ADAMS AND STEENROD OPERATORS IN DIHEDRAL HOMOLOGY

Y. GH. GOUDA
Department of Mathematics Faculty of Science
South Valley University
Aswan, EGYPT

(Received January 30, 1996 and in revised form August 12, 1996)

Abstract

In this article, we define the Adam's and Steenrod's operators in the dihedral homology

KEY WORDS AND PHRASES: Adam's and Steenrod's operators, dihedral homology.
1991 AMS SUBJECT CLASSIFICATION CODES: Primary 55N91, Secondary 55P91, 55Q91.

- INTRODUCTION

The dihedral (co)homology of unital algebra with an involution, symmetry, bisymmetry and Weile has been studied by Looder [1], Krasauskas, Lapin and Solovev [2], Kolosov [3] and others 1987-89 In the present work we are concerned with Adam's and Steenrod's operators in the dihedral homology.

1. THE ADAM'S OPERATOR IN THE DIHEDRAL HOMOLOGY

We recall the Adam's operator ψ^{k} in the cyclic homology from [4] and [5]. Let A be a commutative, associative, and unital K-algebra with an involution $*(*: A \longrightarrow A$ is an automorphism of degree zero, $\left.*^{2}=i d,(a+b)^{*}=a^{*}+b^{*},(a b)^{*}=b^{*} a^{*}, a, b \in A\right)$, and K is a field with characteristic zero. Let $\lambda^{k}=\Lambda^{k}\left(1_{n}-n\right)$ be the $k^{\text {th }}$ exterior dimension representation of the Lie algebra $g l_{n}(k)$ and n is the direct sum of the one dimensional representation (n-argument). Following [6], the ring $R\left(g L_{n}(k)\right)$ is isometric to the ring of polynomial $K\left[\lambda^{1}, \ldots, \lambda^{n}\right]$. Let $R(g l(k))=\varliminf_{\varliminf} R\left(g l_{n}(k)\right)$. Consider, for an arbitrary representation ρ of an algebra $g l_{n}(k)$, the following sequence:

$$
\begin{align*}
& C C_{\infty}(A) \xrightarrow{S} \wedge^{n}(\mathfrak{g l}(k))_{\mathfrak{g l}(k)} \xrightarrow{\hat{\rho}} \wedge^{n}(\mathfrak{g l}(k))_{\mathfrak{g l}(k)} \xrightarrow{\varphi} \\
& \xrightarrow{\varphi} C C_{n}\left(M_{\infty}(A)\right) \xrightarrow{T r} C C_{\infty}(A), \tag{array}
\end{align*}
$$

where $\wedge^{\bullet}(\mathfrak{g l}(k))_{\mathfrak{g l}(k)}$ is the coinvariant complex of Cherilley-Eilenberg Complex $\wedge(\mathfrak{g l}(k))$ (see [4]), $M_{\infty}(A)=\underline{\lim } M_{n}(A), M_{n}(A)$ is the $(n \times n)$ matrix with coefficients in A. The composition maps in: (1.1) are denoted by \propto_{n} where $\propto=\lim _{\longleftarrow} \propto_{n}$. The morphism S is given by:

$$
S\left(a_{1} \otimes a_{2} \otimes \ldots \otimes a_{n}\right)=E_{12} a_{1} \wedge E_{23} a_{2} \wedge \ldots \wedge E_{n-1, n} a_{n-1} \wedge E_{n, 1} \cdot a_{n}
$$

where $E_{\imath \jmath}$ is the matrix, whose only non zero elements are the identity element $1 \in k$. The map $\hat{\rho}$ is given by:

$$
\begin{gathered}
\hat{\rho}\left(X_{1} a_{1} \wedge \ldots \wedge X_{n} a_{n}\right)=\rho\left(x_{1}\right) a_{1} \wedge \ldots \wedge \rho\left(x_{n}\right) a_{n}, x_{\imath} \in \mathfrak{g l}_{n}(k) \\
\varphi\left(Z_{0} \wedge \ldots \wedge Z_{n}\right)=\sum_{\sigma} \operatorname{sgn}(\sigma)(-1)^{n} Z_{0} \otimes Z_{\sigma(1)} \otimes \ldots \otimes Z_{\sigma(n)}, Z_{\imath} \in \operatorname{gl}_{N}(k)
\end{gathered}
$$

$\rho: \mathfrak{g l}_{n}(k) \longrightarrow \mathfrak{g l}_{N}(k)$, and $T r$ is the trace map defined by:

$$
\operatorname{Tr}\left(X_{1} a_{1} \otimes \ldots \otimes X_{n} a_{n}\right)=\operatorname{tr}\left(X_{1} \ldots X_{n}\right) a_{1} \otimes \ldots \otimes a_{n}
$$

We can easily check ([4]) that, $\propto(\rho+\tau)=\propto(\otimes)$, where ρ and τ are representations of $\mathfrak{g l}(k)$

From the above discussion we have the homomorphism $\alpha: R(g l(k)) \longrightarrow \operatorname{End}(C C .(A))$. Clearly, for any $f \in K\left[\lambda^{1}, \ldots, \lambda^{n}, \ldots\right]$, the homomorphism $\alpha(f)$ coincides with the homomorphism α [5]. Suppose that $Q_{k}, \underset{k}{k} \geq 1$ is the Newton Polynomial, which is given by the symmetric function $\sum_{i=1}^{k}\left(u_{i}\right)^{k}$, such that $\sigma_{r}=\sum_{i_{1}<i_{2}<\ldots<i_{r}}^{k} u_{i_{1}} \ldots u_{i_{r}}, 1 \leq r \leq k$. By acting with the morphism α on the Newton Polynomial, we get the Adams operators $\psi^{k}=\alpha\left(Q_{k}\right)=\alpha\left((-1)^{k} . k \lambda^{k}\right)$, since $(-1)^{k} . k \lambda^{k}$ is the linear part of K-Newton Polynomial. Consider the chain complex ($C \mathcal{H} .(A), b .^{\prime}$) and the Connes-Tsygan bicomplex (see [1])

then, the subcomplex $\left(\operatorname{ker}(1-t),. b .^{\prime}\right) \subset\left(C \mathcal{H} .(A), b .^{\prime}\right)$ has the same homology as the complex (CC. (A), b.), that is,

$$
\begin{aligned}
\mathcal{H} .(C C .(A)) & =\mathcal{H} .((C \mathcal{H} .(A), b .) / \operatorname{Im}(1-t .))=\mathcal{H} .((C \mathcal{H} .(A), b .) / \operatorname{Ker} N .) \\
& =\mathcal{H} .\left(\operatorname{Im} N, b .^{\prime}\right)=\mathcal{H} .\left(\operatorname{Ker}(1-t .), b .^{\prime}\right)
\end{aligned}
$$

where $C \mathcal{H}_{n}(A)=A^{\otimes n+1}=A \otimes \ldots \otimes A(n+1$ times $), b_{n}, b_{n}^{\prime}: C \mathcal{H}_{n}(A) \longrightarrow C \mathcal{H}_{n-1}(A)$, such that $b_{n}^{\prime}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\sum_{i=0}^{n-1}(-1)^{2}\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right), b_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=b_{n}^{\prime}+(-1)^{n}\left(a_{n} a \otimes \ldots\right.$ $\left.\otimes a_{n-1}\right), t_{n}: C \mathcal{H}_{n}(A) \longrightarrow C \mathcal{H}_{n}(A)$, such that $t_{n}\left(a_{0} \otimes \ldots \otimes a_{n}\right)=(-1)^{n}\left(a_{n} \otimes a_{0} \otimes \ldots \otimes a_{n-1}\right)$ and $N_{n}=1+t_{n}^{1}+\ldots+t_{n}^{n}$. Therefore, the complex $\left(\operatorname{Ker}(1-t),. b^{\prime}\right)$ is isomorphic to the complex $(C C .(A), b$.$) \quad The isomorphism between them is given by the operator N .: C C .(A) \longrightarrow$ ($\operatorname{ker}(1-t),. b .^{\prime}$). Consequently, the action of the group $\mathbb{Z} / 2$ on the complex $C C$.(A), by means of the operator ${ }^{\epsilon} r$, is equal to the action of $\mathbb{Z} / 2$ on the complex $\left(\operatorname{Ker}(1-t),. b^{\prime}.\right)$, by means of the operator

$$
{ }^{\epsilon} h: a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n} \longrightarrow(-1)^{\frac{n(n+1)}{2}} \epsilon a_{n}^{*} \otimes a_{n-1}^{*} \otimes \ldots \otimes, a_{0}^{*}
$$

where a^{*} is the image of element $a \in A$ under involution $*: A \longrightarrow A, \epsilon= \pm 1$. Since ${ }^{\epsilon} h . t .=t .^{-1 \epsilon} h$. Hence, $N .\left({ }^{\epsilon} h.\right)=\left({ }^{\epsilon} h.\right) N . \quad$ On the other hand, since ${ }^{\epsilon} r .=t .{ }^{\epsilon} h$. , then ${ }^{\epsilon} h . N .=N .{ }^{\epsilon} h .=$ $(N . t .)^{\epsilon} h .=N .\left(t .{ }^{\epsilon} h.\right)=N .{ }^{\epsilon} r$.. So, the dihedral homology of A is given by the formula

$$
{ }^{\epsilon} \mathcal{H D} .(A)=\mathcal{H} .\left(\operatorname{ker}(1-t .) /\left(\operatorname{Im}\left(1-{ }^{\epsilon} h .\right) \cap \operatorname{ker}(1-t .)\right)\right) .
$$

Assume that the complex $C C .(A)$ is a subcomplex of $\left(C \mathcal{H} .(A), b .^{\prime}\right)$, then the direct calculation of homomorphism $\alpha\left((-1)^{k} k \lambda^{k}\right)$ gives the Adam's operator Ψ^{k} in additive algebraic K-theory (see [4]), that is, $\Psi\left(a_{0} \otimes \ldots \otimes a_{n}\right)=\sum_{I} \operatorname{sgn}\left(\sigma_{I}\right) a_{\sigma_{I}(0)} \otimes \ldots \otimes a_{\sigma_{I}(n)}$, where I is the division of the set $\{0,1,2, \ldots, n\}$ into non-empty intersected subsets, that is, $I=I_{0} \cup \ldots \cup I_{k-1}$, and $\sigma_{I} \in \sum_{n+1}$ is the permutation of the set $\{0,1, \ldots, n\}$, such that:
(i) If $i_{1} \in I_{p_{1}}, i_{2} \in I_{p_{2}}, P_{1}<P_{2}$, then $\sigma_{I}\left(i_{1}\right)>\sigma_{I}\left(i_{2}\right)$,
(ii) For any $P, I_{P}=\left\{i_{0}, \ldots, i_{q}\right\},\left(i_{1}<i_{2}<\ldots<i_{q}\right)$.

The permutation σ_{I} satisfies the following condition:

$$
\sigma_{I}\left(i_{q}\right)=\sigma_{I}\left(i_{q-1}\right)+1=\ldots=\sigma_{I}\left(i_{0}\right)+q
$$

LEMMA 1.1. The following diagram is commutative:

PROOF. Assume that the complex $C C .(A)$ is a subcomplex of the complex ($\left.C H .(A), b .{ }^{\prime}\right)$ and the element $a_{0} \otimes \ldots \otimes a_{n} \in \operatorname{ker}\left(1-t_{n}\right)$, then

$$
\begin{align*}
\epsilon_{h} \psi^{k}\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right) & =\hbar \sum_{I} \operatorname{sgn}\left(\sigma_{I}\right) a_{\sigma_{I}(0)} \otimes \ldots \otimes a_{\sigma_{I}(n)} \\
& =(-1)^{\frac{n(n+1)}{2}} \epsilon \sum_{I} \operatorname{sgn}\left(\sigma_{I}\right) a_{\sigma_{I}(n)}^{*} \otimes \ldots \otimes a_{\sigma_{I}(0)}^{*} . \tag{1.2}
\end{align*}
$$

On the other hand

$$
\begin{align*}
\psi^{k}\left({ }^{\epsilon} h\right)\left(a_{0} \otimes \ldots \otimes a_{n}\right) & =(-1)^{\frac{n(n+1)}{2}} \epsilon \psi^{k}\left(a_{n}^{*} \otimes \ldots \otimes a_{0}^{*}\right) \\
& =(-1)^{\frac{n(n+1)}{2}} \epsilon \sum_{J} \operatorname{sgn}\left(g_{J}\right) a_{g_{J}(n)}^{*} \otimes \ldots \otimes a_{g_{J}(0)}^{*}, \tag{1.3}
\end{align*}
$$

where g_{j} is the permutation of the ordered set $\{n, n-1, \ldots, 0\}$ satisfies the conditions (i), (ii) and J is the division of the ordered set $\{n, n-1, \ldots, 0\}$. Note that, in general, the permutation g_{J} of the ordered set $\{0,1, \ldots, n\}$, satisfies the following conditions:
i)' If $i_{1} \in J_{p_{1}}, i_{2} \in J_{p_{2}}, p_{1}<p_{2}$, then $g_{J}\left(i_{1}\right)>g_{J}\left(i_{2}\right)$,
ii)" For any $p, g_{J}=\left\{i_{1}, \ldots, i_{0}\right\}, i_{q}>\ldots>i_{0}$, we have

$$
g_{J}\left(i_{0}\right)=g_{J}\left(i_{1}\right)-1=\ldots=g_{J}\left(i_{q}\right)-q .
$$

Note that the decreasing (by one) of the elements in the set $\{0,1, \ldots, n\}$ met the increasing of elements (also by one) in the set $\{n, n-1, \ldots, 0\}$. Suppose that the arguments of the summation in (12) correspond to the permutation σ_{I}. The permutation g_{J} of the set $\{n, n-1, \ldots, 0\}$, where $g_{J}(i)=\sigma_{I}(i)$ will correspond to the division $J=I_{k-1}^{*} \cup \ldots \cup I_{0}^{*}$, where

$$
I_{i}^{*}=\left\{P_{q_{i}}^{i}, \ldots, P_{0}^{i}\right\}\left(I=\left\{P_{0}^{i}, \ldots, P_{q_{2}}^{2}\right\}, P_{0}^{i}<\ldots<P_{q_{i}}^{i}\right) .
$$

We can easily check, for any P and $I_{p}^{*}=\left\{i_{q_{p}}^{p}, \ldots, i_{0}^{p}\right\}, i_{q_{p}}^{p}<\ldots<i_{0}^{p}$, that $g_{J}\left(i_{0}^{p}\right)=g_{J}\left(i_{1}^{p}\right)-1=\ldots$ $=g_{J}\left(i_{q_{p}}^{p}\right)-q_{p}$. If $i_{1} \in I_{p_{1}}^{*}, i_{2} \in I_{p_{2}}^{*}, p_{1}<p_{2}$, then $g_{J}\left(i_{1}\right)>g_{J}\left(i_{2}\right)$. From the definition of σ_{I} and g_{J} we have ${ }^{\epsilon} h \psi^{k}=\psi^{k}\left({ }^{\epsilon} h\right)$ in $\operatorname{ker}\left((1-t), b^{\prime}\right)$ and, hence ${ }^{\epsilon} r \psi^{k}=\psi^{k}\left({ }^{\epsilon} r\right)$ in (CC. $\left.(A), b.\right)$. Clearly the inverse of the isomorphism $(C C .(A)) \longrightarrow k e r(1-t$.$) is \frac{1}{n} i d:\left(\operatorname{ker}(1-t),. b^{\prime}\right) \longrightarrow(C C .(A) b)$. The operator ψ^{k} in $C C$.(A) is given by $\frac{1}{n} \psi^{k} N$, where ψ^{k} is an operator in $\left(k e r(1-t), b . .^{\prime}\right)$. Since the operator ψ^{k}, on $C C$. (A) commutes with the operator ${ }^{\epsilon} r$, then we have the Adam's operator ${ }^{\epsilon} \psi^{k}$ in the dihedral homology. Following [6] the multiplication in the cyclic homology of the algebra A is given as follows
such that

$$
\cup: \mathcal{H C}_{p}(A) \otimes \mathcal{H} \mathcal{C}_{q}(A) \longrightarrow \mathcal{H} \mathcal{C}_{p+q+1}(A),
$$

$$
\cup: \operatorname{Tot} B(A) \otimes \operatorname{Tot} B(A) \longrightarrow \operatorname{Tot} B(A),
$$

$$
x u y=\left[\begin{array}{ll}
(x) T(\beta y), & r=0 \\
\longrightarrow 0 & , r \neq 0
\end{array}\right] \in B(A)_{\ell+r, m+s+1}, x \in B(A)_{\ell, m}=A \otimes \bar{A}^{\otimes(m-\ell)},
$$

$y \in B(A)_{r, s}=A \otimes \bar{A}^{\otimes(s-r)}$, where T is a product map [7], Tot $B(A)$ is the total complex of the bicomplex $\mathcal{B}(A), \beta$ is the Connes's operator. The group $\mathbb{Z} / 2$ acts on the column of the bicomplex $\mathcal{B}(A)$ with the numbers $2 \ell(n>0)$ by means of the operator ${ }^{\text {' }} r$, on the column with the numbers $(2 \ell+1)$ by
means of the operator $(-1)^{\epsilon} r$, and on the complex $\operatorname{Tot}^{\epsilon} B(A) \otimes \operatorname{Tot}^{\delta} B(A)$ by means of ${ }^{\epsilon} \widehat{r} \otimes^{\delta} \widehat{r}$, where ${ }^{\kappa} \uparrow$ is the action of $\mathbb{Z} / 2$ on $\operatorname{Tot}^{\epsilon} B(A)$ induced by the action $\mathbb{Z} / 2$ on ${ }^{\epsilon} \mathcal{B}(A)$. Since the action of the group $\mathbb{Z} / 2$ on the complex $\operatorname{Tot}^{\epsilon} B(A) \otimes \operatorname{Tot}^{\delta} B(A)$ commutes with the multiplication in the cyclic homology, then

$$
{ }^{\top} \widehat{r} \otimes{ }^{\delta} \widehat{r}(a \otimes b)={ }^{E_{\widehat{r}}}(a) \otimes^{\delta} \widehat{r}(b) \xrightarrow{U} \widehat{\widetilde{r}}(a) T \beta\left({ }^{\delta} \widehat{r}(b)\right),
$$

$a \in \operatorname{Tot}^{\epsilon} B(A), b \in \operatorname{Tot}^{\delta} B(A)$. On the other hand

$$
\left(-\left({ }^{\top} \widehat{r}(a) T \beta\left({ }^{\delta} \widehat{r}(b)\right)\right)={ }^{\epsilon} \widehat{r}(a) T \beta\left(-{ }^{\delta} \widehat{r}(b)\right)=-{ }^{\epsilon} \widehat{r}(a) T\left({ }^{\delta} \widehat{r}(\beta(b))={ }^{(\epsilon \delta)} \widehat{r}(a \cup b)\right.\right.
$$

Therefore ${ }^{\epsilon} r(a) \cup^{\delta} r(b)={ }^{-(\epsilon \delta)} r(a \cup b)$. From the above we have the multiplication in the dihedral homology

$$
\cup:{ }^{\epsilon} \mathcal{H} \mathcal{D}_{p}(A) \otimes{ }^{\delta} \mathcal{H} \mathcal{D}_{q}(A) \longrightarrow{ }^{-(\epsilon \delta)} \mathcal{H} \mathcal{D}_{p+q+1}(A)
$$

It is well known that (see [1], [2]), the dihedral homology can be considered as the hyperhomology of the group $\mathbb{Z} / 2$ with the coefficient in $\operatorname{Tot}^{\epsilon} B(A)$, then

$$
\begin{aligned}
\mathbb{H} .\left(\mathbb{Z} / 2, \operatorname{Tot}^{\epsilon} B(A)\right) \otimes \mathbb{H} .\left(\mathbb{Z} / 2, \operatorname{Tot}^{\delta} B(A)\right) & \longrightarrow \mathbb{H} .\left(\mathbb{Z} / 2, \operatorname{Tot}^{\epsilon} B(A) \otimes \operatorname{Tot}^{\delta} B(A)\right) \\
& \longrightarrow \mathbb{H} .\left(\mathbb{Z} / 2, \operatorname{Tot}^{-(\epsilon \delta)} B(A)\right) .
\end{aligned}
$$

Consider the Adam's operator properties in the cyclic homology [4]. Since the Adam's operator ψ^{k} commutes with the action of the group $\mathbb{Z} / 2$ and the multiplication U in the cyclic homology anticommutes with the action of group $\mathbb{Z} / 2$, we get the following theorem.

THEOREM 1.2. Assume that A is a commutative K-algebra, where K is a field of characteristic zero. The Adam's operator ψ^{k} has the following properties:

1) ${ }^{\epsilon} \psi^{k} \circ^{\epsilon} \psi^{k}={ }^{\epsilon} \psi^{k \ell}$,
2) ${ }^{\iota} \psi^{k}(\alpha) \cup^{\delta} \psi^{k}(\beta)={ }^{-(\epsilon \delta)} \psi^{k}(\alpha \cup \beta)$, where $\alpha \in \mathcal{H D} .(A), b \in \mathcal{H D} .(A)$.

2. THE STEENROD'S OPERATOR IN THE DIHEDRAL HOMOLOGY

In this part we define the Steenrod's operator in the dihedral homology. Let A be a commutative K Hopf algebra, where K is a field with characteristic (not essential) zero. Let Ξ be the dihedral category and $K[\Xi]$ be an algebra associated with $[\Xi]$ over K (see [1], [2]). We can define on the $K[\Xi]$-module ${ }^{\epsilon} A^{D}$, the structure of a co-commutative $K[\Xi]$-co-algebra by the formula

$$
{ }^{\epsilon} A^{D} \xrightarrow{\nabla}(A \otimes A) \xrightarrow{f} A^{D} \otimes^{\epsilon} A^{D}
$$

where ∇ is the $K[\Xi]$ homomorphism, and f is given by

$$
f\left(\left(a_{0} \otimes b_{0}\right) \otimes\left(a_{1} \otimes b_{1}\right) \otimes \ldots \otimes\left(a_{n} \otimes b_{n}\right)\right)=\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right) \otimes\left(b_{0} \otimes b_{1} \otimes \ldots \otimes b_{n}\right)
$$

Suppose that $f \circ \nabla={ }^{\epsilon} \nabla^{D}$ gives the co-commutative co-multiplication in ${ }^{\epsilon} A^{D}$. We show that ${ }^{\epsilon} \nabla^{D}$ is a $K[\Xi]$-homomorphism Define on the algebra $K[\Xi]$ the co-multiplication

$$
K[\Xi] \longrightarrow K[\Xi] \underset{k}{\otimes} K[\Xi] ; \quad \text { such that } \quad x \longrightarrow x \otimes x, \quad x \in K[\Xi]
$$

Since ${ }^{\epsilon} A^{D} \underset{k}{\otimes}{ }^{\epsilon} A^{D}$ is $K[\Xi] \underset{k}{\otimes} K[\Xi]$ module, then by using the multiplication on ${ }^{\epsilon} A^{D}{\underset{k}{\otimes}}^{\epsilon} A^{D}$, one can define the $K[\Xi]$-module structure and the $K[\Xi]$-module homomorphism f, since

$$
\begin{aligned}
f\left(x\left(\left(a_{0} \otimes b_{0}\right) \otimes\left(a_{1} \otimes b_{1}\right) \otimes \ldots \otimes\left(a_{n} \otimes b_{n}\right)\right)\right) & =x\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right) \otimes x\left(b_{0} \otimes b_{1} \otimes \ldots \otimes b_{n}\right) \\
& =x\left(\left(a_{0} \otimes a_{1} \otimes \ldots \otimes a_{n}\right) \otimes\left(b_{0} \otimes b_{1} \otimes \ldots \otimes b_{n}\right)\right) \\
& =x f\left(\left(a_{0} \otimes b_{0}\right) \otimes\left(a_{1} \otimes b_{1}\right) \otimes \ldots \otimes\left(a_{n} \otimes b_{n}\right)\right)
\end{aligned}
$$

$x \in K[\Xi]$. Hence the morphism ${ }^{\epsilon} \nabla^{D}$ is a $K[\Xi]$-module homorphism.
The dihedral cohomology $E x t_{K[=]}^{n}\left({ }^{\epsilon} A^{D} ;\left(K^{D}\right)^{*}\right)$ can be calculated by using the normalized bar construction $\beta(\mathfrak{L})$ (see [6]). Assume that \mathfrak{L} and \mathfrak{F} be the triples ($\left.{ }^{\epsilon} A^{D}, K[\Xi], K^{D}\right),\left(K[\Xi], K[\Xi], K^{D}\right)$,
and $J K[\Xi]$ be the cokernel identity: $k \longrightarrow K[\Xi]$. The normalized bar construction $\beta(\mathcal{L})$ is defined to be a k module $\beta(\mathfrak{L})={ }^{\epsilon} A^{D} \otimes_{K[\equiv]} T(J K[\Theta]) \otimes_{K[\equiv]} K^{D}$, where $T(J K[\Xi])$ is the tensor algebra of $J K[\Xi]$. Clearly the K module $\beta(\mathfrak{L})$ is graded. The elements of the K-module $\beta(\mathfrak{L})$ can be written as follows: $a\left[g_{1}, g_{2}, \ldots, g_{s}\right] k \in \beta(\mathcal{L})_{s}, a \in{ }^{\top} A, g_{i} \in k[\Xi]$ and $k \in K^{D}$. The differential $d: \beta(\mathcal{L})_{s} \longrightarrow$ $\beta(\mathcal{L})_{s-1}$ and the argument $f: \beta(\mathcal{L}) \longrightarrow{ }^{\epsilon} A^{D} \otimes_{K[\equiv]} K^{D}$ can be written as follows

$$
\begin{aligned}
d\left[a\left[g_{1}\left|g_{2} \cdots\right| g_{s}\right] k\right]= & a g_{1}\left[g_{2}\left|g_{3}\right| \cdots \mid g_{s}\right] k+\sum_{i=1}^{s-1}(-1)^{i} a\left[g_{1}|\cdots| g_{i-1}\left|g_{i} g_{i+1}\right| g_{i+2}|\cdots| g_{s}\right] k \\
& +(-1)^{s} a\left[g_{1}|\cdots| g_{s-1} g_{s}\right] k, \quad \text { and } \quad f\left[g_{1}|\cdots| g_{s}\right] k=0, \quad f(a[] k)=0
\end{aligned}
$$

We can define also, for \mathfrak{F},the maps d and f in the same manner. Note that for \mathfrak{L}, the differential d is a left $K[\Xi]$-module homomorphism, and $d S+S d=1-\sigma f$, where the homomorphism σ

$$
\sigma: K^{D} \longrightarrow \beta(\mathfrak{F}), \quad \text { and } \quad S: \beta(\mathfrak{F})_{s} \longrightarrow \beta(\mathfrak{F})_{s+1}
$$

is given by the formulas

$$
\sigma(k)=[] k \otimes[], S\left(g\left[g_{1}|\cdots| g_{s}\right] k\right)=\left[g\left|g_{1}\right| \cdots \mid g_{s}\right] k
$$

Clearly, that the differential d in the complex $\beta(\mathfrak{l})={ }^{\epsilon} A^{D} \otimes_{K[\mid]} \beta(\mathfrak{F})$ is equal to $1 \otimes_{K[\mid]} d$. From [6], we have the following

$$
\operatorname{Hom}_{K \mid \Xi]}\left(\beta(\mathfrak{F}) ;\left(^{\epsilon} A^{D}\right)^{*}\right)=(\beta(\mathfrak{F}))^{*}=\operatorname{Hom}_{K[\Xi]}\left(\beta\left({ }^{\epsilon} A^{D}\right), K[\Xi], K[\Xi],\left(k^{\mathrm{D}}\right)^{*}\right) .
$$

Then

Suppose the triples $\mathfrak{L}\left(\left({ }^{\epsilon} A^{D}\right), k[\Xi], K^{D}\right)$ and $\widehat{\mathfrak{F}}=\left(\left({ }^{\epsilon} \widehat{A}^{D}\right), \widehat{k}[\Xi], \widehat{K}^{D}\right)$ and consider the product $\perp:(\beta(\mathcal{L} \otimes \widehat{\mathfrak{F}}) \longrightarrow \beta(\mathcal{L}) \otimes \beta(\widehat{\mathfrak{F}})$. Define on $\beta(\mathcal{L})$ the structure of co-associative co-algebra by means of co-multiplication $\tilde{\nabla}=\perp \beta\left({ }^{\ominus} \nabla^{D}, \nabla_{k|E|}, \nabla_{k} D\right): \beta(\mathfrak{L}) \longrightarrow \beta(\mathfrak{L}) \otimes \beta(\mathcal{L})$ and on the complex $\beta(\mathcal{L})^{*}$ the following multiplication

$$
\beta(\mathfrak{L})^{*} \otimes \beta(\mathfrak{L})^{*} \longrightarrow(\beta(\mathfrak{L}) \otimes \beta(\mathfrak{L}))^{*} \xrightarrow{(\tilde{\nabla})^{*}} \beta(\mathfrak{L})^{*}
$$

The following lemma can easily be proved by using the ordinary techniques of homological algebra (see [8]).

LEMMA 2.1. Let μ be an arbitrary subgroup of the symmetry group Σ_{r}, W is the $K[\mu]$-free resolution $K[\mu]$-module K that $W_{0}=K[\mu]$ with the $K[n]$ generator e_{0} and the module $W \otimes \beta(\mathfrak{L})$ is a graded module, since: $[W \otimes \beta(\mathcal{L})]_{s}=\sum_{i+j=s} W_{i} \otimes \beta_{j}(\mathcal{L})$, then there exist graded $K[n]$ complexes, with the following conditions of the homorphism $\Delta: W \otimes \beta(\mathfrak{L}) \longrightarrow \beta(\mathcal{L})^{\otimes r}$:

1) $\Delta(W \otimes b)=0, b \in \beta(\mathcal{L})_{0}$ and $w \in W_{i}, i>0$.
2) $\Delta\left(e_{0} \otimes b\right)=\tilde{\nabla}^{\otimes r}(b)$, if $b \in \beta(\mathcal{L}), \tilde{\nabla}^{\otimes r}: \beta(\mathfrak{L}) \longrightarrow \beta(\mathfrak{L})^{\otimes r}$.
3) For $\beta(\dot{\mathcal{L}})$ the map Δ is a left $K[\Xi]$-module homorphism, where $K[\Xi]$ acts on $W \otimes \beta(\mathcal{L})$ by the relation $K(w \otimes b)=w \otimes k b$.
4) $\Delta\left(w_{i} \otimes \beta(\mathfrak{L})_{s}\right)=0$, when $i>(r-1)_{s}$. Furthermore, there exists a $k[\mu]$-homotopy between any two homomorphisms Δ with the same properties. Now, define the $K[\mu]$-homomorphism Θ as follows: $\Theta: W \otimes\left(\beta(\mathcal{L})^{*}\right)^{\otimes r} \longrightarrow \beta(\mathcal{L})^{*}$, since $\Theta(w \otimes x)(m)=\mathcal{B}(x) \Delta(w \otimes m), w \in W, x \in\left(\beta(\mathcal{L})^{*}\right)^{\otimes r}$, and $m \in \beta(\mathfrak{L}), \mathcal{B}:\left(\beta(\mathcal{L})^{*}\right)^{\otimes r} \longrightarrow\left(\beta(\mathcal{L})^{\otimes r}\right)^{*}$ is a trivial homomorphism. Now we shall define the operator in $H\left(\beta(\mathcal{L})^{*}\right)$. In the above lemma, let $\mu=Z / p, K=Z / p$. Consider the standard $K[Z / p]$ free resolution W. In this case $W_{2}, i \geq 0$, is a free $K[Z / p]$-module with the generator e_{i}. By considering the graded $W_{2}=W^{-i}$, which is a free $K[Z / p]$-module with the generator e^{-i}, let $x \in H^{q}\left(\beta(\mathcal{L})^{*}\right)$, and define the following homomorphism: $R_{2}: H^{q}\left(\beta(\mathcal{L})^{*}\right) \longrightarrow H^{p q-i}\left(\beta(\mathcal{L})^{*}\right)$, since $R_{u}(x)=\Theta^{*}\left(e^{-i} \otimes x^{p}\right), i \geq 0$ Now we can define the Steenrod operator P^{i}, by using the operator R_{u}, as follows:
1. If $p=2$ then, $p^{s}(x)=R_{q-s}(x) \in H^{q+s}\left(\beta(\mathcal{L})^{*}\right)$, where $R_{1}=0$ if $i<0$;
2. If $P>2$, then

$$
\begin{aligned}
p^{s}(x) & =(-1)^{s} \gamma(-q) R_{(q-2 s)(p-1)}(x) \in H^{q+2 s(p-1)}\left(\beta(\mathcal{L})^{*}\right) \\
\mathcal{B} P^{s}(x) & =(-1)^{s} \gamma(-q) R_{(q-2 s)(p-1)-1}(x) \in H^{q+2 s(p-1)+1}\left(\beta(\mathcal{L})^{*}\right)
\end{aligned}
$$

where $R_{2}=0$ if $i<0$, and if $q=2 j-\ell$, where $\ell=0$ or 1 , then $\gamma(-q)=(-1)^{3}(m I)^{\mathcal{L}}, m=\frac{p-1}{2}$.
Now we prove the main second theorem in this work.
THEOREM 2.2. Let A be a commutative K-Hopf algebra, where $K=Z / p$, then on the dihedral cohomology group $\mathcal{\epsilon H \mathcal { D }}^{\cdot}(A)$, we can define the following homomorphisms (Steenrod map):
a) $P^{\imath}:{ }_{\epsilon} \mathcal{H} \mathcal{D}^{s}(A) \longrightarrow{ }_{\epsilon} \mathcal{H} \mathcal{D}^{s+\imath}(A)$, if $p=2$,
b) $P^{\imath}:{ }_{\epsilon} \mathcal{H D} \mathcal{D}^{s}(A) \longrightarrow{ }_{\epsilon} \mathcal{H} \mathcal{D}^{s+2 z(p-1)}(A)$, and $\mathcal{B P} P^{\imath}:{ }_{\epsilon} \mathcal{H D}(A) \longrightarrow{ }_{\epsilon} \mathcal{H} \mathcal{D}^{s+\imath+2 \imath(p-1)}(A)$, if $p>2$.

The operators $P^{\mathbf{i}}, \beta P^{i}$ have the following properties:

1) $\left.P^{i}\right|_{\epsilon} \mathcal{H} \mathcal{D}^{s}(A)=0$, if $p=2, i>s$, $\left.P^{2}\right|_{\epsilon} \mathcal{H} \mathcal{D}^{s}(A)=0$, if $p>2,2 i>s$, $\left.\mathcal{B P} P^{i}\right|_{\mathcal{H} \mathcal{D}^{s}(A)}=0$, if $p>2,2 i \geq s$
2) $P^{2}(x)=x^{p}$, if $p=2$ and $i=s$, or $p>2$ and $2 i=s$
3) $P_{j}=\Sigma P^{\imath} \otimes P^{\jmath-2}$ and $\mathcal{B} P^{j}=\Sigma \mathcal{B} P^{\imath} \otimes P^{\jmath^{-2}}+P^{\imath} \otimes \mathcal{B} P^{j-2}$
4) The operators P^{2} and $\mathcal{B} P^{i}$ satisfy the following Adam's relations:
i) if $p \geq 2$ and $a<p b$, then

$$
\mathcal{B}^{\gamma} P^{a} P^{b} \sum_{i}(-1)^{a+i}(a-p i,(p-1) b-a+i-1) \cdot \mathcal{B}^{\gamma} P^{a+b-i} P^{i}
$$

where $\gamma=0$ or 1 for $p=2, \gamma=1$ for $p>2$, and for any two integers i and j let

$$
(i, j)=\left[\begin{array}{ll}
\frac{(i+j)!}{i!j!}, & \text { if } \quad i \geq 0, j \geq 0 \\
0 & \text { if } \quad i<0, j<0
\end{array}\right.
$$

ii) if $p>2, a \leq P b$, and $\gamma=0$ or 1 , then

$$
\begin{gathered}
\mathcal{B}^{\gamma} P^{a} P^{b}=(1-\gamma) \sum_{i}(-1)^{a+i}\left(a-p i,(p-1)(b-a+i-1) \cdot \mathcal{B} P^{a+b-i} p^{2}-\sum_{i}(-1)^{a+i}\right. \\
.(a-p i-1,(p-1) b-a+i) \mathcal{B}^{\gamma} P^{a+b-i} \mathcal{B} P^{2}
\end{gathered}
$$

Note that the operators $\mathcal{B}^{0} P^{s}$ and $\mathcal{B}^{1} P^{s}$ are P^{s} and $\mathcal{B} P^{s}$, respectively.
PROOF. Suppose the triple $C=(E, \mathcal{A}, F)$ where \mathcal{A} is a co-commutative Hopf algebra over $K=Z / p, E$ and F are respectively the right and left co-commutative \mathcal{A}-co-algebra. From the above discussion and considering the triple $\mathfrak{L}=\left({ }^{\epsilon} A^{D}, K[\Xi], k^{D}\right)$, then $K[\Xi]$ is a co-commutative Hopf algebra over $K=Z / P, \epsilon^{D}$ and K^{D} are the left and right co-commutative $K[\Xi]$-co-algebra and hence $\mathcal{H}\left(\mathcal{B}(\mathfrak{L})^{*}\right)={ }_{\epsilon} \mathcal{H} \mathcal{D}(A)$.

REFERENCES

[1] LOODER, G.M., Dihedral homology and homotopy fixed point sets, Contemporary Mathematics, 146 (1993), 215-224.
[2] KRASAUSKAS, R.L., LAPIN, S.V. and SOLOVEV, Yu. P., Dihedral homology and cohomology, Basic notions and constructions, Math. USSR Spornic, 133 (175) (1987), 25-48.
[3] KOLOSOV, V.A., The symmetry homology and cohomology, Vest. Moscow Uni. Ser. Math.-Mech. 4 (1989), 81-83 (in Russian).
[4] TSYGAN, B. and FEIGIN, B., Additive K-theory, Lect. Notes Math., USSR Subserie, W1 (1987), 93-151.
[5] LODAY, J-L. and PROCESI, C., Cyclic homology and λ-operations, in Alg. K-theory. Connections with Geom. and Topol., NATO ASI Series C, 279 (1989), 209-224.
[6] LODAY, J. and QUILLEN, D., Cyclic homology and Lie algebra of matrices, Comment. Math. Helv. 59(1984), 565-591.
[7] CARTAN, H. and ELLENBERG, S., Homological Algebra, Princeton University Press, 1956.
[8] STEENROD, N.E. and EPSTEIN, D.B., Cohomology Operations, Princeton University Press, 1962.

