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ABSTRACT

The concept of a QTAG-module MR was given by Singh[8]. The structure theory of such

modules has been developed on similar lines as that of torsion abelian groups. If a module Ml is such

thatMM is a QTAG-module, it is called a strongly TAG-module. This in turn leads to the concept of a

primary TAG-module and its periodicity. In the present paper some decomposition theorems for those

primary TAG-modules in which all h-neat submodules are h-pure are proved. Unlike torsion abelian

groups, there exist primary TAG-modules of infinite periodicities. Such modules are studied in the last

section. The results proved in this paper indicate that the structure theory ofprimary TAG-modules of

infinite periodicity is not very similar to that oftorsion abelian groups.

KEY WORDS AND PHKASES: QTAG-modules, complement submodules, h-pure submodules, h-neat

submodules, and basic submodules.
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INTRODUCTION

A module Ms satisfying the following two conditions is called a TAG-module [2].

(I) Every finitely generated submodule ofany homomorphie image ofM is a direct sum ofuniserial

modules.

(II) Given any two uniserial submodules U and V ofa homomorphie image ofM, for any

submodule W of U, any homomorphism f: W V can be extended to a

homomorphism g: U V provided the composition length d(U/W) < d(V/).

If a module satisfies condition CI), it is called a QTAG-module [8]. The main purpose ofthis paper

is to prove some decomposition theorems for a module M, such thatMM is a QTAG-module and that

is to prove some decomposition theorems for a module M, such thatMM is a QTAG-module and that

every h-neat (complement) submodule ofM is h-pure. An example ofsuch an h-reduced primary TAG
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module, which is not decomposable, is given at the end of the paper. However, it follows fron the results

in this paper that any torsion reduced module over a bounded (hnp)-ring, with every complement

submodule pure, is decomposable. The main results are given in Theorems (5.5), (5.12) and (5.14). In

section 3, a necessary and sufficient condition for a QTAG-module to admit only one basic submomdule

is given. In section 4 the concept ofneat height ofa uniform element in a QTAG-module is discussed.

The concept of neat height is used to give, in Theorems (4.6) and (4.7), some criterians for a

QTAGmodule, such that every h-neat module is/-embedded in the sense ofMoore[5]. The results in

sections 3 and 4 can be of independent interest.

2 PRELIMINARmS
A module in which the lattice of its submodules is linearly ordered under inclusion is called a serial

module; in addition if it has finite composition length, it is called a unlserial module. Let Ms be a QTAG-

module. An x M is called a uniform element, ifxK is a non-zero uniform (hence uniserial) submodule

ofM. For any module AR with a composition series, d(A) denotes its composition length. Let x M be

uniform. Then e(x) d(xK) is called the exponent ofx. The equation Ix, y] n, will give that y is a

uniform element ofM, such that x e yg and d(ylVxR) n. For basic definitions ofheight ofan element

ofM, the submodule I-I(M) for k _> 0, one may refer to [6] or [8]. Fo" any submodule N ofM, and any y

N, hN(y) will denote the height ofy in N; however we write h(y) for hM(y). A submodule N ofM is said

to be h-pure in M, ifilk(M) n N H(N) for every k _> 0. For any module K, sue(K) denotes the socle of

K. MR is said to be decomposable, if it is a direct sum ofuniserial modules.

By using [8, Lemma(2.3)], one can prove the following:

Proposition(2.1). A submodule N ofa QTAG-module M is b-pure in M ifand only if for any

uniform x sue(N), hr,(x) h(x).

The following is offrequent use in this paper.

Proposition(2.2) [8, Lemma(3.9)]. Let N be any h-pure submodule of a QTAG-module M. Then

for any uniform x M, there exists a uniform x" M, such that tbr x x + M M/N, e(x) e(x’),

x x’ andMcx’P,=0.

By using the above proposition, we get that ifM/N is deeomlasable for some h-pure submodule

N, then M T (9 N, for some decomposable submodule T ofM. Let KR be any module. For the

definitions of K-injective modules and K-projective modules one may refer to ]. Lemmas (2.2) and

(2.4) in [8] give the following:

Proposition(2.3). Let A and B be two uniserial submodules of a QTAG-modules M, such that

AB =0.

(i) If d(A) < d(B), then B is A-injective.

(ii) If d(A) > d(B), then B is A-projective.

(iii) If d(A) d(B), then A _= B ifand only if either sue(A) sue(B), or Ah-It(A)
mI-IlfS).

M is said to be bounded, iffor some k, I-I(M) 0. Any h-pure bounded submodule ofM is a
summand ofM [8, R.emark(3.8)]. M is said to be h-divisible, ifh(x) for every x M. Ira uniform
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element x soc(M) has finite height, then for any uniform y M, wkh [x, y] h(x), yR being an h-pure

submodule ofM, is a summand ofM. For general properties ofrings and modules one may refer to [3].

3 BASIC SUBMODULES

Throughout MR is a QTAG-module. A submodule B ofM is called a basic submodule ofM, ifB

is a decomposable h-pure submodule ofM, such that M/B is h-divisitle [7]. As pointed out in [8,

Remark(3.12)], M has a basic submodule and any two basic submodules ofM are isomorphic.

Lemma(3.1). Let A, A2,. A be any finitely many uniserial summands ofM, such that d(Ai)

< d(Ai+l) and N A, A,. Then N is an h-pure submodule ofM.
t=l

Proof. Consider a uniform element x sot(N). Then x Ex,, xi &. Iffor any < j, xi 0 xj

then by the hypothesis h(xi < h(xj). Thus h(x) h(xi) xi 0}. As each & is h-pure, h(xi) h A, (x,)=

hN(Xi). This gives h(x)= hN(x). Hence N is-pure.

Lemma(3.2). Let M be such that cI-(M) 0 and let M have a basic submodule B M. Then for

some simple submodule S of sot(M), there exists an h-pure submodule N Ey,R such that every
I----!

yiR is uniserial, d(yiR) < d(yi/R) and S soc(yiR). The heights ofthe (non-zero) elements of the

homogeneous components of sot(M), determined by S, do not have an upper bound.

Proof. Let M/B. Consider a uniform in soc( By (2.2) there exists a uniform z

sot(M) such that . ,. AS c I-I(M) 0, h(z0 is finite. Let h(zt) n. Then there exists y M,

such that [zl, yl n .Then ytR is an h-pure submodule ofM and g yR 0. However h() **. So

there exists a uniform ut M with soc(u’-) -Rand e(a,) > n By (2.2) we get uniform z

sot(M) with z-= ., h(z=) nz > n. We get yz M such that [z., yz] nz. By continuing this

process, we get an infinite sequence ofuniform elements {yi}i ofM, such that each yiR is an h-pure

uniserial submodule, soc(yiR) zaR for some zi M satisfying ,, [z, yi] ni h(za) and ni <

If K =Ey,Ris not a direct sum, we get a smallest >_ 2, such that z zR. Then N
k"!

YkR yR. By (3. I) N is an h-pure submodule ofM. Ft.* any uniform v e N, if v Evj,
k--I k--I

with v yjR, then h(v) min{h(v)} This gives h(za) < max{h(z) < k < i-1 }. This is a

contradiction,as h(zj) < h(za) for < i. Hence K BEyiR. By using (3 1) we get that K is an h-pure

submodule. Clearly sot(K) is homogeneous. The last part is obvious.

Lemma(3.3). Let M be a QTAG-modue such that M BEy,R,R uniserial, soc(yiR)

soc(yi/tR) and d(yiR) < d(yi/R). Then M has a basic submodule B
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Proof. By (2.3)0) we get monomorphisms i" yiR --> yi/,R. Write :;i(Yi) wi. Then wi

is uniform and e(wi) e(yl). Consider B w,R, and M M/B Let B. Then z

(y,-6, (yi))r, =yR + (y,r 6,., (y,_, )r,_, 6,(y,)r,, for some ria K and a positive integer s.

Here yiri- Oiq(yi.)riq yiR and -o,(y,r,) y,R.. Using this, it can be easily proved that B wiR and

yRr 0. Now 6, (y,), and e(o(yt)) e(6 (y,)). So that ch(y,)R rn B 0. As o,(y)R g y2R,

we get y:R B 0. By continuing this process, we get yiR B 0. Clearly , R < x R < gives

M is a serial module of infinite length. It only remains to prove that is h-pure. In view of(3.1) it is

enough to prove that each wR is h-pure. Now yR @ yi/R being a :.ummand ofM, is h-pure. Buty

y,.R wR y/R. So wiR is h-pure in M. This completes the proo."

Theorem(3.4). A QTAG-module Ms has no basic submodule other than M ifand only ifM is h-

reduced and for each homogeneous component K ofsoc(M), there otists an upper bound on the heights

of members ofK

Proof. Let M be its only basic submodule. Then by definitio, M is decomposable and h-reduced.

For a simple submodule S ofM, we get a summand Ms ofM, suchehat soc(Ms) is the homogeneous

component of soc(M) determined by S. If heights ofmembers of sot;(Ms) do not have an upper bound,

we get a summand N y,R ofMs such that each yiR is uniserial and d(yiR) < d(yi/tR). By (3.3) N

has a basic submodule Bt # N. As N is a summand ofM, we get a basic submodule B ofM ofwhich B is

a summand and B, M. This is a contradiction. Conversely let the given conditions hold. Then I-I(M)

0. The rest follows from (3.3).

4. H-NEAT HEIGHT

Throughout Ms is a QTAG-module. A submodule N ofM is called an h-neat submodule ofM if

H(M) N Ht(N). AS observed in [8], any submodule N ofM is h :teat ifand only if it is a complement

submodule ofM, any maximal essential extension K’ of a submodule K ofM, is an h:neat submodule of

M. Any such K’ is called an h-neat hull ofK. For any uniform x M the minimum of all d(K’ xR),

where K’ runs over all h-neat hulls ofxlL is called the h-neat height ,,f x" it is denoted by h’(x). Ifx N

M, then h (x) will denote the neat height ofx in N. IfN is an h-neat submodule ofM, then any h-neat

submodule ofN is h-neat in M, so that for any uniform x N, h’(x) _< h (x). We put h’(0) oo. In an

h-divisible QTAG-module M, every uniform element is of infinite h-neat height.

For any two modules A and Bs any homomorphism from a submodule ofA into B is called a

subhomomorphism from A to B; the set of all subhomomorphisms from A to B is denoted by SH(A, B).

An f SH(A, B) is said to be maximal, if it has no extension in SH(A, B . Now (2.3) gives the following:

Lemma(4.1). Let xR and yR be any two uniserial submodules ofM, such that xR yR 0. Then

(a) For any maximal f SH(xR, yR), either domain(f) xR or range(f) yR.

(b) Let z xR @ yR be unifrom, z x’ + y’, x’ xR, y’ e yR and d(x’R) >_ d(y’R). The following
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hold:

(i). zR _= x’R.

(ii) Given any u v+w, v xR, w yR such that z uR,

(z) if y’ 0, then Ix’, v] [y; w]

([3) if y’ 0, then e(w) <_ Ix’, v]

Lemma (4.2). Let xR and yR be two unisefial submodules ofM such that

xR c yR 0. Let z x’+ y’, x’ xR, y’ yR, be uniform such that d(y’R) _<

d(x’R). For T xR B yR, the following hold:

(i). For y’ ; 0, hr(Z) is the minimum of Ix’, x] and [y’, y].

(ii). For y’ 0, let f SH(xR, yR) be maximal with s d(ker 0), minimal under the

condition that x’R ; ker f. Ifdomain(0 uR, then hr (z) [x’, u] minimum

of Ix’, x] and e(y) + s- e(x’).

Proof. g" x’R --> y’R. such that g(x’r) y’r is an R-epimorphism. Ifw a+b, a e b yR,

is uniform and z a wR, then f" aR --> bR such that f(ar) br, is an .*tension of g; further [z, w]

[x’, a]. Any extension h" a’R --> yR, a’ xR, ofg gives uniform w" a" + h(a’) such that z w’R.

Consequently wR is an h-neat hull of zR if and only if f is maximal. In that case by (4.1) either domain(f)

xR or range(f) yR. Thus for domain(f) aR, and uR ker f, e(a) s the minimum of e(x) and

e(y)+e(u). To minimize e(a), we need to minimise s e(u). So that r.minimal e(u), h (z) Ix’, a]

e(a) e(x’) min{e(x), e(y)+e(u)} e(x’) min{[x’, x], e(y)+e(u) x’) }, as e(x) e(x’) Ix’, x] If

y’ ; 0, then e(x’) e(u)+e(y’), so that e(y)+e(u) e(x’) e(y) ety’) [y; y]. For y’ 0, it is

obvious that x’R g7 kerf. This proves the result.

Lemma(4.3). Let M A B B and x a M be uniform. Ifx a+b, a A, b a B and d(aR) >

d(bR), then the following hold:

(i). For b 0, h’(x) min{h, (a), h (b)}.

(ii). Ifb 0, and B is h-divisible, then h’(x) h, (a)

Proof Now g" aR --> bR given by g(ar) br, is an epimorplsm. Let ,t, and 2 be the projections

A (9 B --> A, and A B --> B respectively. Consider an h-neat hull K of xR. Then K is serial. Let K,

ri(K). As d(bR) <_ d(aR), we get an epimorphism ts" K --> K2 such that for any x K, c(x) x2 if and

only ifx+x2 K. Further aR = K, bR K2 and d(K/xR) =d(KdaR)’ By using (2.3) we get that either

Kt is h-neat or K2 is h-neat in M.

Case I" b 0. Then either K is an h-neat hull ofaR or K2 is an h-neat hull ofhR. So that

h’(x) _> min{hr(a),h(b)}. Let min{h, (a), h(b)} < h’(x). To be definite let h (a). Then we

get an h-neat hull atR ofaR with [a, a] t, and a uniform b in M with [b, b] _> t. By (2.3) g extends to a

homomorphism f: air --> blR. Then (a+f(at))R is an h-neat hull of;tR with Ix, at+f(a0] < h’(x) This is a

contradiction.Similar arguments hold if h(b) This proves (i).

Case II b 0 and B is h-divisible. Any h-neat serial submodule ofB is either zero or of infinite

length. Thus for K to be an h-neat hull ofxR it is necessary and suffieiem that K is an h-neat hull of aR.
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Thus for x a, h’(x) hA (a)

Lemma(4.4). Let KR $x,R be a QTAG-module with each xiR uniserial. Let z Z zq, z

xiR, be uniform. Let z, be such that e(z) e(z,). Then h’(z) is the minimum ofthe following numbers"

(i). All [zi, xi]. with z # 0.

(ii). The neat heights ofz in various x,,R @ xjR, with zj 0.

Proof. The hypothesis on z, gives that for any i, oi" zR --> zR such that oi(zr) zr is an

epimorphims. Let y Zyi, y e xR, be any uniform element in K such that z a yR. Then l yuR yR

given by rli(yur) yr is an extension of o. Clearly if a z # 0, then [z,, yu] [z, yi]. So that e(y) is

not more than s, the minimum of all those [z, xi] for which z # 0. Thus h’(z) < s. However, if every z #

0, then by (2.3), it is immediate that for yR to be an h-neat hull ofzR, it is necessary that [z, y] s, i.e

h’(z) s. Suppose that for some j, z 0 and that for T x (B xjR, hr(zu) < s. We have a maximal f

SH(xjL, xjR) with ker fofsmallest length among those containing z. Let wd{ domain(f), then

s’ hr(Zu) [z,, wu]. By using (2.3), we obtain a uniform y Zi y, with z e yR, y, --’wu and yj f(w,).

Then yR is an h-neat hull of zR such that [z, y] s’. Thus h’(z) < so, the minimum ofthe numbers listed

in (i) and (ii). Suppose h’(z) < so. We get a uniform w Zwi, wi x,P, such that wR is an h-neat hull of

zR and [z, w] h’(z). Then for some j, wjR xjR. For this j, z 0 .rod (w,+w)R is an h-neat hull of

z,R. Consequently for T x@ x,R, hr (zo) < h’(z). This is a contradiction. This completes the proof

We now give a criterian in terms of h-neat heights, for a QTAG-module, in which every h-neat

submodule is h-pure. We shall give a more general result. Analogous to the definition ofan/-embedded

subgroup ofan.abelian p-group given by Moore [5], we define an/-embedded submodule ofa QTAG-

module. Let Z* be the set of all non-negative integers and 1" Z --> Z’ be any function such that n _< l(n), n

Z+" A submodule N ofa QTAG-module M is said to be l-embeddd ifH,(M) N H,fN) for every

Z/n e Thus ifI is the identity map on Z, a submodule N ofM is h-pure in M if and only ifN is I-

embedded. Given l" Z4- ---) Z satisfying l(n) >_ n, we define l Z Z such’that for any n e Z/,/(n) is

the minimum of all l(k), k >_ n. Then l is monotonic. Further any submodule N ofM is/-embedded if and

only if it is l-embedded. So without loss ofgenerality we assume th is monotic. Further define

Proposition 4.5. Let M be an h-reduced QTAG-module and l" Z’ Z4- be a monotonic function

such that n _< l(n), ne Z/. Then every h-neat submodule ofM is/-embedded if and only ifh(y) <

l(h’(y) + 1)-1 for every uniform y e M.

Proof. Let every h-neat submodule ofM be/-embedded.Consider a uniform y e M. As M is h-

reduced, every h-neat hull ofyR is offinite length. Let zR be an h-neat hull ofyR such that [3’, z] h’(y)

t. Then Ht(zR) yR and I-It+(zR) < yR. Then by the hypothesis, I-Itet)(M) zR Ht(zR) yR, but

Ho/)(M) c zR < yR. Consequently h(y) </(t+l)-I =/(h’(y)+ 1)- Conversely let the inequality hold.

So every uniform y e M has finite height. Let there exist an h-neat submodule N ofM that is not l-
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embedded. We get smallest positive integer n such that Ht(,)0VI’) N : H,(N). Then I-Itt.,)(M) N c Hn.

(N). There exists a uniform y I.it,)0Vl) c N such that y I-I,(N). As l(n) _>/(n-l), y I-I.t(N). So that

h(y) n-1. Consequently h’(y) < n-1. By the hypothesis h(y) </(h’(y) + 1)-1 < l(n)-1. However as y

Ht,)(M), h(y) > l(n). This is a contradiction. This proves the result.

Theorem(4.6). Let M be any QTAG-module and l’ Z -- Z be a monotonic function such that n

Z/"_< fin), n Then every h-neat submodule ofM is/-embedded ifand only iffor any uniform y e M,

h(y) _</(h’(y) + 1)- 1.

Proof. Let every h-neat submodule ofM be/-embedded. Write M L D, where D is the largest

h-divisible submodule ofM. Now L is h-reduced and every h-neat submodule ofL is/-embedded in L.

Consider a uniform y M. Write y y,+y2, y, L, y2 D. Suppose y 0. Then h(y) h(y). By (4.3),

h’(y) h[(y) By using (4.5), we get h(y) h(y) _</(h’(y)+ 1)- I. Suppose y --0. then y=y2 D,

hence and h(y) Let K be any h-neat hull ofyR. Consider any n >_0. Then I-Itc,(M) I-I4t.)(L) D. As

K r D 0, Ht,)(M) K H,(K), we get H,(K) 0. So that d(K) ’, h’(y) h(y). Once again

h(y) =/(h’(y) + l)- 1. Conversely let the given condition be satisfied. By essentially following the

arguments in (4.5), we complete the proof.

Theorem(4.7). Let M L D be a QTAG-module such that L is h-reduced and D is h-divisible.

For a monotonic function l" Z - Z satisfying n _</(n), every h-neat submodule ofM is/-embedded if

and only if

(i) every h-neat submodule ofL is/-embedded in L; and

(ii) for any serial submodue W ofD, any non-zero homomorphism f" W - L is a monomorphism.

Proof Let every h-neat submodule ofM be/-embedded. Then obviously (i) hold. Consider a

non-zero homomorphism f" W L with ker f 0. then bR soc(W.).c ker f. Consider soe(f(W))

b,R. As h(bt) < oo, by using (2.3) we can choose W to be such that qW) is h-neat in L. Then L

{x+f(x) x W} is an h-neat hull ofbR. So that h’(b) < oo. By (4.6) h’(b) **. This gives a

contradiction.

Conversely, let the conditions be satisfied. Consider a uniform y e M. Let y y+y, y e L, y e

D. Suppose y 0. Then by (4.3) hfy) hL(y) <- l(h[ (y) + 1) 1. Suppose y 0. Thim y y e D. Let

K be any h-neat hull ofyR. Let K and K be projections ofK in L and D respectively. Then K _=K and we

get an epimorphism f" K K with y e ker f. By (ii), f= 0. Consequently K D and hence d(K)

So once again h(y) =/(h’(y)+ 1)-1. Hence (4.6) completes the proof.

By taking I, we get the following:

Corollary (4.8). Let M L D be a QTAG-module such that L is h-reduced and D is h-divisible

Then the following are equivalent:

(i) Every h-neat submodule ofM is h-pure in M.

(ii) For any uniform y M, h(y) h’(y).
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(iii) Evey h-neat submoduie ofl is h-pure and for any uniserial submodule W ofD any non-zero

homomorphism f" W --> L is a monomorphism

5. H-NEAT SUBMODULES

A module MR is called a strongly TAG-modue, ifM M is a OTAG-module.We start with the

following:

Lemma(5.1). Let Mz be a strongly TAG-module, A and B be two uniserial submodules ofsome

homomorphic images ofM. Then the following hold:

(i) If d(A) < d(B), then B is A-injective.

(ii) If d(A) > d(B), then B is A-projective.

(iii) If d(A) d(B), then A _-.-B, whenever sot(A) _= sot(B) or A/H(A) = B/H(B).

(iv) M is a TAG-module.

Proof. Now A and B are submodules ofM/K and M/L for sonde submodules K and L ofM. As N

M/K M/L is a homorphic image ofM M, Ax0, 0>d3 are submadules ofN with zero intersection,

(i), (ii), and (iii) follow from (2.3). Finally (iv) follows from (i).

Let MR be a strongly TAG-module. Let spec(M) be the set of all simple R-modules which occur

as composition factors of some finitely generated submodules ofM. Let S, S’ e spec(M). Then S’ is

called an immediate predecessor of S (and S is called an immediate successor of S’) iffor some uniserial

submodule A ofM, A/H(A)= S’ and H(A)/H2(A) S. By using (5.1) we get that any S e spec0Vl) does

not have more than one immediate successor and more than one immediate predecessor.(see also [9]).

Let S, S’ e spec(M), S’ is called a k-th successor of S, if there exists a sequence S So, $1,. Sk S’

of k+l distinct members Si of spec(M), such that for < k, S/ is an immediate successor of Si; in this

situation S is called a k-th predecessor of S’. S is called its own 0-th sueeessor(0-th predecessor). S’is

called a successor ofS, if S’ is a k-th successor of S for some positive integer k. Defiiae S S’ if for

some k >_ 0, S’ is a k-th successor or k-th predecessor of S. This is an equivilence relation. Any

equivalence class C determined by this relation is called a primary ela;,s. For a torsion abelian group, each

such C is a singleton. However for a torsion module over a bounded {hnp)-ring, each C is finite. For any

primary class C in spec(M), the submodule 1Vl, of all those x e M such that every composition factor of

xR is in C, is called the C-primary submodule ofM. By using (5.1) one can easily see that M is a direct

sum of its C-primary submodules. A module M is called a primary TAG-J,odule ifM M is a TAG-

module such that spec(M) is a primary class. Consider a primary TAG-modue M. Let spee(M) have k

members, then either k is finite or eoumable. This k is called the periodicity ofM. In this section we study

primary TAG-modules.

Lemma(5.2). Let Ms be an h-reduced primary TAG-module of finite periodicity. If there exists a

function f" Z ---> Z such that for any uniform x e M, h(x) < f(h’(x)), then M is bounded.

Proof. Let M be of periodicity k. For any uniform x e M, h’(x) < oo. This gives h(x) < f(h’(x)) <

oo. Suppose M is not bounded. Then M has uniserial summands of arbitrarily large lengths. So we can
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write M xR @ x2R @ M’, with xiR non-zero unisedal, zR soc(xiR), h(z2) > max{f(j) < _<

k+d(xR)}and e(x=) > k. Now h(zz) [z=, x=]. As M is of periodicity k and e(x2) > k, we get y2 x=R

such that [zz, y=] < k-1 and soc(x=R/y2R) soc(xR). This gives a maximal g SH(x=R, xR) with d(ker

g) _< k and z2R
_

ker g. Consequently d(domain(g)) < k+d(xlR), h’(z:) < k+d(x,R). As h(z=) < f[h’(z: )),

we get h(z=) < max{f(j) 0 _< < k+d(xR)}. This is a contradiction. Hence M is bounded.

Lemma(5.3).Let Ms be any primary TAGfmodule of finite periodicity. If every h-neat submodule

ofM is h-pure, then either M is h-divisible or h-reduced.

Proof. Let M be neither h-reduced nor h-divisible. Then M xR @ A B MI for some uniform

element x and a serial module A of infinite length. Let zR soc(A). Then h(z) oo. If the periodicity of

M is k, then for some u, _< u < k, we get a submodule ofA of length u satisfying soc(A/yR) -= soc(xR).
By (2.3), we get a maximal f SH(A, x.R) with d(domain(f)) < e(x)+u. This gives an h-neat hull K ofzR

length e(x)+u. As K is h-pure, we get h(z) d(K)-1 < oo. This is contradiction.Hence the result follows.

Lemma(5.4). Let MR be a primary TAG-module of finite periodicity k. Let T xR B A be a

submodul eofM, with xR unisedal, such that every h-neat submodul oft is h-pure in T. Then the

following hold

(i) If soc(xR) sot(A), then d(A) < d(xR)+k.

(ii). If soc(xR) is the u-th predecessor of soc(A) for some u _> 1, then d(A) < d(xR)+u.

Proof. Let soc(A) zR. Let soc(xR) zR. For a maximal f ;e 0 in SH(A, xR) with zR =kerf and

d(ker f) minimal, we have d(ker f) k, domain(f) yR c: A; further h’(z) e(y)-I [z, y] _< e(x)+k-1.

However by (4.8), h’(z) h(z). So yR A. Consequently e(y) d(A) _< d(xR)+k. Similarly (ii) follows.

We now prove the first decomposition theorem.

Theorem(5.5). Let MR be a primary TAG-module ofpedodicity k < oo. Then every h-neat

submodule ofM is h-pure if and only if either M is h-divisible or M BEx=,R such that
A

(i). each x=R is uniserial; and

(ii) for any two distinct z, ]3 A the following hold

(a) if soc(xR) soc(xR), then d(xeR <

(b) if soc(x) is a u-th predecessor of soc(xJ.), <_ u < k-1, then d(x,R) <_ d(xR)+u.
Proof. Let every h-neat submodule ofM be h-pure. By (5.2) M is either h-divisible or h-reduced

Let M be h-reduced. By (5.2) M is bounded. So that M @Ex=R, for some unisedal submodules x,R
A

By applying (5.4) we complete the necessity. Conversely let the gi,: a conditions be satisfied. IfM is h-

divisible, then every h-neat submodule N ofM being h-divisible, is a summand ofM, consequently N is h-

pure. Let M be h-reduced. Consider a u.niform z
.A

0}= min{[z,, x] z, ; 0}. Consider T x,R @ xR with z= ; 0, z ; 0 and a ; 13. Let fa SH(x,R, xR)
be maximal with the property that zq. kerf and d(ker f) is minim’,d. Either domain(f) x=R or range(f)
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xR. Iff 0, obviously domain(f) xjR.. Let f 0. If soc(xR) soc(xR), then d(ker f) ,k for some

k > 0. If soc(xR) soc(xR), then for some u >_ soc(xR) is the u-th predecessor of soc(x,R) and d(ker

f) u+tk for some t _> 0. Thus (a) and (b) yield domain(f) x,R.. Cosequently hr(z=) [z,, x,] h(z)

By (4.4), h’(z) h(z). This proves the result.

The periodicity of a torsion abclian p-group is one. We get the, following:

Corollary(5.6). Every neat subgroup ofan abelian p-group G. p a prime number, is pure

subgroup if and only if either G is a divisible group or G A @ B, such that for some positive integer n,

A is a direct sum of copies ofZ/(p") and B is a direct sum of copies o:Z/(p"/).
We now discuss the case of a primary TAG-module of infinite periodicity. Henceforth MR will be

a primary TAG-module of infinite periodicity.

Lemma(5.7). Let xR and yR be two h-neat unisedal submodtiies ofM such that soc(xR)

soc(yR) and soc(yR) is a predecessor of soc(xR). Then"

(i) SH(yR, xR) 0.

(ii) For any h-neat hull K ofxR B yR in M, yR is a summand ofK; if in addition xR is h-pure in M, then

K= xR ByR.

(iii) IfxR and yR both are h-pure, then xR B yR is h-pure in M.

Proof. As M is of infinite periodicity and soc(yR) is a predecessor of soc(xR), soc(xR) is not a

predecessor of soc(yR). Consequently SH(yR, xR) 0. Let K be an h-neat hull ofxR B yR. As rank(K)

2, K A B A2 with & serial. Consider the projections f A, @ A2 "-> Ai. The restdctiion of one of f,

,say of f to xR ia a monomorphism. Then soc(xR) _-- soc(A) and sot.(yR) soc(A2). Further f2 embeds

yR in A2. By (i) SH(A2, A1) 0. This yields yR c:: A=. As yR c::’ A2 annd yR is h-neat, we get yR A2.

Let xR be h-pure in M. So that xR is h-pure in K. Consequently xR is a summand ofK. As xR yR, we

get K xR @ yR. This proves (ii). Finally let both xR and yR be h-pure in M.Then M xR BM for

some submodule M. Then K xR (K r M0. This gives yR K :’ M. So K rM is h-pure in M.

Thus K MI is a summand ofM. Hence K is a summand ofM. This give/(iii).

Lemma(5.8). Let K be any submodule ofM with soc(K) homogeneous. Then

(i) Given any two unisedal submodules A and B ofM, either A r B 0 t,r . [ty are comparable under

inclusion,
(ii) for any uniform x K, h:(x) h: (), and

(iii)any h-neat submodule ofK is h-pure in K.

Proof. (i) Let A r B 0 and d(A) _> d(B). Then A+B A B C, with C a proper homomorphic

image orB. Suppose C 0, then soc(A) soc(B) soc(C). This contradicts the hypothesis that soc(K)

is homogeneous. Thus C 0, so B c: A. This proves (i). Consider a uniform x e K. Then by (i) xR has

unique h-neat hull D in K. Then h: (x) d(D)-l. The uniqueness of[) gives D is h-pure. Consequently

hK(X) d0D)-l. This proves (ii). The last’pan is immediate from (ii)

Corollary(5.9). Let xR and yR be two uniserial submodules CfM with xR c yR

0. Every h-neat submodule ofT xR @ yR is h-pure in T if and only if
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(i) soc(xg) soc(yR), or

(ii) soc(xR) soc(yR), one ofthem say soc(xR) is a u-th predecessor of soc(yR) for some u

> and d(yR) < d(xR)+u.

Proof.. Let every h-neat submodule ofT be h-pure. Let soc(,P,) Z soc(yR), and

soc(xR) be a u-th predecessor of soc(yR). Then as in (5.4), we get d(yR) < d(xR) + u.

Conversely, let T satisfy the given conditions. If soc(xR) soc(yR), men soc(T) is homogeneous, so by

(5.8) every h-neat submodule ofT is h-pure in T. Let (ii) hold, soc(yR) be a u-th predecessor ofsoc(xR).

As M is of infinite periodicity, soc(xR) is not a predecessor ofyR. So SH(ylL xR) 0, and f,or any 0 ;* f

SH(xP,, yR), d(ker f) u. Consider a uniform z x + y, x xP,. y yR.. Let e(x0 >- e(y0. Ify

0, then e(x0 e(y0+u. So [x, x] _< [y, y], and hence hf (z) [x, x] hT(z). Suppose y 0. Consider

a maximal f SH(xR, yR) with z kerf. Then either f 0 or d(ke f) u. As d(xR) < d(yR)+u,

domain(f) xR. Once again hfr(z)= [x, x] h(z). Let e(y0 > e(x0, then x 0, as SH(yR, xR) 0.

Then f,or any uniform v T, with z zR, we have z yR. So yR is the only h-neat hull ofzR in T.

Thus in all cases hf (z)= hT(z). By (4.$), the result follows.

Lemma(5.10). Let N be the submodule ofM generated by those uniform elements x M such

that soc(xR) has no predecessor in soc(M). Then:

(i) Soc(N) is homogeneous.

(ii). N is an h-pure submodule ofM.

(iii) Any h-neat submodule ofN is h-pure in M.

Proof Let A be the set ofthose uniform x M such that soc’xR) has no predecessor in soc(M).

For any x, y A, if soc(xR) soc(yR), then one ofthem being a successor ofthe other, contradicts the

hypothesis. So that soc(xR) -= soc(yR) for all x, y A. Consider a unif,orm z E soc(N). For some y, E A,

z y,R T.,Bj, Bj’s uniserial. For some j, zR soc(Bj). But Bj is a homomorphic image ofsome

As soc(yiR) has no predecessor in soc(M), we get yiR ---- Bj. Hence soc(N) is hgmogeneous. It is now

immediate that iffor any uniform x M, soc(xP,) g;; N, then x N. This fact gives (ii). By using (4.8) we

get (iii).
The submodule NofM generated by those uniform element’ . M, such that soc(xR) has no

predecessor in soc(M) is called a terminal submodule ofM. We denote this submodule by Ter(M).
Proposition(5.11). Let MR be a primary TAG-module of’infinite periodicity and N Ter(M).

Then

(i) Any submodule K ofN has unique h-neat hull in M,

(ii) for any uniform x N, h(x) h’(x); and

(iii) for any decomposition M (D,^A,, N (Ai N).

Proof. By (5.10) soc(N) is homogeneous. So given a uniform x N, by (5.8) any two uniform

submodules ofN containing x are comparable under inclusion. Thus there is unique h-neat hull Ax ofxR

in M, and by (5.10) Ax N. For K, the sum L ofthose A for which K, is the unique h-neat hull of

K. (ii) is immediate from (i). Consider any uniform x N. Then x ).2x, x, A. If some xi 0, and the
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mapping xR. --> xiR, xr --> xir is not one-to-one, then soc(xR) will have a predecessor in soc0Vl). This

gives a contradiction. Hence xR -= xil, whenever xi 0. Thus xi a t,1 md (iii) follows.

Theorem(5.12). Let Ms be an h-reduced primary TAG-module ofinfinite periodicity. Then every

h-neat submodule ofM is h-pure ifand only if M @K @Ter(M) satisfying the following

conditions

(i) for each j, Kj is decomposable and soc(Kj is homogeneous,

(ii) for j < j, with K, 0 Kj,, ifzR and zR are unisesedal summands of K, and K
respectively, then soc(zR) is a u-th predecessor of soc(zR) for some positive integer u depending

uponj and j, and d(zR) < d(zR) + u and

(iii) if is the length of a smallest length uniserial surnmand ofN, anti S is the simple module

determining soc(N), then for any Kj 0, if S is a v-th predecesso," of the simple module S
determining soc(Kj), we have d(zR) < + vj for any unisedal summand ofK.

Proof. Let every h-neat submodule ofM be h-pure. Now N Ter(M). As N is h-reduced, it has a

uniserial summand xR of smallest length, say t. Consider M M/N. Let S be a simple submodule of M.

Consider any uniform y M such that S =_ sot(yR.). By (2.2), we choose y to be uniform such that

y c N 0. Then soc(xR) soc(yR). As soc(x_R) has no predecessor" in soc(M), it is a v-th predecessor

of soc(yR) z for some v > 1. Now h(z) h’(z) < . We get y M such that [z, y] h(z). Then in

x.R @ yl, both the summands are h-pure in M. By (5.7) xR @ yR is h-pure. By (5.9), d(yR) _< d(xR) +

v. So there is an upper bound on the heights of elements of a particular homogeneous component of

soc(M). Hence by (3.4) M is its only basic submodule, so it is decomposable. AS N is h-pure, by the

observation following (2.2), we get M KB N, with K its only basic submodule. AS M is primary,

spec(M) is countable. We get K K satisfying (i). Finally (ii) and (ilia) follow from (5.9).

Conversely, let M satisfy the given conditions.. Then K satisfi,;s conditions analogous to those

given in (’5.5). So on the simalar lines as in (5.5), every h-neat submodule ofK is h-pure. Consider any

uniform y e M. Now y y, + y=. y, a K, y= a N. If y, 0, y N az.d by (5.11), yR has unique h-neat

hull in M obviously then h(y) h’(y). Let y 0. Suppose y= # 0. then by using (4.3) h’(y) h(y).

Suppose y= 0 and h’(y) < h(y). We get an h-neat hull zR ofyR with [y, z] h’(y). Let z z, + z=, z,

K, z= e N. AS h< (y) h(y), z= # 0. One ofzR and z=R is h-neat. As.yR = zR and [y, z] < h(y) hK(y),

z,R is not h-neat in K and so in M. Consequently z=R is h-neat in N, and by (5.10) it is h-pure. For some

v, soc(zR) is a v-th predecessor of soc(zR). So that d(zR) d(zR) + v. Write soc(zR) gR. Then by

using condition (iii), we get [g, z] < h(g) < d(zR) +v -1 [g, z,]. Conseuently d(z,R) h(g). So z,R

is h-pure. This is a contradiction. This completes the proof.

We now discuss the case ofM being not necessarily h-reduced. Write M M B D, where D is

the largest h-divisible submodule ofM.

Lemma(5.13). If every h-neat submodule ofM is h-pure and D 0, then Ter(M) D further

Ter(M) is h-divisible.
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Proof. Suppose N Ter(M) Z D. We get a uniform x e sot0"0, such that h(x) < Then x y

+ z. Now 0 # y M1, z D. By (5.11) y a N. Consider any simple submodule S olD. By the definition

of" S, it is not a predecessor of soc(yR). So that soc(yR) is a predecessor of" S. As D is h-divisible, there

exists a uniserial submodule A old and a homomorphism f" A --> M, with range(f) yR and S = kerf.

This contradicts (4.8). Hence N = D. As N is h-pure, it must be h-divisible.

Theorem(5.14) Let MR be a primary TAG-module of infinite periodicity such that M is not h-

divisible and let N Ter(M). Then every h-neat submodule ofM is h-lure if and only ifthe following

hold:

(a) N is h-divisible ,and

(b) M N @ K, where Kj satisfy the following conditions:
9=-..

(i) if" some Kj ; 0, then soc(Kj) is a homogeneous component of sot(M),

(ii) each Kj is a direct sum of serial modules,

(iii) if’ for some < j, Ki ; #K and Ki is not h-divisible, then the simple submodule Si determining

soc(Ki) is a v-th predecessor of’the simple submodule determining soc(Kj) for some positive integer

v depending on and j, and for any uniseriai submodule A of’Kj, d(A) < + v, where is the length

ofthe smallest length uniserial summand ofK, and

(iv) if for some j, Kj ; 0 and is not h-reduced, then for any < j, Ki is h-divisible.

Proof. Let D be the largest h-divisible submodule ofM. The D 0. Let every h-neat submodule

ofM be h-pure. By (5.13) N is h-divisible. Thus M N @ M @ M such that D N (B MI and M2 is h-

reduced. By applying (5.12) to M2 and using the fact that M is a direct sum of serial modules, we get M

@ M2 @ Ksatisfying (i), (ii), and (iii). Finally (iv) is an immediate consequence of (iii).

Conversely let the given conditions be satisfied. By comparing these conditions with those in

(5.12), we get M D B L such that N g; D. Then SH(N, L) 0. Consider a uniserial submodule W ofD

and let f W --> L be a non-zero homomorphism. Then W Z N. For some j, W is isomorphic to a

submodule ofKi. This K is not h-reduced, f(W) = L, and for some t, f(W) is isomorphic to a submodule

of Kt. If t, obviously f is a monomorphism. Suppose < Then I(. is h-divisible. Let xR soc(f(W)).

As xR = L, h(x) < . On the other hand x soc(Ir yields h(x) . This is a contradiction. Hence < t.

So SH(Kj, ) 0. This once again contradicts the fact that f; 0. "l bus t. Hence f is a monomorphism.

So by (4.8) the result follows.

We end this paper by giving an example of an h-reduced primary TAG-module M of which every

h-neat submodule is h-pure, but it is not decomposable. Such a module has to be of infinite periodicity.

Example. Let F be a Galois field and R be the ring of infinite lewer triangular matrices [ai] over F,

where i, are indexed over the set P of all positive integers. Let e i, P be the usual set of matrix

units in R. Then M eu,R is a uniserial R-module with d(M) k; it is annihilated by the ideal A of R

consisting of those [aj] 1L such that a, 0 for < k. Observe that each R/A is isomorphic to the ring

ofkxk lower triangular matrices over F. So that any R/Ak.-module is a TAG-module. Each Mk embeds in
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Mk/ under the mapping e.kr --> ek/t.kr, r R. Let T Hk Mk. Then MR {x e T xA 0 for some k}

is a primary TAG-module of infinite periodicity. Its socle is homogeneous. By (5 8) every h-neat

submodule ofM is h-pure. M is h-reduced. Consider a uniform x sot(M), then x (xk), Xk Mk. Let u

be the smallest integer such that x,, 0. Then xR _= xj.. As d(Mu) u, by using (2.3) it can be easily seen

that h(x) u-l. So that for any > 1, soc(Hiq(M))/soc(Hi) _= soc(Mi). Suppose that M is decomposable,

Then M Nj, where Nj is a direct sum ofuniserial modules oflength j. Then

soc((H,.(M))/soc(Hi(M)) -_- soc(Ni). Thus soc(Ni) -_- soc(Mi), a siml;l, module. Consequently each N, is a

uniserial module. As F is finite, Ni is a finite set. Consequently M is countable. But by construction M is

uncountable This is a contradiction. Hence M is not decomposable.
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