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ABSTRACT. Conslder a planar forced system of the followlng form

(x,y) + h(t)

-{x,y) + g(t},

where h{t} and g(t) are 2x-perlodlc contlnuous functions, t (-m,=) and

(y) and P{x,y} are continuous and satlsfy local Llpschltz condltlons. In this

paper, by uslng the Polnc&re’s operator we show that if we assume the condltlons,

{CI), {C2) and {C3) {see Section 2), then there is at least one 2=-perlodlc

solutlon. In concluslon, we provlde an expllclt example whlch is not in any class

of known results.

KEY WORDS AND PIIBASES: Polnc&re mapplng, Polnc&re index, Nonlinear Jumpln dlffer-

entlal equation.
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1. INTROIKICTION

We consider the following planar forced system of ordlnary dlfferentlal equa-

tlons:

----= Cx,y) + hCt)
(1.1)

--d[t -vCx,y) + gCt),

where h{t) and g(t) are 2-periodlc continuous functions, t e C-m,=) and (x,y)

and v{x,y) are continuous and satisfy local Lipschltz conditions. Our work is

inspired by previous work on the existence of periodic solutions of nonlinear

ordinary differential equations by Aguinaldo and Schmltt [I], Cesari [4], Ding
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[6-8], Dine [9], Lazer and Leach [12], Leach [13], Loud [14], Mawhln [15], [16],
Mawhln and Ward [17], Mawhin et al. [18], among others. In this paper, we show

that if we assume the conditions, {CI), {C2) and {C3) {see Section 2), then there

is at least one 2=-perlodlc solution. In conclusion, we provide an explicit

example which is not in any class of known results.

The authors wish to take this opportunity to thank the referee for polntlnE

out the wonderful paper Capietto et al. [2], which has results related to Theorem

2.1 as well as Lemma 2.1, and which both of us had overlooked.

2. NAINRITS

Consider the system (1.1}. Let x p cose and y p sine. Expressing

{1.1) in polar coordinates form, we have

where
- k(p,e) + (e,t)

de g(e, t)-(p, el p

k(p,e) (p cose,p slne)cose p(p cose,p sine)sine.

I{(p,e) [p cose p sine)sine + P(p cose p slne}cose}

h(e,t) h(t)cose + g(t)sine, and

(e,t] h(t)sine g(t)cose.

(2.1)

We now shall establlsh the followlng theorem.

TI 2.1. Suppose the system of dlfferentlal equations (1.1) or (2.1)

satisfies the conditions:

(C1} IA(p,e)I < k(p}, where k(p) is a continuous function and satlsfles a

local Lipschltz condition.

2x+, llm 0" de <Ii-- OX dB 2x-6
Z+(C2} (a] < (pe) -p+= (p,@) < --n for some n e and

some 5, 0 < 6 < mln {2/(2n+I),1} or

lira 0" de 1t--- 0 de(b) 2 + 6 < p+---- (p,e) p+(R) (p,’e) < for some 5.

0 < 6 < V+I-)
(C3) lim mln (p,B}p > 0 for some in (0,1}.

p= 0sB<2x

Then the system has at least one 2x-periodic solutlon. Take note that the assump-

tions of this theorem are comparable wlth the assumptions of Theorem 3 in [2,
p.367].

We first establish two lemmas.

LENI 2.1. If the system {1.1) or (2.1) satisfies (CI), then for each posi-

tive number M1, there exists a positive number H, with M M so that for

each solution (p(t},e(t}) of (2.1}, with an initial condition p(t0} > M for

tO e [0,2}, we have p(t} > M for 0 t 2.

This lemma is very close to the "elastic property" in [2,p.351].
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PROOF. From [2.1 and (C1), we have

where

dp
-c k(p) < -[ < k(p) + c

c max lCe,t} + 0’ where 0 > O.
Os8s2x
O<_t<_2x

Let p*{t) and p-{t) be solutlons of the equations

and

dtd’-P k(p} + c (+)

dtd--P -k(p) c (-}

with the Inltial condltlons p+(tO) M for (+) and p-(tO} p+(2=} for (-}.

Observe that if p+(t) is a solution of (+) then p+(2+to-t} will be a solution

of (-}. Thus p-{t) p+(2X+to-t} with p-(tO) p+(2x). Let M p+{2=}. Be-

cause -k{p) c < O, from (-}, we have p (2) s p (t) for all 0 s t s 2. Let
dp (8,t) with an initial condition p(tO) > M.p(t) be a solution of -[ k(p,8) +

Then, according to the comparison theorem {e.g., see [I0,p.26]) of ordinary differ-

entlal equations, we have p (t} < p(t), as 0 s t s 2. Together, we have M!
p {2} s p (t} < p{t} for all t, 0 s t s 2=. Observe that M p (to z p(2}

M > O, from the above inequality. The lemma is now proved.

LEMMA 2.2. If the system (2.1} satisfies (CI}, (C2), (a) or {b), and {C3}

then there exists a constant M > 0 such that for every solution {p(t),8(t)} of

(2.1} with an initial condition p(tO} > M, for to e [0,2], the inequality:

Z
+

2n= < 8(0} 8{2=} < 2(n+1}=, when n e (2.2a}

holds if (C2)(a} is assumed, and the inequality

0 < 8[0) e[2] < 2 (2.2b)

holds if (C2)(b) is assumed.

PROOF. By (C3} and (C2), (a) or (b), there is a posl{Ive constant M
2

such

that for all p > M2, we have {p,8) > O,

C(p,e)p > , {2.3}

for any c, llm mln (p,e)p= > c > O, and
p oe<2

2+C/2) de < 2x-(/2} (2.4a)
n+l

< Jo (p,e) n

Z+for some n e if (C2)(a) is assumed, or

if [C2](b] is assumed. Let

2
/ de

2 + . < ]0 ,(p,e) < (2.4b)
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and

c
2

max l(e,
oe<2
o<t2

(2.5)

By Lemma 2.1, there exists H > 0 such that for every solution (p,(t,e(t]] of

(2.1) with p(t0) > H we have p(t) > H
3

for 0 s t s 2=. Divide the second equa-

tion of (2.1) by -(p,8) and tntesrate between 8(0) and 8(2=):

de g(e, t
(p,e] dt + dt(p, e p

(o)

(2.6]

Assume (2.2a (or (2.2b)) is false. Then, say e(0) e(2] z 2(n+1 ], or

Z
+e(0) 2(n+1) z e(2=), where n E or n 0. By usin8 (2.3), (2.4a) or

(2.4b), (2.5), (2.6), we have:

However,

.e(0) e(0) m(0)

2=+ < (n+l)
Cp,(9) o(,O) <

(0)-2= (0)-2 (n+l)= (2)

u(p,e) u(p’e) 2= + ..’ dt <2=+-(p,e)p 2
(2) e(o)

Thls ls a contradiction. We must have e(0)-9(2=) <2(n+1)=, where n eZ+ (or

O(O) 0(2=) < 2=). Slmllarly we have (0) 0(2=] > 2n=, where n Z
+

(or

0(0)- 0(2=) > 0). The lemma is now proved.

As a direct consequence of Lemma 2.2, we have the followlnE Corollary.

COROLLARY 2.1. If, in addition to the conditions of Lemma 2.2, we assume

g(t) h(t) O, then all 2=-perlodlc solutions of (2.1} are uniformly bounded,

that is, there is a positive number M such that p(t) s M for every 2-perlodlc

solution (p(t),e(t)) of (2.1).

PROOF OF THEOREM 2.1. Let us denote (x(t;x0,Y0), y(t;x0,Y0]) the solution

of (1.1)with the initial condition (x(0;x0,Y0), y(0;x0,Y0)) (x0,Y0). For every

point (x0,Y0), define the Poincre mapping P(x0,Y0) (x(Z=;x0,Y0) y(2=;x0,Y0)).
Since u(x,y), v(x,y), h(t) and g(t) of (1.1) are continuous, the Poincre mapp-

inE P(x0,Y0) of (1.1] is continuous. Let u(x0,Y0) x(Z=;x0,Y0) x
0

and

v(x0’Y0) Y(2=;x0’Y0) Y0" The pair (u,v) is a continuous vector field In the

plane

Let M be the positive constant Euaranteed by Lemma 2.2. Choose a positive

constant M’ such that M’ > M. According to the Lemma 2.2, for all (Xo,YO) such

that x + y (S’) 2, we have 2n= < 0(0) 8(2=) < 2(n+I)= for some nonnegatlve

integer n Thus (u(x y v(x y )) =(x for any real constant = and forO’ 02’ 2
0, 0

2
o’Yo

2all (x0,Y0) such that x0 + Y0 (H’) As (x0,Y0) moves alone the circle x0 +
2 ,2

Y0 (H) in counter clockwise direction, the vector u(x0,Y0), v(x0,Y0) rotates

throuEh an anEle of 2=. The sum of the Poincre index of a sinsular point of the

continuous vector field (u(x0,Y0), v(x0,Y0)) in the compact domain {(x0’Y0)lxu +
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2y s (M’ is equal to I. There must exist at least one singular point of the

vector field in this domain. We denote it by (x,y), P(,y) (,). It is clear

that 2 + 2 s (M’) 2. Hence (x(2=;,), y(2=;x,)) (,y). This is a 2=-perlodlc

solution.

The following two theorems (2.2 and 2.3) are almost the same as two well-known

theorems. However, these particular two theorems require slightly different

assumptions than the two well-known theorems. Furthermore, these two,theorems can

be proved using Theorem 2.1.

TIl 2.2. Consider the following nonlinear ordinary differential equation:

d2x (+)2x+ ()2x- H(t) (2.7)
dr2

+
where + and

_
are positive constants, x max {x,O}, x max {-x,O} and H(t)

is a continuous 2=-perlodic function. If

or

2 < + < 2
for some neZ

+ (2.8a)
n+l n+

then the equation (2.7) has a

PROOF. Let us define

Then

2 < + < (2 8b)
+

2-perlodic solution.

)2(+ if x z 0
u(x)

[(_12 if x < O.

)2xf(+ if
u(x}-x (+)2x+ ()2x-

[(_)2x if

xzO

x< O.

Clearly, u(x).x is a continuous functlon of x.
dxLet y. Then the equation (2.7) is equivalent to:

= -u(xl’x + H(t}

which is of the same type as (I.I). It satisfies a local Lipschltz condition.

)2 ( 12 1}Lipschltz constant is equal to Max {(e+
coordinates, we have

(2.9)

The

Expressing (2.9) in the polar

when

dp X(p,e) + H(t)slne

-(p,e} -_(-H{t)cos e),

sine cose u(x}’x sine p sine cose(l-u(x})

pslnecose(1 =+]2) if - e <

pslnecose(1 _}2) if e <
2

(z. zo)
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nd

Now,

(p,e] sln2e + (x).x cose

2 2 -x x

sln2e + g(x)cos2e
sln2e + +cos e, if e <

sln2e + 2cos2e_ If e < -.

de
(p e) +

+
_

It Is easy to verlfy that the equatlon (2.7) satisfles the condltlons (C1), (C2)

and (C3).

THEOREN 2.3. Consider

d2x
+ G(x) H(t) (2.11)

dx
2

where G(x) is Lipschitz continuous with respect to x, and H(t) is 2=-periodic and

continuous with respect to t. Suppose (2.11) satisfies the followin8 condition:

(n+6)2 < lim G(x____) _< 1-- G(x----! < (n+l-6) 2,
Ix-]-;- x Ixl(R) x

(2. IZ]

for the some non-negatlve Integer n and some

0 < 6 < ml -/,-, -= ml
2x

Then the equation (2.11) has a 2-perlodlc solution.

dxF. Let -[ y, then the equation (2.11) is equivalent to the system- y

(2.131
dy
-[ -G(x) + H(t).

Observe that the system (2.13) is a special case of the system (1.1), where

(x,y) y, u(x,y) G(x), h(t] 0 and g(t) H(t). Expressin8 (2.11) in the

polar coordinates form (2.1), we have: A(p,e] p cose G(p cose) sine, (p,e)

sin2e + !G(p cose) cose (e,t) H(t) sine and (e,t) -H(t) cose.
p

Now, one can easily verify that the equation (2.13) satisfies the conditions

(C1), (C), and (C3).

3.

Consider the system

where

dx

=-f(x,y} + H(t)

O

f(x,y) k2x3
x2+y2’

if (x,y} (0,0)

otherwise,

(3.1)
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k > and H(t) is a continuous 2=-periodlc function. Then (3.1) has a 2=-perlodlc

solution.
6f 6fPROOF. Observe that the function f(x,y) is continuous, and and -exist, for all x,y. We now show that (3.1) satisfies the conditions (CI), (C2),

and (C3).

Express (3.1), in polar coordinate form. Then

dp- p sine cos e(1-k2cos2e) + H(t)slne

de- (slnZe + kZcos4e) + H(t)cose

with A(p,e) p sin e cos e 8(1 k2cos2e) and w(p,e} sinZe + kZcos4e.
Using the Residue Theorem of complex analysis we find

(3.2)

d tan e
2 2 2 tan2e + k

2jo w(p,e) j0 slne+k cos e
2

-/2
+tan2e

Let tan e x then

d tan e (l+x2)dx (l+xZ)dx
2 .tan2 k2

=2 =2
+ x4+xZ+k2 (x2+ x+k) (x2-2V-1 x+k)

-/2
+tan2e

There are two complex roots:

Xl 2
and

+ i/k+
x2 2

in the upper-half complex plane. Thus the above inteEral is equal to

4(2k-1)(k+1) ] 2(k+1)

4i[2i (4k{Zk-1)) kV2k+1

Since k and k + are relatively prime and k + > v2k+l as k z , it

k2kV-f
follows that k+----- cannot be an integer, and thus there exists a non-negatlve

k2kV
integer n such that n <

k+l
< n + 1. The condition (CZ}, (a} or (b}, is

satisfied.

It is evident that (Cl} and (C3) are true. In fact"

and

IX(p,e}l plsine cose(1-kZcos2e)l < p(1 + k2) k(p}

li___m min wCpe)p= lim[l-4-l =
p-(R) O_<e<2

Hence, by Theorem 2.1, there is a 2-periodlc solution.
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