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ABSTRACT. A fixed point theorem is proved in a Banach space E which has uniformly normal
structure for asymptotically regular mapping T satisfying:
for each z, y in the domain and forn = 1,2, ---,
IT"z — T"y|| < anllz — yll + balllz = Tzl + ly — T"9ll) + calllz — T"yll + lly — T"lI),

where a,, b,, c, are nonnegative constants satisfying certain conditions. This result generalizes a fixed
point theorem of Gornicki [1].
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1. INTRODUCTION

Let E be a Banach space and K a nonempty, bounded, closed and convex subset of E. A mapping
T:K — K is said to be nonexpansive if |Tz — Ty|| < ||z — y|| for all z, y € K. Browder [2],
Gohde [3] and Kirk [4] proved independently that if E is uniformly convex, then T always has a fixed
point in K (see also Goebel [5]). Now, it is important (cf. [4]) that if one assumes T to be Lipschitzian
with Lipschitz constant ¥ > 1, then T need not have a fixed point, even if E is a Hilbert space and & is an
arbitrary near 1. However, there are classes of transformations which lie between the nonexpansive
transformation and those with Lipschitz constant k > 1 for which fixed point theorems do exist; in
particular, the asymptotically nonexpansive mappings (cf. [6]) form such a class. These are mappings
T : K — K having the property that T™ has Lipschitz constant k, with k, — 1asn — oo.

In this paper, we obtain a fixed point theorem for the class of mappings whose nth iterate T™ satisfy:

1Tz = T"y|| < anllz — yll +balllz — Tzl + lly - T"yll) + ca(llz = Tyl + ly = T"2l) (1)

foreachz,y € K andn = 1,2,---, where a,, b,, ¢, are nonnegative constants such that there exists an
integer no such that b, +c, <1 for all n > ng. This class of mappings are more general than
nonexpansive mappings. Also by taking b, = ¢, = 0 it will be seen that this class of mappings are more
general than asymptotically nonexpansive mappings. Our result improves and extends the results of
Gornicki [1] and others.



678 J. 8. JUNG, B. S THAKUR AND D. R. SAHU

2. PRELIMINARIES
The concept of uniformly normal structure is due to Gillespie and Williams [7). A Banach space E
has uniformly normal structure if

N(E) =sup{rx(K): K C Eisconvexand diam K =1} <1,
where
rx(K) = inf{sup{l|lz — 9|l : y € K} : 7 € K}.

It was proved in [8], [9] that N(E) < 1 — 6g(1), thus €(E) < 1 implies uniformly normal structure,
where 6g( - ) is the modulus of convexity of E and €y (E) is the characteristic of convexity of E. Yu [10]
proved that if E is a uniformly smooth space, then E has a uniformly normal structure. Also, in [11] it
was proved that uniformly normal structure does not necessarily imply that the space has good geometric
properties.

The following lemma is needed to prove our main result:

LEMMA 1 [12]. Let K be a nonempty closed convex subset of a Banach space E and let {n,} be
an increasing sequence of natural numbers. Assume that T : K — K is an asymptotically regular
mapping such that for some m € N, T™ is continuous. If

lim ||z — T™z|| =0
1—+00

forsomez € Kandz € K, then Tz = 2.

3. MAIN RESULTS

Now we state and prove our main result:

THEOREM 1. Let K be a nonempty closed convex subset of a Banach space E which has
uniformly normal structure, i.e. N(E) < 1. Let T : K — K be as asymptotically regular mapping which
holds the inequality (1) such that (a + 8) - v - N(E) < 1, where

a = liminf 2%
n—oo l-—c,
B = liminf n
n—o0 1—¢,
and
an + Cn

v = liminf 7775~

Suppose that there is a 2 in K for which {T™2} is bounded. Then T has a fixed point in K.
PROOF. Let {n,} be a sequence of natural numbers such that

a = liminf 22 _ jiy 2
n—00 l_c'n 1—00 I—Cn‘

o b bn,
B = liminf l—q_illﬂ 1-cy,

and

T an+cn . Qn, +Cn,
7 = liminf 1—cp—by =lim 1—cn —by’

Since {T™ 2} is bounded (and hence {T™z} is bounded for any z in K), by Lemma 1, we can inductively
construct a sequence {2z} such that z, is the unique asymptotic center of the sequence {T™zn-1},5;
with respect to the functional

limsup ||z — T™ 21|
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over z in K. Now for eachm > 1, we set
Dy = fim jzm — T™ 20|
and

Tm = lim [|zm 11 = T™ 2.

Using (1), we have
1T™z — Tyl < |T™z — T™*y|| + | Ty — Ty||
< an llz = Tyl + bn (llz — T™z|| + | T™y — T ™yl))
+ e, (lz = Tyl + |1 Ty — T™z|]) + | T™*™y — Ty

implies
@n, +Cn, bn,
- < - - . -
1Tz = Tyl < = - lle =Tyl + 1= o llz — T™z]|
1+4+b, +c¢
4 I TMy = Tyl )

1-c,
By inequality (2), the result of Casini and Maluta [13], and the asymptotic regularity of T', we have
tm < N(E) - limsup (| Tz — T 2m|| : niynj 2 8)

< N(E) - limsup (limsup 1T™ 2m — T"’zmll)
i—00 Jj—o0

. . + b
< N(E) - msup [imaup { 252 s = T 4 L2z — T
J—o0

1—00 l_cﬂn
1 wd
+_+12m+_°m > .||r_rm,+l+lzm_f_rm,+lzm||}]
— Cn, =0
and so
tm<(ax+p)- NE) D, m=0,1,--, A3)

where N (E) is the normal structure coefficient of E. Moreover, for i > 1, we have

. : +
7™ 2 — 2m|| < limsup||T™ 2 — T™ 21| < lim sup {% Nzm = T 21|
J—oo J—o0

1+bn, +6p, = +H+1 + }
oo ; [T+ 2y = T |

b
T+ g P |z — T™ 2|
— Cn,

bnx
+1—c... *l2m = T™ 2| +

an, +6n,
1-cn,
_Om tCn
T 1=bp —cn

IN

* Tm—1-

Taking the limit superior as ¢ — oo on each side, by definition of z,, we get

D, <lim (_i‘_m_;"_c'*-__) T
im0 \ 1 — bn‘ — Cn,
<7 Tm-1. @
By (3) and (4), we obtain

rm<(a+pB)-v- NE):rm
=4 Tm-1y
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where A = (@ + ) - v - N(E) < 1 by the assumption of the theorem. Since
lzms1 = 2mll < 7' + D — 0

as m — 0o, it follows that 2, is a Cauchy sequence. Let lim,,_,o2,, = 2 € K. Then, we have

2 =T™z|| < ||z = zmll + |2m = T™ 2| + | T™ 2 — T™2]|
Sz = zmll + ll2m = T™ 2m|| + an, ll2m — ]|
+bn,(l2m = T 2zml + ||z = T™2)) + cn, (l2m — T™2|| + ||z = T™2]))

and so

Lten +2c, o L4boton

—T™z|| < .
e = T™all < Tt et

lzm = T™ zp|l-

Taking the limit superior as i — oo on each side, we obtain

limsup ||z — T™z| < limsup-lf-a'“—-”—c“' Nz = zmll +limsup1—+b"‘—+5“‘— -Dp—0
1—00 1—00 - bn. — Cn, 1—00 1- bn. -
asm — oo. Therefore we have Tz = z by Lemma 1. This completes the proof.
If we put b, = ¢, = 0in (1), then from Theorem 1, we have the following result.
COROLLARY 1 [1, Theorem 3]. Let K be a nonempty bounded closed convex subset of a Banach
space E which has uniformly normal structure,ie. N(E) <1. If T: K — K is an asymptotically
regular mapping such that

liminf |77 = & < [N(B)] %,

then T has a fixed point in K.
REMARK. In place of bounded subset of K in [1], we have weaker assumption that there is a 2y in
K for which {T™2} is bounded.
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