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ABSTRACT. Consider a planar forced system of the following form

gx—t = u(x,y) + h(t)
g—% - -v(x,y) + g(t),

where h(t) and g(t) are 2m-periodic continuous functions, t € (-w,@) and
p(xy) and v(x,y) are continuous and satisfy local Lipschitz conditions. In this
paper, by using the Poincare’s operator we show that if we assume the conditions,
(Cl). (Cz) and (Ca) (see Section 2), then there is at least one 2m-periodic
solution. In conclusion, we provide an explicit example which is not in any class

of known results.

KEY WORDS AND PHRASES: Poincare mapping, Poincare index, Nonlinear jumping differ-
ential equation.
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1. INTRODUCTION
We consider the following planar forced system of ordinary differential equa-

tions:

u(x,y) + h(t)

(1.1)
= -v(x,y) + g(t),

&le &g

where h(t) and g(t) are 2m-periodic continuous functions, t € (-o,w) and pu(x,y)
and v(x,y) are continuous and satisfy local Lipschitz conditions. Our work is
inspired by previous work on the existence of periodic solutions of nonlinear
ordinary differential equations by Aguinaldo and Schmitt [1], Cesari [4], Ding
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[6-8], Ding [9], Lazer and Leach [12], Leach [13], Loud ([14], Mawhin [15], [16],
Mawhin and Ward (17], Mawhin et al. [18], among others. In this paper, we show
that if we assume the conditions, (C1), (C2) and (C3) (see Section 2), then there
is at least one 2n-periodic solution. In conclusion, we provide an explicit
example which is not in any class of known results.

The authors wish to take this opportunity to thank the referee for pointing
out the wonderful paper Capietto et al. [2], which has results related to Theorem
2.1 as well as Lemma 2.1, and which both of us had overlooked. '

2. MAIN RESULTS
Consider the system (1.1). Let x = pcosé and y = psing. Expressing

(1.1) in polar coordinates form, we have

= Alp,0) + hie,t)
(2.1)

&8 &I&

=
- - _gle,t)
w(p,0) =

where
A(p,8) = p(p cos6,p sinb)cosd - v(p cosd,p sind)sind.
w(p,0) = %(u(p cos8,p sin@)sin6 + v(p cosB,p sind)coso),
Bte.t) = h(t)cose + g(t)sine, and
E(e.t) = h(t)sing - g(t)cose.

We now shall establish the following theorem.
THEOREM 2.1. Suppose the system of differential equations (1.1) or (2.1)
satisfies the conditions:
(C1) IA(p,6)| < k(p), where k(p) is a continuous function and satisfies a
local Lipschitz condition.

L4 —_ n
2n+3 lim de lim de 2n-3 +
(C2) (a) YSER >ote Ji o0 sp_’m J‘Z 6.0 < =5 for some neZ and

some 3§, O < & < min {2n/(2n+1),1} or

34 T ‘

lim de Tin de 1
(b) 21r+3<p..+,, o 0(p,8) ~ prtw o oo <3 for some 3,

0<3<( u2+1-u)
(C3) 1im min w(p,0)p" > 0 for some « in (0,1).
pro 0=0<2n
Then the system has at least one 2m-periodic solution. Take note that the assump-
tions of this theorem are comparable with the assumptions of Theorem 3 in [2,
p.367].

We first establish two lemmas.

LEMMA 2.1. If the system (1.1) or (2.1) satisfies (Cl1), then for each posi-
tive number Ml’ there exists a positive number M, with M 2 M1 so that for
each solution (p(t),08(t)) of (2.1), with an initial condition p(to) > M for
to € [0,2n), we have p(t) > M, for 0 =t = 2m.

1
This lemma is very close to the “elastic property" in [2,p.351].
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PROOF. From (2.1) and (C1), we have

dp

-y - k(p) < 3t < k(p) + S
where
€, = max lﬁ(e.t)l + €4, where € > 0.
0s6<2n
Ost=2n

Let p+(t) and p (t) be solutions of the equations

L = kip) + ¢ (+)
and

dp _ _ _ _

T k(p) ¢ (-)

with the initial conditions p+(to) = Ml for (+) and p_(to) = p+(2u) for (-).
Observe that if p*(t) is a solution of (+) then p+(2n+t0—t) will be a solution
of (-). Thus p (t) = p'(2mst-t) with p (t) = p'(2m). Let M = p'(2m). Be-
1 < 0, from (-), we have p (2n) = p (t) for all O s t s 2m. Let
p(t) be a solution of 32 = A(p,8) + K(e,t) with an initial condition p(ty) > M.

dt
Then, according to the comparison theorem (e.g., see [10,p.26]) of ordinary differ-

cause -k(p) - ¢

ential equations, we have p (t) < p(t), as O s t s 2r. Together, we have Ml =
p (2n) s p (t) < p(t) for all t, 0 st s 2nr. Observe that M =p (to) z p(2n) =
M] > 0, from the above inequality. The lemma is now proved.

LEMMA 2.2. If the system (2.1) satisfies (C1), (C2), (a) or (b), and (C3)
then there exists a constant M > 0 such that for every solution (p(t),e(t)) of

(2.1) with an initial condition p(to) > M, for to € [0,2n], the inequality:

2nm < 8(0) - 8(2n) < 2(n+1)n, when n € Z', (2.2a)

holds if (C2)(a) is assumed, and the inequality

0 <0(0) -6(2n) <2rn (2.2b)

holds if (C2)(b) is assumed.
PROOF. By (C3) and (C2), (a) or (b), there is a posifive constant M, such

2
that for all p > Mz, we have w(p,0) > O,
w(p,0)p" > 2, (2.3)
for any c, lim min w(p,e)pa >¢ >0, and
P2 0s6<2m
n
2n+(8/2) de 2n-(8/2)
=T < PIER)) <= (2.4a)
]
for some n € 2 if (C2)(a) is assumed, or
n
] de 1
2 + 5 < o587 <3 (2.4b)
0]

if (C2)(b) is assumed. Let
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c, = max Igte,t)]
0=0=2n
Ost=2n
and
1
_ 8ucy 1-a
Ma = max Mz, [? . (2.5)

By Lemma 2.1, there exists M > O such that for every solution (p(t,e(t)) of
(2.1) with p(to) >M we have p(t) > M, for 0 s t s 2r. Divide the second equa-

3
tion of (2.1) by -w(p,8) and integrate between 6(0) and 6(2xr):
8 (2n) L4 n o
_ do  _ g(e,t)
J o8] - dt + w(p.8)p dt (2.6)
6(0) 0 4]

Assume (2.2a (or (2.2b)) is false. Then, say 6(0) - e(2n) z2(n+1)x, or
8(0) - 2(n+1)nrz0(2n), where nez*, or n = 0. By using (2.3), (2.4a) or
(2.4b), (2.5), (2.6), we have:

6(0) 6(0) 6(0)

3 de  _ de de
2u+§ < (n+1) J 07_”,9 = I o 8) 5.0 < J U—T__Tp.e .
6(0)-2n 8(0)-2(n+1)m e(2m)
However,

0(0)
do  _ _
w(p,8)
o(2n) 6(0)

This 1s a contradiction. We must have 0(0) -6(2rn) < 2(n+1)n, where nez’ (or
0(0) - 06(2n) < 2xn). Similarly we have w(0) - e(2n) > 2nn, where nez' (or
6(0) -e(2n) >0). The lemma is now proved.

8(2n)
gle,t) 3
w_(_—Tpe s 2m + prep dt<2u+2.

As a direct consequence of Lemma 2.2, we have the following Corollary.

COROLLARY 2.1. If, in addition to the conditions of Lemma 2.2, we assume
g(t) = h(t) = 0, then all 2n-periodic solutions of (2.1) are uniformly bounded,
that is, there is a positive number M such that p(t) =M for every 2m-periodic
solution (p(t),6(t)) of (2.1).

PROOF OF THEOREM 2.1. Let us denote (x(t;xo.yo), y(t;x
of (1.1) with the initial condition (x(0;x

0,yo)) the solution
O'YO)' y(O;xo.yo)) = (xo,yo). For every
point (xo,yo), define the Poincdre mapping P(xo,yo) = (x(Zn;xo,yo), y(Zn;xo,yo)).
Since u(x,y), v(x,y), h(t) and g(t) of (1.1) are continuous, the Poincaire mapp-
ing P(xo,yo) of (1.1) is continuous. Let u(xo,yo) = x(Zu;xo.yo) - X and
v(xo,yo) = y(Zn;xo,yo) - Yo The pair (u,v) is a continuous vector field in the
plane.

Let M be the positive constant guaranteed by Lemma 2.2. Choose a positive
constant M’ such that M’ > M. According to the Lemma 2.2, for all (xo.yo) such

2 2

that Xy * ¥y = (M’)Z, we have 2nm < 6(0) - 6(2n) < 2(n+1)n for some nonnegative

integer n. Thus (u(xo,yo), v(xo,yo)) * a(xo.yo) for any real constant « and for

all (xo,yo) such that xg + yg = (M’)z. As (xo.yo) moves along the circle xg +
yg = (M’)2 in counter clockwise direction, the vector u(xo,yo), v(xo.yo) rotates

through an angle of 2n. The sum of the Poincére index of a singular point of the

continuous vector field (u(x ), v(xo,yo)) in the compact domain = {(xo,yo)lxg +

0'Yo
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y2 s (M’)Z) is equal to 1. There must exist at least one singular point of the
vector field in this domain. We denote it by (:.;). P(i.;) = (§,§). It is clear
that §2 + ;2 s (M’)Z. Hence (x(2n;§.§). y(2n;§,§)) = (§.§). This is a 2n-periodic
solution.

The following two theorems (2.2 and 2.3) are almost the same as two well-known
theorems. However, these particular two theorems require slightly different
assumptions than the two well-known theorems. Furthermore, these two, theorems can
be proved using Theorem 2.1.

THEOREM 2.2. Consider the following nonlinear ordinary differential equation:

o, W) %" - ()% = H(b), 2.7

at?

where w, and w_ are positive constants, x+ = max {x,0}, x = max {-x,0} and H(t)

is a continuous 2n-periodic function. If

2 1 1 2 +
T < Zi: + o <3 for some neZ (2.8a)
or
2<L Ll (o, (2.8b)
w )

-+ -
then the equation (2.7) has a 2n-periodic solution.
PROOF. Let us define

{(w )2 if x=z0
+
u(x) =

(w_)2 if x <o.
Then

2
(0, )7x if x=0

u(x)ex = (w+)2x+ - (w_)zx- = * 2
(0_)™x if x <o.

Clearly, u(x)*x is a continuous function of x.

Let %% = y. Then the equation (2.7) is equivalent to:

alg

=Yy
(2.9)

%

T -u(x)+x + H(t)

which is of the same type as (1.1). It satisfies a local Lipschitz condition. The
Lipschitz constant is equal to Max ((w+)2.(w_)2,1}. Expressing (2.9) in the polar

coordinates, we have

&le
(]

A(p,0) + H(t)sine
p (2.10)
-w(p,8) - %(—H(t)cos e),

n.' =%
o
L]

when A(p,8) = p sind cos® - u(x)*x siné = p sin® cosB(1-u(x))

2 -n T
psindcose(1 - w+) ) if - = e < >

T 3n
- < o
> =0

psinBcose(1 - w_)z) if >

\
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and

sinze + %u(x)°x cos@

w(p,0)

A
@
A

sinze + W coszo, if

2
+
2

sine + u(x)cosze =

sin%e + w_cosze, if

A
(-]
A

.

[SIE] NIH'

ng) NIN

Now,
T

de =7 1_4-2_.
wip.ei w, w_
0

It is easy to verify that the equation (2.7) satisfies the conditions (C1), (C2)
and (C3).
THEOREM 2.3. Consider

dzx
— + G(x) = H(t) (2.11)
dx’

where G(x) 1s Lipschitz continuous with respect to x, and H(t) is 2n-periodic and
continuous with respect to t. Suppose (2.11) satisfies the following condition:

(n+8)% < lim c_(:_) = Tim G—(-:-) < (n+1-8)2, (2.12)
1XTw 1%+

for the some non-negative integer n and some 4,

0 <& < mi 2x 1 ,Vu2+1— } = min{zu L }

Zn+1'4an Zn+1’anf"

Then the equation (2.11) has a 2n-periodic solution.

PROOF. Let g% =y, then the equation (2.11) is equivalent to the system
d—& =
at =Y
(2.13)
dy _
aT = -G(x) + H(t).

Observe that the system (2.13) is a special case of the system (1.1), where
ulx,y) =y, vix,y) = G(x), h(t) = 0 and g(t) = H(t). Expressing (2.11) in the
polar coordinates form (2.1), we have: A(p,8) = p cosé - G(b cos@) sin@, w(p,8) =
sinze + %G(p cos@) cos®, h(e,t) = H(t) sin® and E(G,t) = -H(t) cose6.

Now, one can easily verify that the equation (2.13) satisfies the conditions

(1), (C2), and (C3).

3. EXAMPLE
Consider the system
d_x =
at -V
(3.1)
dy _ _
at f(x,y) + H(t)
where
0 if (x,y) = (0,0)
f(x,y) = 2.3
k™x
55" otherwise,
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k > % and H(t) is a continuous 2m-periodic function. Then (3.1) has a 2m-periodic

solution.

PROOF . Observe that the function f(x,y) is continuous, and g; and %§
exist, for all x,y. We now show that (3.1) satisfies the conditions (C1), (C2),
and (C3).

Express (3.1), in polar coordinate form. Then

g% = p sind cos e(l-kzcosze) + H(t)sine
(3.2)
g% = (sinze + kzcos49) + H(t)cose

2

2cosze) and w(p,0) = sinze + Kk cos4e.

with A(p,8) = p sin 6 cos 6 0(1 -k
Using the Residue Theorem of complex analysis we find

14 T /2
de - de =2 d tan @
wlp,0) sin2+kzcosze tanze + Kk
0 0""e “n/2 P)
1+tan™6
,Let tan @ = x then
/2 © 2 @ 2
d tan 6 (1+x7)dx (1+x7)dx
2 3 z "% T z.32°°2 z z :
tan“e + k X +x +k (x“+v2k-1 x+k) (x“-v2k-1 x+k)
-n/2 2 - -

1+tan”e

There are two complex roots:

and

_ V3KT + 1VZk+T
¥ =73

in the upper-half complex plane. Thus the above integral is equal to

1+ xf 1+ xf
4ni +

~ .2 = .2
(x1 xl)(xl-VZk 1 x1+k) (xz-xz)(xz+s/2k-1'x2+k)

= ani 4(2k-1) (k+1) o 2nlk+1)
2iv2k+1 (4k(2k-1)) kv2k+1

Since k and k + 1 are relatively prime and k + 1 > V2k+1 as k 2 %. it

follows that . if;l cannot be an integer, and thus there exists a non-negative
integer n such that n < kk3§+1 < n+ 1. The condition (C2), (a) or (b), is

satisflied.
It is evident that (C1) and (C3) are true. In fact:

|1A(p,08)| = plsine cose(l—kzcosze)l < p(1+ kz) = k(p)
and

lim min u(p,e)pa = lim[1—~l§]pa = .
pro 0=6<2n prw' 4k

Hence, by Theorem 2.1, there is a 2m-periodic solution.
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