Ak is the linear part ofK-Newton
Polynomial. Consider the chain complex (CT"L(A), b.’) and the Connes-Tsygan bicomplex (see [1 ])

(1.1)

th6n, the subcomplex (ker(1-t.),b.’)C (CT"[.(A),b.’) has the same homology as the complex
CC. A b. that is,

9t.(CC.(A)) .((C)t.(A),b.)/Im(1 t.)) .((CX.(A),b.)/Ker N.)
H.(Im N, b.’) H.(Ker(1 t.), b.’),

where CT-[,(A) A(R)"+’ A (R) (R) A(n + 1 times), b,, b’ CT"[,(A) :C7"/,,-1(A), such that

b(ao (R)... (R) a,,’) ’’ (- 1)’(ao (R)... (R) a/a,+ (R)... (R) an), bn(ao (R)... (R)a,) b + (- 1)"(aa (R)...

@ a-1), t. CT"[.(A) :CT’[.(A), such that t.(ao (R)... (R)a) (-1)"(a. (R)ao (R)... (R) o..-i) and

N. 1 +t +... +t. Therefore, the complex (Ker(1-t.),b/) is isomorphic to the complex

(CC.(A),b.). The isomorphism between them is given by the operator N. :CC.(A)
(ker(1 t.), b.’). Consequently, the action of the group Z/2 on the complex CC.(A), by means ofthe

operator ’r, is equal to the action ofZ/2 on the complex (Ker(1 t.), g.), by means ofthe operator

-,-’h" ao (R)al (R)... (R)an :(- 1 a (R)a_ (R)... (R),a,

where a" is the image of element a E A under involution A---, A, + 1. Since h.t. t.-1 h..

Hence, N.(h.) (h.)N.. On the other hand, since r. t.h., then "h.N. N.h.

(N.t.) "h. N.(t.h.) N.r.. So, the dihedral homology ofA is given bythe formula

HZ.(A) n.(ker(1 t.)/(Im(1 "h. t ker(1 t.) ).

Assume that the complex CC.(A) is a subcomplex of (CT4.(A),b.’), then the direct calculation of

homomorphism a((- 1)k As) gives the Adam’s operator q in additive algebraic K-theory (see [4]),
that is, #(ao@...(R)a)=sgn()aoKo)(R)...(R)aoK), where I is the division of the set

{0,1, 2,..., n} into non-empty intersected subsets, that is, I I0 U... U I_1, and a; is the
n+l

permutation ofthe set {0,1, n}, such that:

(i) Ifil Iz i2 Ip, Px < P2, then a;(il) >
(ii) For any P, Ip {i0, iq}, (il < i2 < < iq).

The permutation cr] satisfies the following condition:

grl(iq) O’I({q_l) + 1 ..... grI(iO + q.
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LEMMA 1.1. The following diagram is commutative:
kCC.(A) ,CC.(A)

CC.(A)

(1.2)

PROOF. Assume that the complex CC.(A) is a subcomplex ofthe complex (CH.(A), b.’) and the
element ao @ @ an 6 ker(1 ,), then

I

On the other hand

b(’h)(ao @... (R)a,) (- 1)""-’ e(a, @... @a)

(- 1)"-t

_
sgn(gj )a;,(,.,) (R) (R)

J

where gs is the permutation of the ordered set {n, n- 1, O} satisfies the conditions (i), (ii) and J is

the division of the ordered set (n, n 1, 0}. Note that, in general, the permutation gj of the ordered

set O, 1, n}, satisfies the following conditions:

i)’ Ifil 6 J, i 6 Jr,, P < P2, then gs(il) > gs(i2),
ii)" For any p, gj {il, i0}, iq > > io, we have

S(iO) .qS(il) 1 ..... gs(iq) q.

Note that the decreasing (by one) of the elements in the set {0,1, n} met the increasing of elemems

(also by one) in the set {n,n- 1 ,0}. Suppose that the arguments of the summation in (1 2)
correspond to the permutation aI. The permutation gj ofthe set {n, n 1, 0}, where gj(i) al(i)
will correspond to the division J I_ U U I, where

I, {P;, P } (I {P, P’, } P < < P,).
We can easily check, for any P and I, (i,,,...,i}, i,, < < i, that gj(i) gj(i)- 1 ....

gs(i,,) qv. Ifil e I, i e I, p < , then gs(i) > gj(i_). FroWn the definition oral and gs

we have hk= k(’h) in ker((1-t),b’) and, hence ’re Ck(’r) in (CC.(A),b.). Clearly the

inverse of the isomorphism (CC.(A))----,ker(1- t.)is id’(ker(1- t.),b/)---.(CV.(A)b). The

operator / in CC.(A) is given by kN, where k is an operator in (ker(1- t),b/). Since the

operator ck, on CC.(A) commutes with the operator ’r, then we have the Adam’s operator ,k in the

dihedral homology. Following [6] the multiplication in the cyclic homology ofthe algebra A is given as

U 7"/Cv(A @ 7-ICq(A)--TICv+q+(A),

U TotB(A) @ TotB(A)-,TomB(A),

follows

such that

(x)T(y) r 0 - -(-0,xuy 6 B(A)t+r.m+,+l,X 6 B(A)t: A (R)
0 ,r#O

y e B(A),.,, A @ =(-"), where T is a product map [7], Tot B(A) is the total complex of the

bicomplex B(A),/ is the Connes’s operator. The group g/2 acts on the column ofthe bicomplex B(A)
with the numbers 2 (n > 0) by means of the operator ’r, on the column with the numbers (2g + 1) by
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means of the operator (- 1)r, and on the complex ToB(A)(R) ToteB(A) by means of @r,
where is the action ofZ/2 on TotB(A) induced by the action Z/2 on ’B(A). Since the action ofthe

group Z/2 on the complex Tot’B(A)(R) ToteB(A) commutes with the multiplication in the cyclic

homology, then
@ r(a (R) b) Fr(a) (R) r(b) u (a)T(r(b)),

a E To’B(A), b Tot6B(A). On the other hand

(- ((a)T((b)) "?(a)Ti( (b)) ’(a)T(%(l(b)) (6(a U b).

Therefore "r(a)LJ6r(b)=-(’e)r(aLJb). From the above we have the multiplication in the dihedral

homology
u ")p(A) (R) Z)(A) ,-(’)++I(A).

It is well known that (see ], [2]), the dihedral homology can be considered as the hyperhomology ofthe

group Z/2 with the coefficient in Tot"B(A), then

H.(Z/2,Tot’B(A))(R)H.(Z/2,Tot6B(A)) .H.(Z/2,Tot’B(A)(R)Tot6B(A)). (Z/2, Tot-(’e) B(A)).

Consider the Adam’s operator properties in the cyclic homology [4]. Since the Adam’s operator ek
counutes with the action of the group Z/2 and the multiplication U in the cyclic homology anti-

commutes with the action ofgroup Z/2, we get the following theorem.
THEOREM 1.2. Assume that A is a commutative K-algebra, where K is a field of characteristic

zero. The Adam’s operator bk has the following properties:

) ’() u%(f) -’)V( u f), ere z).(), z).().. STEENROD’$ OPERATOR IN THE I)IllEI)RAL llOMOLOGY

In this part we define the Steenrod’s operator in the dihedral homology. Let A be a commutative K-
Hopf algebra, where K is a field with characteristic (not essential) zero. Let be the dihedral category

and K[E] be an algebra associated with [] over K (see [1 ], [2]). We n define on the K[]omodule
AD, the structure of a co-commutative K[-’]-co-algebra by the formula

Ao V f Ao"(A (R) A) (R) ’An,
where V is the K[E] homomorphism, and f is given by

I((oo (R)o) (R) ( (R)) (R) (R) (, (R))) (o (R) (R) (R)o) (R) (0 (R)1 (R) (R)).

Suppose that fo’ ,Vn gives the co-commutative co-multiplication in ’An. We show that ,Vn is a

K[E]-homomorphism Define on the algebra K[E] the co-multiplication

K[E] K[E] K[E]; such that z z (R) z, z K[E].

sine "An ’An is K[E] K[E] moaule, ten by using the multiplication on ’An ’An, one can

define the K[E]-module structure and the K[E]-module homomorphism ], since

(((0 (R) 0) (R) (, (R)) (R)... (R) ( (R) ))) (0 (R), (R)... (R),.)(R) z(0 (R) (R)... (R) )
z((o (R),,1 (R) (R)o)(R) (0 (R) (R) (R).))
((o (R)0) (R) ( (R)) (R) (R) (o

z K[E]. Hence the morphism ,,n is a K[E]-module homorphism.

The aiheara ohomology Ezl (’An; (Kn)") ran be alulatea by using the normalized ar
construction 3() (see [6]). Assume that/2 and " be the triples (’An, K[E], Kn), (K[E], K[E], Kn),
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and JK[=_.] be the cokemel identity: k K[E]. The normalized bar construction () is defined to

be a k module 9()= ’AD@ K[’e_IT(JK[O])@ KIKD, where T(JK[E]) is the tensor algebra of

JK[E]. Clearly the K module 9() is graded. The elements of the K-module fl() can be written

as follows: a[gl,g2,...,g,]k 6 ()s, a 6 ’A, gi 6 k[E] and k 6 K9. The differential d"

(),-1 and the argument f" ()----, ’AD (R) KlKD can be written as follows

+(- 1)a[ml...Ig_lg,]k, and f[ml"-Ig,]k-- O, f(a[ ]k) O.

We can define also, for ’,the maps d and f in the same manner. Note that for , the differential d is a

left K[E]-module homomorphism, and dS / Sd 1 af, where the homomorphism a

a" Kn :,8(), and S"

is given by the formulas
a(k) []k (R)[], S(g[ml’"lg,]k) [glgll’"lg,]k.

Clearly, that the differential d in the complex 9([) ’A (R) K)(:) is equal to 1 (R) :i]d. From [6],
we have the following

HomK (()" (’A)") (())" Homg] (,8(’AO), K[E], g[E], (D)").
Then

,V"(A) E=,7,] (’A’; (g’)’) ((e)’).

+/- ((e $)--.(e) (). De,he o. (e) th strtre oo-asoci,e o-’gb bym
of co-multiplication +/- lP(’V, Vk[ai, VkD) "/9()--*/9() @ 9()and on the complex ()"
the following multiplication

(e)" e (:)" (Z(:) e Z(:))" ’,v,, Z(:)’.
The following lemma can easily be proved by using the ordinary techniques of homological algebra (see
IS]).

LEMMA 2.1. Let/ be an arbitrary subgroup of the symmetry group Zr, W is the K]-free
resolution K]-module K that W0 KLu] with the K[n] generator e0 and the module W (R) () is a

graded module, since: [W (R)/()] W (R) j(), then there exist graded K[n] complexes, with
t+J--8

the following conditions ofthe homorphism/k 14z (R)

,) a(w (R) ) 0, e ()0 and e W, > 0.

3) For () the map/k is a left K[E]-module homorphism, where K[E] acts on 14z (R)/9() by the

relation K( (R) b) w (R) b.

4) /k( (R) ()) 0, when > (r I). Furthermore, mere exists a kLu]-homotopy between

any two homomorphisms Z with the same properties. Now, define the K]-homomorphism 8 as

follows: O:W@ (3() 9(), sinceO(wex)(m)= B(x)A(w@m), w6W,
and m e/P(), B" (()*)(R)r--- (/()(R))" is a trivial homomorphism. Now we shall define the

operator in H(()’). In the above lemma, let/ Z/p, K ZIp. Consider the standard K[Z/p]-
free resolution W. In this case W, _> 0, is a free K[Z/p]-module with the generator e,. By
considering the graded W, W-i, which is a free K[Z/p]-module with the generator e-’, let

x He(()’), and define the following homomorphism: R" H?(/()’)---, H-’(/P()’), since

R, (z) "(e @ x’), _> 0 Now we can define the Steenrod operator P, by using the operator R,
as follows:

I. Ifp 2 then, f(x) Rw_,(x e H+(()’), where R 0 if/< 0;
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2. IfP > 2, then

pS(x) (-- 1)*’7(--q)R(q-2,)(p-1)(x)
]PS(x) (- 1)’7(- q)R(q-2s)(p-l)-l(X)

where P 0 if < 0, and if q 2j , where e 0 or 1, then ’7( q) 1

Now we prove the main second theorem in this work.

THEOREM 2.2. Let A be a commutative K-Hopf algebra, where K Z/p, then on the dihedral

cohomology group 7-/D (A), we can define the following homomorphisms (Steenrod map):
a) P’7"LD(A)---.7-LI)+’(A), ifp 2,

b) Pz’,7"IT(A)-..-7-IT>’+2’(-I)(A), and BP’’TIT’(A)--,7-i2>’+’+2’O’-I)(A), ifp > 2.

The operators P’, [pi have the following properties:
1) Pi[gtZ(A 0, ifp 2, > s,

PIxz(A) 0, ifp > 2, 2i > s,

BPIxz(A) 0, ifp > 2, 2i > s

2) P’(x)=xp, ifp=2andi=, orp>2and2i=,

3) Pa P* (R) Pa-. and BP BP (R) P-z + P. (R) BP
4) The operators P and BP satisfy the following Adam’s relations:

i) ifp>2anda<pb, then

e’PPb )/( , (p- )b +
where ’7 0 or I for p 2, 7 1 for p > 2, and for any two integers and j let

I (i +
i!j!

if i>__O,j>O,
(,)

0 if < 0,j < 0,

ii) ifp > 2, a <_ Pb, and "7 0 or 1, then

BPPb (1 7) 1)"+’(a P/, (P- 1)(b a + 1)./3Pa+b-/p E( 1)+’

.(a ig/- 1, (p 1)b a + i)I3"rPa+b-’BP’.

Note that the operators BP* and B P" are P* and BP, respectively.
PROOF. Suppose the triple C (E,A,F) where At is a co-commutative Hopf algebra over

K Z/p, E and F are respectively the right and left co-commutative At-co-algebra. From the above

discussion and considering the triple (AD, K[E], kD), then K[E] is a co-commutative Hopf algebra

over K Z/P, AD and KD are the left and right co-commutative K[E]-co-algebra and hence

(()’) ,V(A).
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