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ABSTRACT. The paper is devoted to study the inversion of the integral transform

(Hf)(x) fo H,’ [xt (a"a’)l"
f(t)dt

involving the H-function as the kernel in the space ,, of functions jr such that

fo itf(t)l
dt
-<x (l<r<o, ).

KEY WORDS AND PHRASES: H-function, Integral transform,

1991 AMS SUBJECT CLASSIFICATION CODES: 33C40, 44A20

1. INTRODUCTION

This paper deals with the integral transforms of the form

"’’ /(t)dt, (1.1)(Hf)(x) H,q zt
(b,,B,)l.

[("ai)l’]istheH.function, whichisafunetionofgeneralhypergeometricwhere gv,; z
(b, 3)1,

type being introduced by S. Pincherle in 1888 (see [2, 1.19]). For integers m,n,p,q such that

0=<m=<q, 0=<n=<p, al, b 6 C and a,,3s 6 ]R+ [0,oo) (l_<i_<p, _<j_<q), it can be
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written by

where

(1.2)

[ (,,,),, ] ,-- ,=,
(.)

H r(a, + a,s) H r(1 b,
i=n+l 3=m+l

the contour L is specially chosen and an empty produ, if it occurs, is ten to be one. The
thry of this function may be found in Brasma [1], Sfivta et al. [13, Chapter 1], MathM
and Sena [8, Chapter 2] and Prudnikov et aL [9, 8.3]. We abbreviate the H-function (1.2) and
the run,ion (1.3) to H(z) and (s) when no confusion occurs. We note that the formal Mellin
trsform of (1.1) giv the relation

(nl)(,) (,)(/)(1 ,). (1.4)

Most of the own integral transforms can be put into the form (1.1), in particular, if x
a B B 1, (1.1) is the integral transform with Meijer’s G-nction in the

kernel (Rooney [11], So et al. [12, 36]). The integral transform (1.1) with the H-function
kernel or the H-trano w invtigated by many authors (s Biblioaphy in Kilb et al.

[5-6]). Kilb et al. [7] we have studied it in the spe , (1 r < , v ) consist of

Lebgue meurable complex valu nctions f for whi

It"f(t)l"
dt

< . (1.)

We have investigat the pping propei su he boundedns, the representation and the
rge of the H-transform (1.1) on the spaa in Kilb et al. [5] and on the spa ., with any

r < in Kilb et al. [6-7], provided hat a" 0, 8 and A 0 or A # 0, rpectily.
In Glske et al. [3] the results were eended to y > 0. Here

i=1 i=n+l j=l j=m+l

i=1

a E E ,. .s)

In picul, we have proved that for certain rang of pameters, the H-transform (1.1) have
the reprntations

or

(Hf)(x) --hxl-(’+)/h --Z(X+)/hJo tZ’m+’n [

(-, t,), (,,,, ,,),,, ] (1.9)

(ai, ct,),r, (-, h)
(- 1, h), (b.i, .i)x,q

f(t)dt, (1.10)
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owing to the value of Re(A), where A C and h R \ (0}.
In this paper we apply the results of Kilbas et al. [/5-7] and Glaeske et al. [3] to find the inverse

of the integral transforms (1.1) on the space ,r with < r < oo and t, R. Section 2 contains

preliminary information concerning the properties of the H-transform (1.1) in the space ,r and
an asymptotic behavior of the H-function (1.2) at zero and infinity. In Sections 3 and 4 we prove
that the inversion of the H-transform have the respective form (1.9) or (1.10):

f(z) hz1-(+1)/h
d
-zz"

..,q+, zt
(1-bi-g,g)m+,,q,(1 -bi-fl:,fl),,m,(-A- 1, h)

(Hl)(t)dt (1.11)

or

f(z) -hx1-(A+l)/hLz(A+l)/h
dz

foHq-m+l’-n[ (1-ai-ai’ai)n+’p’(l-ai-ti’oq)l’n’(-’h) ](Hf)(t)dt,(X.12)p+,q+ zt
(--l,h),(1-b-,)m+,q,(1-bj-,).m

provided that a* 0. Section 3 is devoted to treat on the spaces ,z and . with A 0, while

Section 4 on the space , with A # 0.
The obtained results are extensions of those by Rooney [11] from G-transforms to H-transforms.

2. PRELIMINAR_S

We give here some results from Kilbas et al. [5-6], Claeske et al. [3] and from Kilbas and Saigo

[4], Mathai and Saxena [8], Srivastava et al. [13] concerning the properties of H-transforms (1.1)
in ,-spaces and the asymptotic behavior of the H-function at zero and infinity, respectively.

For the H-function (1.2), let a* and A be defined by (1.6) and (1.8) and let

,.-.,-Re if m > 0,
(2.)- if m 0;

min Re 1-a 1-an

(2.2)
oe if n

3--1 ----n+l -’1

,-2, -2o,+- (.
j--’-I i--1

For the function J() given in (1.a), the exceptional set of is meant the set of real numbers

v such that a < 1-v < and (s) has a zero on the line Re(s) 1-v (see Rooney [11]). For two
Banach space X and Y we denote by IX, Y] the collection of bounded linear operators from X to Y.

THEOREM 2.1. [5, Theorem 3], [6, Theorem 3.3] Suppose that o < u < and that

either a* > 0 or a" 0, A(1 u) + Re(g) _< 0. Then

(a) Tt,ere is one-to-one tr,nsforrn H e [z,2,z,_,2] so that (1.4) olds for f e ,2 d
Re(s) . ga* 0, A(I ) + e(g) 0 is not in te eception set of, tSen tSe

operator tr=sfor ,2 onto 1-,2.
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(b) If f E .2 and Re(A) > (1 v)h- 1, Hf is given by (1.9). If f E ,2 and Re(A) <
( )h , t. Hy $i. by (1.0).

THEOREM 2.2. [6, Theorem 4.1], [3, Theorem 1] Let a* A 0,Re(p) 0 and
a<l-v<5.

(a) The transform H is defined on g,= and it can be extended to ,, as an element of
[.... 1.... for < r < o.

(b) If < r =< 2, the transform H is one-to-one on 2,,, and there holds the equality

(Hf)(s) K(s)(fftf)(1 s), Re(s) v.

(c) If y e ,,r (1 < r < ), then Hf is given by (1.9) for Re(A) > (1 v)h- 1, while nf
is given by (1.10) for Re(A) < (1 v)h 1.

THEOREM 2.3. [6, Theorem 5.1], [3, Theorem 3] Let a* 0,A > 0,-oo < a < v <. < < oo e x( .) + R() _< / (). ,,
max with + 1. (2.6)7

(a) The transform H is defined on 2,,2, and it can be extended to ,r as an dement of
[,,, 1-,,] for a/l s with r _< s < x suck that n’ >_ [1/2 A(1-- t,) ae(p)]-1 with l/s-t- lls’ 1.

(b) /f < r _< 2, the transform H is one-to-one on ,, and there holds the equality (2.5).
(e) If f Z,, and g ,,o with < r < oc,1 < s < oo,1/r + 1/s >= and A(1 g) +

Re(/) _< 1/2 max[7(r), 7(s)], then the relation

fo f(x)(Hg)(x)dx

holds.

The following two assertions give the asymptotic behavior of the the H-function (1.2) at zero
and infinity provided that the poles of Gamma functions in the numerator of (s) do not coincide,
i.e.

j(ai-l-k)#a,(bj+l) (i=l,.--,n;j=l,-.-,m;k,l=0,1,2,...). (2.8)

THEOREM 2.4. [8, 1.1.6], [13, 2.2] Let the condition (2.8) be satisfied and poles of
Gamma functions r(b, + 5,*) (J ,’", m) be simple, i.e.

i(bj + k) 7 a(b, + l) (i j;i,j 1,...,m;k,l 0,1,2,-.-).

If A >= O, then

H;."(z) o() (11- o) ,,.,ith , mi- [R(b)]
_-<,_-<,-[ j

THEOREM 2.5. [4, Corollary 3] Let a’,A and p be given by (1.6),(1.8) and (2.4),
respectively. Let the conditions in (2.8) be satisfied and poles of Gamma functions F(1 -ai

sis) (i 1,... ,n) be simple, i.e.

otj(1-ai+k) 7oq(1-a,-t-I (i#j; i,j= 1,...,n; k,l=O, 1,2,...). (2.11)
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If a" 0 and A > 0, hen

H;,, (z)=O(z) (Iz[--c) with 0=max max "Re(a,)s, -1] Re(#)A+ 112] (2.12)

REMARK 2.1. It was proved in Kilbas and Saigo [4, 6] that if poles of Gamma functions

F(1- a,- sis) (i 1,-..,n) are not simple (i.e. conditions in (2.11) are not satisfied), then
the H-function (1.1) have power-logarithmic asymptotics at infinity. In this case the logaritmic
multiplier [log(z)]N with N being the maximal number of orders of the poles may be added to

the power multiplier z and hence the asymptotic estimate O (z) in (2.12) may be replaced by
0 (z’og(z)]N). The same result is valid in the case of the asymptotics of the H-function (1.1)
at zero, and the estimate O (zp) in (2.10) may be replaced by O (zP[log(z)]M), where M is the
maximal number of orders of the points at which the poles of P(b +/s) (j 1,..-, m) coincide.

3. INVERSION OF H-TRANSFORM IN ,2 AND ,, WHEN A 0

In this and next sections we investigate that H-transform will have the inverse of the form

(1.11) or (1.12). If f E 2,2, and H is defined on .... then according to Theorem 2.2, the equality

(2.5) holds under the assumption there. This fact implies the relation

(921Hf)(1 s)(ff)If)(s) 9(1 s)

for Re(s)= u. By (1.3) we have

r (1 ai- s,, s,),+,,,, (1 a,

(3.1)

,] o(,), (3.)

and hence (3.1) takes the form

(Jlf)(s) (ffJIHf)(l s)YQ(s) (Re(s) ,). (3.3)

We denote by So, flo, a, al a, o, Ao and #o for o instead of those for . Then we find

so max[ + 1,..
Re(bq)-

q + if q > m,

if q=m;

rain Re.(a.__+l)
&= +

+ 1,-..,Re(%)s + 1] if p > n,

if p=n;

ao’=-a*; am =-a; ao" =-a, 6o=8; Ao=A; Po=--P--A.

(3.4)

(3.6)

We also note that if So < u < , t, is not in the exceptional set of Ko.
First we consider the case r 2.

THEOREM 3.1. Let s < t/</,So < t/< o,a" 0 and A(1 u) + Re(p) 0. Iff
.,,z, the relation (1.11) holds for Re(A) > th- and the relation (1.12) holds for Re(A) < ,h- 1.
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PROOF. We apply Theorem 2.1 with being replaced by 9 and v by v. By the

assumption and (3.6) we have

-a*a0 0

Ao[1 (1 v)] + Re(po) Av Re(v) A --[A(1 v) + Re(v)] 0

and ao < (1 v) < Bo, and thus Theorem 2.1(a) applies. Then there is a one-to-one transform

Ho 6 [h-v,2,.2] so that the relation

(nof)() Xo(,)(f)( ) (3.9)

holds for f 6 1:-,2 and Re(s) v. Further if f ,Cv,2, Hf _, and it follows from (3.9),
(1.4) and (3.2)that

(JtHoHf)(s) to(s)(JHf)(l s) Ko(S)K(I s)(f)(,)

if Re(s) v. Hence ff2HoHf ffYf and

HoHf=f for f6/2,,a. (3.10)

Applying Theorem 2.1(b) with K being replaced by o and v by 1- v, we obtain for f
that

(Hof)(x) hx1-(+’)/t’Ix
dx

forrq-’’-"+i[(-A’h)’(1-a’-a{’a{)"+’"’(1-a’-a"a)L"l.,.,+l,q+lz,
(1 -,-Bj, fl,)=+x,,,(1-,-B,,fl,)x,=,(-A- 1,h)

f(t)dt, (3.11)

if (A) > [1 -(1 v)]h- and

(no:)() --<+/i +’/
dx

Z’-+’" [ (1-a-a’a’)"+’’’(1-a-a’’a’)’’’’(-’’h) ] f(t)d,, (3.12)’"+’ * (- 1, ), ( % ,, ,)=+,,, ( , ,, ,),,=

if () < [ ( ,)]h 1. ,pi : y n: d i, (.10) hv th, ,,tio (1.1)
and (1.12) for f ,, if Re(A) > vh 1 and (A) < vh- 1, resptively, which complet the

proof of threm.

Next results is the extension of Theorem 3.1 to ,,-spaces for any < r < x, provided that

A 0 and Re(p) 0.

THEOREM 3.2. Let a < 1-v < /,ao < v < /o,a* 0,A 0 and Re(p) 0. If

f e ,, (1 < r < o0), the mlation (1.11) holds for Re(A) > vh- 1 d the relation (1.12) holds

for (A) < vh- 1.

PROOF. We apply Threm 2.2 with bring replaced by and v by v- 1. By the

sumption and (3.6), we have a; Ao 0,(o) 0 and ao < (1 v) < Bo, and thus

Threm 2.2(a) n be appli. In accordance with this threm, Ho n be emend to 1....
an element of Ho fi [-,,,]. By virtue of (3.10) HoH is identil operator in ,. By

oney [11, Le 2.2] , is den in , and sin H q [.... .... and Ho [..... ,],
the operator HoH is identil in , and hence

HoHf f for f 6,I2.... (3.13)
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Applying Theorem 2.2(c) with ::K being replaced by K0 and v by v, we obtain that
the relations (3.11) and (3.12) hold for f 1.... when Re(A) > [1- (1- v)]h- and

Re(A) < [1 (1 v)]h 1, respectively. Replacing f by Hf and using (3.13), we arrive at

(1.11) and (1.12) for f 1.... if Re(A) > vh- and Re(A) < vh- 1, respectively, which

completes the proof of theorem.

REMARK 3.1. If al ap =/1 /q which means that the H-function

(1.2) is Meijer’s G-function, then A q-p and Theorems 8.1 and 8.2 in Rooney [11] follow from
Theorems 3.1 and 3.2.

4. INVERSION OF H-TRANSFORM IN , WHEN A # 0

We now investigate under what condition the H-transform with A # 0 will have the inverse

of the form (1.11) or (1.12). First, we consider the case A > 0. To obtain the inversion of the

H-transform on ,r we use the relation (2.7).

THEOREM 4.1. Let < r < ov,-cx < a < 1-v </,Co < v < min{&, IRe(p+ 1/2)/A]+
}," 0, > 0 d (1 ) + R() /2 (), () i i-. i (2.). ; f e ,,
,then the relations (1.11) d (1.12) hold for Re(A) > gh- d for Re(A) < gh- 1, rpectively.

PROOF. According to Threm 2.3(a), the H-transform is defined on .... First we consider

the ce Re(S) > h 1. Let H, (t) be the function

Ijq-m’P-n+l IHi(t) (4.1)

If we denote by ’, , z and for H1 instead of those for H, then

*=-a’=0; =; A=A>0; --p A --1. (4.2)

We prove that H1 ,, for any s (1 _< s < oo). For this, we first apply Theorems 2.4 and 2.5
and Remark 2.1 to Hi(t) to find its asymptotic behavior at zero and infinity. According to (3.4),
(3.5) and the assumptions, we find

Re(bj)-I
+1 < Co<g=< Re(ai)

+1 (j=m+l,...,q; i=n+l,...,p);

Re(bj)- 1 Re(A) +
+1 < 0<< (j=m+l,...,q).

fa h

Then it follows from here that the poles

a+k A+l+n (n 0,1 2, -)aii=+l (i=n+l,..-,p; k=0,1,2,--.), A,=
(xl h

of Gamma functions r(a, + a, a,s) (i n + 1,---,p) and F(1 + A ks), and the poles

=+1 (j=rn+l,---,q;t=0,,2,.-.)

of Gamma functions F(1 b: -/a +/as) (j m + 1,--. ,q) do not coincide. Hence by Theorem

2.4, (4.1) and Remark 2.1, we have

Hl(t)=O(ta) ([t[-0) with Pl= min -l=-s0
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for ao being given in (3.4), or

H1 (t) O(t-a (t -- O) (4.3)
with an additional logarithmic multilplier [log t]N possibly, if Gamma functions F(1 b fl +
s) (j m + 1,..., q) have general poles of order N _> 2 at some points.

Further by Theorem 2.5, (4.1) and Remark 2.1,

Hi(t) O(te) (t o) with m max [o,-Re(_-_ 1/2
-1,

-Re(A)-1]
for being given by (3.5), or

H(t) O(t-’) (Itl- ) with 70 min [, Re(/)A+ 1/2 + 1, --------Re(A)+ 1] (4.4)

and with an additional logarithmic multilplier [log(t)]M possibly, if Gamma functions F(1 + A-
hs),F(ai + ai a,s) (i n + 1,... ,p) have general poles of order M _> 2 at some points.

Let Gamma functions F(1-bj-/+s) (j rn+l,... ,q) and F(1 +A-hs),F(a,+a,-a,s) (i
n + 1,---, p) have simple poles. Then from (4.3) and (4.4) we see that for <_

if and only if, for some R1 and Rz, 0 < R1 < Rz < c, the integrals

na
t(-o)-dt’ fay t’(-)-Xdt (4.5)

are convergent. Since by the assumption v > a0, the first integral in (4.5) converges. In view of
our assumtions

ae() + 1/2 Re(A) +v<, v< +1, v<A h
we find v-70 < 0 and the second integral in (4.5) converges, too.

If Gamma functions P(l -bj j +js) (j m+ 1,..., q) or r(l+- h.), r(a, +,-,,) (i
n + 1,..-,p) have general poles, then the logarithmic multipliers [log(t)]N (N 1,2,.-.) may be
added in the integrals in (4.5), but they do not influence on the convergence of them. Hence,
under the assumptions we have

H(t) . ., (l_<s< (4.6)

Let a be a positive number and IIa denote the operator

(IIaf)(z) f(az) (x > O)

for a function f defined almost everywhere on (0, ). It is known in Rooney [11, p.268] that II
is a bounded isomorphism of ,r onto ,..... and if f ,r (1

_
r 2), there holds the relation

for the Mellin transform

(9IIf)(s)=a-’(f)() (Re(s) v). (4.8)

By virtue of Theorem 2.3(c) and (4.6), if f e ,1,,,,. and H1 ,, (and hence II=Hx ,,,,,),
then

From the assumption A(1 v) + Re(p) _< 1/2 7(r) <-- 0, Theorem 2.3(b) and (4.8) imply that

(mlHILH,)() :K(s)(mlILH,)(I ) x-O-’)K(s)(ff2H,)(l s) (4.10)
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for Re(s) /. Now from (4.6), Hi(t) E ,t,,1. Then by the definitions of the H-function (1.2),
(1.3) and the direct and inverse Mellin transforms (see, for example, Samko et al. [12, (1.112),
(1.113)]), we have

(1-a,-o,,o,),.,+x,,,(1-a,-o,,a,),.

l+A-hs

’(1 + A- hs)
s

P(2+A-hs)

for Re(s) u, where 0 is given by (3.2). It follows from here that for Re(s)

:3o(1-s)
l+A-h(1-s)

(!JlH)(1 s)

Substituting this into (4.10) we obtain

1+ $- h(l s)
(mHnH)O)

then

For x > 0 let us denote by g=(t) a function

and (4.11) takes the form

9((s)[1 + A h(1 s)]"

(Re(s) t,). (4.11)

t(+)/h_ if0<t<x,
g=(t) -0 ift >z,

+ A h(l

(HHH)(s) ([z-(+l)/g=)])(s),

(HII.H)(t) =-(’4"l)/hx(t).
which implies

(4.12)

(4.13)

Substituting (4.13)into (4.9), we have

H(zt)(Hf)(t)dt z-(+l)/h g,(t)f(t)dt

or, in accordance with (4.12),

fot(x+)/a-l f(t)dt hx(x+)/h fo H(zt)(Hf)(t)dt.

Differentiating this relation we obtn

which shows (1.11).
If Re(S) < h 1, the relation (1.12) is proved silarly to (1.11), by ting the function

uq-m+,.-. (1-a’-a’’a’)"+z’’’(1-ai-a’’ai)’"’(-$’h) ]=(t)=..,+,,a+,
(-- ,),(-,-fl,,fl,)+,,,(1-,-fl,,fl,),,

(4.14)
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instead of the function Hi(t) in (4.1). This completes the proof of the theorem.

In the case A < 0 the following statement gives the inversion of H-transform on ....
THEOREM 4.2. Let < r < o,a < 1- v < < co,max[a0, {Re( + 1/2)/A} + 1] < v <

lo,a* O,A < 0 and A(1 v) + Re() _< 1/2 (r), where 7(r) is given by (2.6).
then the relations (1.11) and (1.12) holds for Re(A) > vh- and for Re(A) < vh- 1, respectively.

This theorem is proved similarly to Theorem 4.1, if we apply Theorem 5.2 from Kilbas et al.

[6] instead of Theorem 2.3 and take into account the asymptotics of the H-function at zero and
infinity (see Srivastava et al. [13, 2.2] and Kilbas and Saigo [4, Corollary 4]).

REMARK 4.1. If ol cr 1 / 1, then Theorems 8.3 and 8.4 in Rooney
[11] follow from Theorems 4.1 and 4.2.
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