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ABSTRACT

The concept of a QTAG-module Mr was given by Singh[8]. The structure theory of such
modules has been developed on similar lines as that of torsion abelian groups. If a module Mg is such
that M@®M is a QTAG-module, it is called a strongly TAG-module. This in turn leads to the concept of a
primary TAG-module and its periodicity. In the present paper some decomposition theorems for those
primary TAG-modules in which all h-neat submodules are h-pure are proved. Unlike torsion abelian
groups, there exist primary TAG-modules of infinite periodicities. Such modules are studied in the last
section. The results proved in this paper indicate that the structure theory of primary TAG-modules of

infinite periodicity is not very similar to that of torsion abelian groups.
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& 1 INTRODUCTION

A module Mg satisfying the following two conditions is called a TAG-module [2].
(I) Every finitely generated submodule of any homomorphic image of M is a direct sum of uniserial
modules.

(II) Given any two uniserial submodules U and V of a homomorphic image of M, for any
submodule W of U, any homomorphism f: W — V can be extended to a
homomorphism g: U — V provided the composition length d(U/W) < d(V/RW)).
If a module satisfies condition (I), it is called a QT AG-module [8]. The main purpose of this paper
is to prove some decomposition theorems for a module M, such that M®M is a QTAG-module and that
is to prove some decomposition theorems for a module M, such that M@M is a QTAG-module and that

every h-neat (complement) submodule of M is h-pure. An example of such an h-reduced primary TAG -
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module, which is not decomposable, is given at the end of the paper. However, it follows fron the results
in this paper that any torsion reduced module over a bounded (hnp)-ring, with every complement
submodule pure, is decomposable. The main results are given in Theorems (5.5), (5.12) and (5.14). In
section 3, a necessary and sufficient condition for a QTAG-module to admit only one basic submomdule
is given. In section 4 the concept of neat height of a uniform element in a QTAG-module is discussed.
The concept of neat height is used to give, in Theorems (4.6) and (4.7), some criterians for a
QTAGmodule, such that every h-neat module is /-embedded in the sense of Moore[5]. The results in

sections 3 and 4 can be of independent interest.

£ 2 PRELIMINARIES
A module in which the lattice of its submodules is linearly ordered under inclusion is called a serial

module; in addition if it has finite composition length, it is called a uniserial module. Let My be a QTAG-
module. An x € M is called a uniform element, if xR is a non-zero uniform (hence uniserial) submodule
of M. For any module Ay with a composition series, d(A) denotes its composition length. Let x € M be
uniform. Then e(x) = d(xR) is called the exponent of x. The equation [x, y] = n, will give that y is a
uniform element of M, such that x € yR and d(yR/xR) = n. For basic definitions of height of an element
of M, the submodule Hi(M) for k = 0, one may refer to [6] or [8]. Fo- any submodule N of M, and any y
€ N, hy(y) will denote the height of y in N; however we write h(y) for hu(y). A submodule N of M is said
to be h-pure in M, if H(M) N N = Hy(N) for every k > 0. For any module K, soc(K) denotes the socle of
K. My is said to be decomposable, if it is a direct sum of uniserial modules.
By using [8, Lemma(2.3)], one can prove the following:
Proposition(2.1). A submodule N of a QTAG-module M is h-pure in M if and only if for any
uniform x € soc(N), hn(x) = h(x).
The following is of frequent use in this paper.
Proposition(2.2) [8, Lemma(3.9)]. Let N be any h-pure submodule of a QTAG-module M. Then
for any uniform x € M, there exists a uniform x’ € M, such that for x =x+M eM/N, e(x) = e(x’),
x = x’and M N xR =0,
By using the above proposition, we get that if M/N is decompoasable for some h-pure submodule
N, then M =T @ N, for some decomposable submodule T of M. Let Kr be any module. For the
definitions of K-injective modules and K-projective modules one may refer to [1]. Lemmas (2.2) and
(2.4) in [8] give the following:
Proposition(2.3). Let A and B be two uniserial submodules of a QTAG-modules M, such that
AnNnB=0.
(i) Ifd(A) < d(B), then B is A-injective.
(ii) Ifd(A) 2 d(B), then B is A-projective.
(iii) If d(A) = d(B), then A =B if and only if either soc(A) = soc(B), or A/H (A) =
B/H,(B). ’
M s said to be bounded, if for some k, Hy(M) = 0. Any h-pure bounded submodule of M is a
summand of M [8, Remark(3.8)]. M is said to be h-divisible, if h(x) = o< for every x € M. If a uniform
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element x € soc(M) has finite height, then for any uniform y € M, with [x, y] = h(x), yR being an h-pure

submodule of M, is a summand of M. For general properties of rings and modules one may refer to [3].

€3 BASIC SUBMODULES
Throughout Mg is 2 QTAG-module. A submodule B of M is called a basic submodule of M, if B
is a decomposable h-pure submodule of M, such that M/B is h-divisible [7]. As pointed out in [8,
Remark(3.12)], M has a basic submodule and any two basic submodules of M are isomorphic.
Lemma(3.1). Let A;, Az, ...., Ax be any finitely many uniserial summands of M, such that d(A;)

<d(Ai)) and N = EA, =& EA, . Then N is an h-pure submodule of M.

=l 1=1

Proof. Consider a uniform element x € soc(N). Thenx=Zx,, x;€ A; . Ifforanyi<j, x;#0#x;
, then by the hypothesis h(x; ) < h(x;). Thus h(x) = {h(x;) : x; # 0}. As each A; is h-pure, h(x;) = h, (x,)=
hn(xi). This gives h(x) = hx(x). Hence N is -pure.

Lemma(3.2). Let M be such that ~H (M) = 0 and let M have a basic submodule B # M. Then for

some simple submodule S of soc(M), there exists an h-pure submodule N = @ Zy‘R such that every

=1
yiR is uniserial, d(y;R) < d(yi-1R) and S = soc(y:R). The heights of the (non-zero) elements of the

homogeneous components of soc(M), determined by S, do not have an upper bound.

Proof. Let M = M/B. Consider a uniform z in soc( M ) . By (2.2) there exists a uniform z, €
soc(M) such that z = z,. As ~y H(M) = 0, h(z,) is finite. Let h(z;) = n,. Then there existsy, € M,
such that [z;, y; ] =n .Then y,R is an h-pure submodule of M and B ~ y;R = 0. However h(z) = . So
there exists a uniform u; € M with soc(F;) = zRand e(\—.u) >n, By (2.2) we get uniform z; €
soc(M) with z, = z, h(z;) =n;> n,. We get y; € M such that [z,, y;] = n; . By continuing this
process, we get an infinite sequence of uniform elements {yi}i,1 of M, such that each yiR is an h-pure

uniserial submodule, soc(y:R) = zR for some z; € M satisfying z = z,, [z, yi] =ni=h(z) and n; <n.; .

If K =zy,Ris not a direct sum, we get a smallest i 2 2, such that z; e Xz,R. ThenN=

k=l

iykR = QSyRR. By (3.1) N is an h-pure submodule of M. Fur any uniform v € N, if v =2y;,

k=l k=1
with v, € yjR, then h(v) = min{h(v;)} This gives h(z)) <max{h(z): | <k <i-1}. Thisisa
contradiction,as h(z) <h(z;) for j <i. Hence K = ®Zy;R. By using (3 1) we get that K is an h-pure

submodule. Clearly soc(K) is homogeneous. The last part is obvious.

Lemma(3.3). Let M be a QTAG-modue such that M = QZy,R, %R uniserial, soc(yiR) =
=1 '
soc(y+1R) and d(yiR) < d(yi+1R). Then M has a basic submodule B =M.
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Proof. By (2.3)(i) we get monomorphisms Gi : y;R — y;«/R. Write oi(y;) = w;. Then w;

i s uniform and e(w;) = e(y;). Consider B = ZWIR ,and M =M/B Let: € B. Thenz=
=1

X(y, ~o,(y)r,=yiR+ 2:(y,ri - 0,(y.-)r-) - o,(y,)r,, for somer;e R and a positive integer s.

=) =2
Here yir; - Gi.i(yi-)ria € YR and -04(y,1,) € y,iR.. Using this, it can be easily proved that B = @ZwiR and
yiRMNB = 0. Now y_I = 6,(y,), and e(01(y1)) = e(0,(y,))- So that 6y(y))R "B =0. As 61(y1)R C y2R,

we get y2R N B = 0. By continuing this process, we get R N B =0. Clearly y, R < §'2 R <..., gives
M is a serial module of infinite length. It only remains to prove that B is h-pure. In view of (3.1) it is
enough to prove that each w;R is h-pure. Now yR @ y;.;R being a summand of M, is h-pure. But y;R &
yiiR = wR @ yi,jR. So wiR is h-pure in M. This completes the proo.’

Theorem(3.4). A QTAG-module Mg has no basic submodule other than M if and only if M is h-
reduced and for each homogeneous component K of soc(M), there exists an upper bound on the heights
of members of K

Proof. Let M be its only basic submodule. Then by definition M is decomposable and h-reduced.
For a simple submodule S of M, we get a summand Ms of M, such+that soc(Ms) is the homogeneous

component of soc(M) determined by S. If heights of members of so«(Ms) do not have an upper bound,

we get a summand N = QZy,R of M such that each y;R is uniserial and d(y;R) < d(y;«R). By 3.3) N

=1
has a basic submodule B, #N. As N is a summand of M, we get a basic submodule B of M of which B, is
a summand and B # M. This is a contradiction. Conversely let the given conditions hold. Then My Hi(M)
= 0. The rest follows from (3.3) .
£ 4. H-NEAT HEIGHT

Throughout Mg is a QTAG-module. A submodule N of M is cilled an h-neat submodule of M if

Hi(M) NN =H;(N). As observed in [8], any submodule N of M is h neat if and only if it is a complement
submodule of M, any maximal essential extension K’ of a submodule K of M, is an h-neat submodule of
M. Any such K’ is called an h-neat hull of K. For any uniform x € M, the minimum of all d(K’/ xR),
where K runs over all h-neat hulls of xR, is called the h-neat height uf x : it is denoted by h’(x). If x e N
< M, then h{ (x) will denote the neat height of x in N. If N is an h-neat submodule of M, then any h-neat
submodule of N is h-neat in M, so that for any uniform x € N, h’(x) < h}(x). We put h'(0) = e.Inan
h-divisible QTAG-module M, every uniform element is of infinite h-neat height.

For any two modules Ar and Bg any homomorphism from a submodule of A into B is called a
subhomomorphism from A to B; the set of all subhomomorphisms from A to B is denoted by SH(A, B).
An fe SH(A, B) is said to be maximal, if it has no extension in SH(A, B). Now (2.3) gives the following:

Lemma(4.1). Let xR and yR be any two uniserial submodules of M, such that xR N yR = 0. Then
(a) For any maximal fe SH(xR, yR), either domain(f) = xR or range(f) = yR.
(b) Let ze xR @ yR be unifrom, z= x"+y’, x’ € xR, y’ € yR and d(x'R) 2 d(y'R). The following
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hold:
@). zZR=xR.
(i) Given any u = v+w, v e xR, w € yR such that z € uR,
() ify’ #0, then [x’, v] = [y, w];
(B) if y’ =0, then e(w) < [x’, V]
Lemma (4.2). Let xR and yR be two uniserial submodules of M such that
xR NyR=0.Letz=x"+y’, x’ € xR, y’ € yR, be uniform such that d(yR) <
d(x'R). For T =xR @ yR, the following hold:
(@i). Fory’ # 0, h7(2) is the minimum of [x’, x] and [y’, y].
(ii). For y’ =0, let f € SH(xR, yR) be maximal with s = d(ker f)), minimal under the
condition that xR ¢ ker f. If domain(f) = uR, then h;(z) = [x’, u] = minimum
of [x’, x] and e(y) +s-e(x").
Proof. g: xR — y7R suchthat g(x’r) = yT is an R-epimorphism. If w =a+b, a€ xR, b € yR,
is uniform and z € WR, then f: aR — bR such that f{ar) = br, is an 2vtension of g; further [z, w] =
[x’, a]. Any extensionh: aR — yR, a’ € xR, of g gives uniform w’ = a’+h(a’) suchthatze wR.
Consequently wR is an h-neat hull of zR if and only if f is maximal. In that case by (4.1) either domain(f)
= xR or range(f) = yR. Thus for domain(f) = aR, and uR = ker f, (a) 1s the minimum of e(x) and
e(y)+e(u). To minimize e(a), we need to minimise s = e(u). So that }ér minimal e(u), hy(2) = [x’, a] =
e(a) - ¢(x) = min{e(x), e(y)+e(u)} - e(x) = min{[x’, x], e(y)+e(u) - 2(x)}, as e(x) - e(x") =[x’, x] If
y’ # 0, then e(x") = e(u)+e(y”), so that e(y)+e(u) - e(x) =e(y) -ey) = [y, y]. Fory’ =0, itis
obvious that xR ¢ ker f. This proves the result.
Lemma(4.3). Let M= A @ B and x € M be uniform. f x=a+b,ae A,be B and d(aR) 2
d(bR), then the following hold:
(). Forb#0, h'(x) = min{h/, (a), h;(b)}.
(ii). If b = 0, and B is h-divisible, then h’(x) = h/ (a)
Proof. Now g : aR — bR given by g(ar) = br, is an epimorplism. Let , and 7 be the projections
A®B — A, and A ® B — B respectively. Consider an h-neat hull K of xR. Then K is serial. Let K, =
m(X). As d(bR) < d(aR), we get an epimorphism ¢ : K; — K; such that for any x; € K, 6(x;) = x; if and
only if x;*+x; € K. Further aR ¢ K, , bR ¢ K; and d(K/xR) =d(K,/2R) By using (2.3) we get that either
K, is h-neat or K is h-neat in M.
Case I: b # 0. Then either K; is an h-neat hull of aR or K; is an h-neat hull of bR. So that
h’(x) 2 min{h%(a), h7(b)}. Let t =min{h’, (a), h3(b)} < h’(x). To be definite let t = h/, (a). Then we
get an h-neat hull a;R of aR with [a, a;] =t, and a uniform b; in M with [b, b;] 2 t. By (2.3) g extends to a
homomorphism f: a;R — biR. Then (a;+f{a1))R is an h-neat hull of xR with [x, a;+f(a,)] < h’(x) Thisis a
contradiction. Similar arguments hold if t = h{(b) This proves (i).
Case IT : b = 0 and B is h-divisible. Any h-neat serial submodule of B is either zero or of infinite
length. Thus for K to be an h-neat hull of xR it is necessary and sufficient that K, is an h-neat hull of aR.
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Thus for x=a, h’(x) = h) (a)

Lemma(4.4). LetKg = QZX,R be a QTAG-module with each x;R uniserial. Letz=X z;, z; €

e

xR , be uniform. Let z, be such that e(z) = e(z,). Then h’(z) is the minimum of the following numbers :
@i). All [z, x;]. withz 0.

(if). The neat heights of z, in various x,R @ xR, with z;=0.

Proof. The hypothesis on z, gives that for any i, 6;: zZ.R = zR such that cy(z.r) = zris an
epimorphims. Let y = Zy;, yi € xR, be any uniform element in K such that z € yR. Then7; : y.R = yiR
given by N;(y.r) = yir is an extension of 6;. Clearly ifaz =0, then [z, yJ] =[z, yi]. So that e(y) is
not more than s, the minimum of all those [z, x;] for which z; # 0. Thus h’(z) <s. However, if every z; #
0, then by (2.3), it is immediate that for yR to be an h-neat hull of zR, it is necessary that [z, y] =s, i.e
h’(z) = s. Suppose that for some j, z; = 0 and that for T = x,R ® xR, h7(z,) <s. We have a maximal f
e SH(x.R, x;R) with ker f of smallest length among those containing z.R. Let w,R = domain(f), then
s’ = h%(z,) = [z., w.]. By using (2.3), we obtain a uniform y = Z; y, with z € yR, y, =w, and y; = f{w,).
Then yR is an h-neat hull of zR such that [z, y] = s". Thus h’(z) < so, the minimum of the numbers listed
in (i) and (ii). Suppose h’(z) <s,. We get a uniform w = Zw; , w; € x,R such that wR is an h-neat hull of
zR and [z, w] = h’(2). Then for some j, wjR =x;R. For this j, z; = 0 and (w,+wj)R is an h-neat hull of
zR. Consequently for T = x,R @ x,R, h%(z,) < h’(z). This is a contradiction. This completes the proof.

We now give a criterian in terms of h-neat heights, for a QTAG-module , in which every h-neat
submodule is h-pure. We shall give a more general result. Analogous to the definition of an /-embedded
subgroup of an abelian p-group given by Moore [5], we define an /.zmbedded submodule of a QTAG-
module. Let Z" be the set of all non-negative integers and / : Z* — Z' be any function such that n < /(n), n
€ Z". A submodule N of a QTAG-module M is said to be /~embedded if Hyy(M) N N < Ha(N) for every
ne Z'. Thusif1 is the identity map on Z*, a submodule N of M is h-pure in M if and only if N is I-
embedded. Given /: Z" — Z' satisfying /(n) > n, we define /; : Z' — Z’ such'that for any n € Z*, [y(n) is
the minimum of all /(k), k = n. Then /, is monotonic. Further any submodule N of M is /-embedded if and
only if it is /;-embedded. So without loss of generality we assume thai / is monotic. Further define
l(e0) = oo,

Proposition 4.5. Let M be an h-reduced QTAG-module and / : Z"— Z' be a monotonic function
such that n < /(n), ne Z*. Then every h-neat submodule of M is /-embedded if and only if h(y) <
I(h’(y)+1)-1 for every uniformy € M.

Proof. Let every h-neat submodule of M be I-embedded.Corsider a uniformy € M. As M is h-
reduced, every h-neat hull of yR is of finite length. Let zR be an h-neat hull of yR such that [y, z] = h"(y)
=t. Then Hi(zR) = YR and H..1(zR) < yR. Then by the hypothesis, Hiy(M) N zZR < H(zR) = yR, but
HiwnM) N zR < yR. Consequently h(y) < Kt+1)-1 = I(h'(y)+ 1)~ Conversely let the inequality hold.

So every uniform y € M has finite height. Let there exist an h-neat submodule N of M that is not /-
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embedded. We get smallest positive integer n such that Hymy(M) NN @ Hy(N). Then Hyp.y(M) "N C H,.
1(N). There exists a uniform y € Hyy(M) N N such that y ¢ H.(N). As /(n) 2 I(n-1), y € Hoa(N). So that
hx(y) = n-1. Consequently h’(y) < n-1. By the hypothesis h(y) < /(h’(y)+1)-1 < I(n)-1. However as y €
Hym(M), h(y) = I(n). This is a contradiction. This proves the result.

Theorem(4.6). Let M be any QTAG-module and / : Z* — Z* be a monotonic function such that n
<(n), n € Z*. Then every h-neat submodule of M is /-embedded if and only if for any uniformy € M,
h(y) SI(h’(y)+ D -1

Proof. Let every h-neat submodule of M be /-embedded. Write M =L @ D, where D is the largest
h-divisible submodule of M. Now L is h-reduced and every h-neat submodule of L is /-embedded in L.
Consider a uniformy € M. Write y =y, +y,, y1 € L, y2 € D. Suppose y;, # 0. Then hG) = h(y,). By (4.3),
h’(y) = h{(y,) By using (4.5), we get h(y) = h(y:) < I(h’(y)+1)— 1. Suppose y; =0. theny =y, € D,
hence and h(y) = ® . Let K be any h-neat hull of yR. Consider any n 20. Then Hyu(M) = Hym(L) @ D. As

K N D # 0, Him(M) N K < Hy(K), we get Hy(K) # 0. So that d(K) = *, h’(y) = * = h(y). Once again
h(y) = I(h’(y)+ 1) — 1. Conversely let the given condition be satisfied. By essentially following the
arguments in (4.5), we complete the proof.
Theorem(4.7). Let M = L @ D be a QTAG-module such that L is h-reduced and D is h-divisible.
For a monotonic function / : Z* — Z" satisfying n < I(n), every h-neat submodule of M is J-embedded if
and only if
(i) every h-neat submodule of L is /-embedded in L; and
(ii) for any serial submodue W of D, any non-zero homomorphism f: W — L is a monomorphism.
Proof. Let every h-neat submodule of M be /-embedded. Then obviously (i) hold. Consider a
non-zero homomorphism f: W — L with ker £+ 0. then bR = soc(W).c ker f. Consider soc(f{W)) =
biR. As h(b,) < *°, by using (2.3) we can choose W to be such that {W) is h-neatin L. Then L, =
{x+f(x) : x € W} is an h-neat hull of bR. So that h’(b) < ®. By (4.6) h’(b) = oo. This gives a
contradiction.
Conversely, let the conditions be satisfied. Consider a uniformye M. Lety=y;+y,,y1€ L, y. €
D. Suppose y; # 0. Then by (4.3) h(y) = he(y1) < I(h (y,)+1) -1 Supposey;=0. Theny =y, € D. Let
K be any h-neat hull of yR. Let K, and K; be projections of K in L and D respectively. Then K =K; and we
get an epimorphism f : K, — K; with y € ker f. By (ii), f= 0. Consequently K < D and hence d(K) = *.
So once again h(y) = (h’(y)+ 1)-1. Hence (4.6) completes the proof.
By taking / =1, we get the following:
Corollary (4.8). Let M =L @ D be a QTAG-module such that L is h-reduced and D is h-divisible
Then the following are equivalent:
(i) Every h-neat submodule of M is h-pure in M.
(ii) For any uniformy e M, h(y) = h(y).
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(iii) Evey h-neat submoduie of Lis h-pure and for any uniserial submodule W of D any non-zero

homomorphism f : W — L is a monomorphism

€ 5. H-NEAT SUBMODULES

A module M is called a strongly TAG-modue, if M @ M is a OTAG-module. We start with the
following:

Lemma(5.1). Let Mg be a strongly TAG-module, A and B be two uniserial submodules of some
homomorphic images of M . Then the following hold:

(i) Ifd(A) <d(B), then B is A-injective.

(i) Ifd(A) 2 d(B), then B is A-projective.

(iii) If d(A) = d(B), then A = B, whenever soc(A) = soc(B) or A/H;(A) = B/H,(B).
(iv) M is a TAG-module.

Proof. Now A and B are submodules of M/K and M/L for sonie submodules K and L of M. As N
=M/K @ M/L is a homorphic image of M & M, Ax0, 0XB are submedules of N with zero intersection,
(i), (ii), and (iii) follow from (2.3). Finally (iv) follows from (i).

Let Mg be a strongly TAG-module. Let spec(M) be the set of all simple R-modules which occur
as composition factors of some finitely generated submodules of M. Let S, S’ & spec(M). Then § is
called an immediate predecessor of S (and S is called an immediate successor of S’) if for some uniserial
submodule A of M, A/H;(A)= S’ and Hy(A)/Hx(A) = S. By using (5.1) we get that any S € spec(M) does
not have more than one immediate successor and more than one immediate predecessor.(see also [9]).
Let S, S’ espec(M), S is called a k-th successor of S, if there exists a sequence S =S, S, ..., Sk =5’
of k+1 distinct members S; of spec(M), such that for i <k, S;.; is an immediate successor of S;; in this
situation S is called a k-th predecessor of S*. S is called its own 0-th successor(0-th predecessor). S’is
called a successor of § ,if §” is a k-th successor of S for some positive integer k. Define S ~ §” if for
some k 20, S’ is a k-th successor or k-th predecessor of S. This is an equivalence relation. Any
equivalence class C determined by this relation is called a primary cla.s. For a torsion abelian group, each
such C is a singleton. However for a torsion module over a bounded (hnp)-ring, each C is finite. For any
primary class C in spec(M), the submodule M, of all those x € M such that every composition factor of
xR isin C, is called the C-primary submodule of M. By using (5.1) one can easily see that M is a direct
sum of its C-primary submodules. A module M is called a prima.ry TAG-u)dule if M @& M is a TAG-

module such that spec(M) is a primary class. Consider a primary TAG-modue M. Let spec(M) have k
members, then either k is finite or countable. This k is called the periedicity of M. In this section we study
primary TAG-modules.

Lemma(5.2). Let Mg be an h-reduced primary TAG-module of finite periodicity. If there exists a
function f: Z* — Z" such that for any uniform x € M , h(x) < f(h’(x}), then M is bounded.

Proof. Let M be of periodicity k. For any uniform x € M, h’(x) < «. This gives h(x) < f{h"(x)) <

% Suppose M is not bounded. Then M has uniserial summands of arbitrarily large lengths. So we can
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write M = x;R @ x,R & M’, with x;R non-zero uniserial, zR = soc(x;R), h(zz) > max{f(j):1<j<
k+d(x;R)}and e(xz) > k. Now h(z,) = [z, x;]. As M is of periodicity k and e(x;) > k, we get y» € xR
such that [z;, y2] < k-1 and soc(xR/y2R) = soc(x;R). This gives a maximal g € SH(xzR, xiR) with d(ker
g) <k and ;R C ker g. Consequently d(domain(g)) < k+d(x;R), h’(z,) < k+d(x;R) . As h(zz) < f(h"(z,)),
we get h(z;) < max{f{j) : 0 <j £ k+d(x;R)}. This is a contradiction. Hence M is bounded.

Lemma(5.3).Let Mg be any primary TAG-module of finite periodicity. If every h-neat submodule
of M is h-pure, then either M is h-divisible or h-reduced.

Proof. Let M be neither h-reduced nor h-divisible. Then M = xR & A & M, for some uniform
element x and a serial module A of infinite length. Let zZR = soc(A). Then h(z) = . If the periodicity of
M is k, then for some u, 1 <u <k, we get a submodule of A of length u satisfying soc(A/yR) = soc(xR).
By (2.3), we get a maximal f € SH(A, xR) with d(domain(f)) < e(x)+u. This gives an h-neat hull K of zR
length e(x)+u. As K is h-pure, we get h(z) = d(K)-1 < = . This is contradiction.Hence the result follows.

Lemma(5.4). Let Mg be a primary TAG-module of finite periodicity k. Let T=xR @ Abea
submodul eof M, with xR uniserial, such that every h-neat submodule of T is h-pure in T. Then the
following hold:

(i) If soc(xR) = soc(A), then d(A) < d(xR)+k.
(i1). If soc(xR) is the u-th predecessor of soc(A) for some u 2 1, then d(A) < d(xR)+u.

Proof. Let soc(A) = zR. Let soc(xR) = zR. For a maximal f# 0 in SH(A, xR) with zR cker f and
d(ker f) minimal, we have d(ker f) = k, domain(f) = yR < A, further h’(z) = e(y)-1 = [z, y] < e(x)+k-1.
However by (4.8), h’(z) = h(z). So yR = A. Consequently e(y) = d(A) < d(xR)+k. Similarly (ii) follows.

We now prove the first decomposition theorem.

Theorem(5.5). Let Mg be a primary TAG-module ofperiodicity k < ©. Then every h-neat

submodule of M is h-pure if and only if either M is h-divisible or M = QZxaR such that :
aeA

(i). each xR is uniserial; and
(i) for any two distinct o, B € A the following hold :
(a) if soc(x R) = soc(x,R), then d(x,R) < d(x R)+k,
(b) if soc(x,R) is a u-th predecessor of soc(x R), 1 Su<k-1, then d(x,R) < d(x,R)+u.
Proof. Let every h-neat submodule of M be h-pure. By (5.2) M is either h-divisible or h-reduced
Let M be h-reduced. By (5.2) M is bounded. So that M = @quR, for some uniserial submodules x R
acA

By applying (5.4) we complete the necessity. Conversely let the giv:n conditions be satisfied. If M is h-

divisible, then every h-neat submodule N of M being h-divisible, is 2 summand of M, consequently N is h-

pure. Let M be h-reduced. Consider a uniform z = 22u € M withz, e x R. Then h(z) = min{h(z) : z_#
' acA ' :

0}= min{[z,, x,] : z, # 0}. Consider T = x,R @ x,R with z, 0, z,#0and o # . Let fe SH(x,R, x;R)
be maximal with the property that z R < ker f and d(ker f) is minimali Either domain(f) = x R or range(f)
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=x,R. Iff=0, obviously domain(f) = x R. Let f# 0. If soc(x R) = soc(x,R), then d(ker f) = Ak for some
A >0. If soc(x,R) & soc(x,R), then for some u 2 1 soc(x,R) is the u-th predecessor of soc(x,R) and d(ker
f) = u+pk for some p 2 0. Thus (a) and (b) yield domain(f) = x R. Cosequently h%(z,) =[z,, x,] = h(z,)
By (4.4), h’(z) = h(z). This proves the result.

The periodicity of a torsion abelian p-group is one. We get the following:

Corollary(5.6). Every neat subgroup of an abelian p-group G . p a prime number, is pure
subgroup if and only if either G is a divisible group or G = A @ B, such that for some positive integer n,
A is a direct sum of copies of Z/(p") and B is a direct sum of copies of Z/(p™").

We now discuss the case of a primary TAG-module of infinite periodicity. Henceforth Mg will be
a primary TAG-module of infinite periodicity.

Lemma(5.7). Let xR and yR be two h-neat uniserial submodules of M such that soc(xR) %
soc(yR) and soc(yR) is a predecessor of soc(xR). Then :

(i) SH(R, xR)=0.

(ii) For any h-neat hull K of xR @ yR in M, yR is a summand of K; if in addition xR is h-pure in M, then
K=xR @& yR.

(iii) If xR and yR both are h-pure, then xR @ yR is h-pure in M.

Proof. As M is of infinite periodicity and soc(yR) is a predecessor of soc(xR), soc(xR) is not a
predecessor of soc(yR). Consequently SH(YR, xR) = 0. Let K be an h-neat hull of xR & yR. As rank(K)
=2, K= A, ® A, with A, serial. Consider the projections f; : A; ® A; — A;. The restrictiion of one of f,
,say of fi to xR ia a monomorphism. Then soc(xR) = soc(A;) and soL{yR) = soc(A;). Further f; embeds
yR in A;. By (i) SH(A;, A;) = 0. This yields yR < A;. As yR c’ A; annd yR is h-neat, we get yR = A,.
Let xR be h-pure in M. So that xR is h-pure in K. Consequently xR is a summand of K. As xR £ yR, we
get K=xR @ yR. This proves (ii). Finally let both xR and yR be h-pure in M.Then M = xR @ M, for
some submodule M,;. Then K =xR @& (K n M,). This gives yR =K :2A M;. So K N\ M, is h-pure in M,.
Thus K N M is a summand of M,. Hence K is a summand of M. This gives (iii).

Lemma(5.8). Let K be any submodule of M with soc(K) homogeneous. Then :
(i) Given any two uniserial submodules A and B of M, either AN B =0 ar £hey’ are comparable under

inclusion,
(ii) for any uniform x € K, hg(x) = hj (x), and

(ili)any h-neat submodule of K is h-pure in K.

Proof. (i) Let A N B # 0 and d(A) 2 d(B). Then A+B = A & C, with C a proper homomorphic
image of B. Suppose C # 0, then soc(A) = soc(B) # soc(C). This contradicts the hypothesis that soc(K)
is homogeneous. Thus C =0, so B < A. This proves (i). Consider a uniform x € K. Then by (i) xR has
unique h-neat hull D in K. Then h} (x) = d(D)-1. The uniqueness of ) gives D is h-pure. Consequently
hx(x) = d(D)-1. This proves (ii). The last part is immediate from (ii)

Corollary(5.9). Let xR and yR be two uniserial submodules of M with xR N yR
= 0. Every h-neat submodule of T = xR @ yR is h-pure in T if and only if
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(i) soc(xR) = soc(yR), or
(ii) soc(xR) 2 soc(yR), one of them say soc(xR) is a u-th predecessor of soc(yR) for some u
21 and d(YR) < d(xR)+u.

Proof. Let every h-neat submodule of T be h-pure. Let soc(xR) # soc(yR), and
soc(xR) be a u-th predecessor of soc(yR). Then as in (5.4), we get d(yR) < d(xR) + u.

Conversely, let T satisfy the given conditions. If soc(xR) = soc(yR), then soc(T) is homogeneous, so by
(5.8) every h-neat submodule of T is h-pure in T. Let (ii) hold, soc(yR) be a u-th predecessor of soc(xR).
As M is of infinite periodicity, soc(xR) is not a predecessor of yR. So SH(yR, xR) =0, and for any 0 = f
€ SH(xR, yR), d(ker f) = u. Consider a uniform z = x, + y;, x; € xR. y; € yR.. Let e(x1) 2 e(y). If y; #
0, then e(x,) = e(y1)+u. So [xi, x] < [yi, y], and hence h}(z) = [xi, x] = hr(z). Suppose y, = 0. Consider
amaximal fe SH(xR, yR) with z € ker f. Then either f= 0 or d(ker ) = u. As d(xR) < d(yR)+u,
domain(f) = xR. Once again h;(z)= [xi, x] = hr(z). Let e(y:) > e(x,), then x, = 0, as SH(YR, xR) = 0.
Then for any uniform v e T, with z € z,R, we have z; € yR. So yR is the only h-neat hull of zZR in T.
Thus in all cases h’(z)= hi(z). By (4.8), the result follows.

Lemma(5.10). Let N be the submodule of M generated by those uniform elements x € M such
that soc(xR) has no predecessor in soc(M). Then:
(i) Soc(N) is homogeneous.

(ii). N is an h-pure submodule of M.
(iii) Any h-neat submodule of N is h-pure in M.

Proof. Let A be the set of those uniform x € M such that soc{xR) has no predecessor in soc(M).
Forany x,y € A, if soc(xR)  soc(yR), then one of them being a successor of the other, contradicts the
hypothesis. So that soc(xR) = soc(yR) for all x, y € A. Consider a uniform z € soc(N). For some y, € A,
ze YyR =@®XB;, B;’s uniserial. For some j, zR = soc(B,). But B; is a homomorphic image of some y;R.
As soc(yiR) has no pfedecessor in soc(M), we get yiR = B;. Hence soc(N) is homogeneous. It is now
immediate that if for any uniform x € M, soc(xR) < N, then x € N. This fact gives (ii). By using (4.8) we
get (iii).

The submodule N of M generated by those uniform elements x € M, such that soc(xR) has no
predecessor in soc(M) is called a terminal submodule of M. We denote this submodule by Ter(M).

Proposition(5.11). Let Mg be a primary TAG-module of infinite periodicity and N = Ter(M).
Then :

(i) Any submodule K of N has unique h-neat hull in M,
(i) for any uniform x € N, h(x) = h’(x); and

(iii) for any decomposition M = © 3 .

n A N=Z(ANN).

Proof. By (5.10) soc(N) is homogeneous. So given a uniform x € N, by (5.8) any two uniform
submodules of N containing x are comparable under inclusion. Thus there is unique h-neat hull A, of xR
in M, and by (5.10) Ax < N. For K, the sum L of those A, for which x € K, is the unique h-neat hull of

K. (ii) is immediate from (i). Consider any uniform x € N. Then x = ¥x; , x, € A;. If some x; # 0, and the
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mapping xR — xR, xr — x;r is not one-to-one, then soc(xR) will have a predecessor in soc(M). This
gives a contradiction. Hence xR = x;R, whenever x; # 0. Thus x; € M and (iii) follows.

Theorem(5.12). Let Mg be an h-reduced primary TAG-module of infinite periodicity. Then every
h-neat submodule of M is h-pure if and only if M = GZK , ® Ter(M) satisfying the following

conditions :

(i) for each j, K; is decomposable and soc(K; ) is homogeneous,

(ii) for j1 <j2, with K, # 0 # K ,ifzR and z,R are uniseserial summands of K, and K
respectively, then soc(z;R) is a u-th predecessor of soc(z;R) for some positive integer u depending
upon j; and j, and d(z;R) < d(z:R) + u ; and

(iii) if t is the length of a smallest length uniserial summand of N, and S is the simple module
determining soc(N), then for any Kj # 0, if S is a vj-th predecesso," of the simple module §;
determining soc(K;) , we have d(zR) < t + v; for any uniserial summand zR of K;.

Proof. Let every h-neat submodule of M be h-pure. Now N = Ter(M). As N is h-reduced, it has a
uniserial summand xR of smallest length, say t. Consider M = M/N. Let S be a simple submodule of M.
Consider any uniformy € M suchthat S = soc(?R). By (2.2), we choose y to be uniform such that
yR N N = 0. Then soc(xR) £ soc(yR). As soc(xR) has no predecessoi' in soc(M), it is a v-th predecessor
of soc(yR) = zR for some v 2 1. Now h(z) = h’(z) < <. We get y; @ M such that [z, y;] = h(z). Then in
xR @ y)R, both the summands are h-pure in M. By (5.7) xR @ y;R is h-pure. By (5.9), d(yiR) < d(xR) +
v. So there is an upper bound on the heights of elements of a particular homogeneous component of
soc(ﬁ). Hence by (3.4) M isits only basic submodule, so it is decomposable. As N is h-pure , by the
observation following (2.2), we get M = K® N, with K its only basic submodule. As M is primary,
spec(M) is countable. We get K = @ZK , satisfying (i). Finally (ii) and (iii) follow from (5.9).

—

Conversely, let M satisfy the given conditions.. Then K satisfies conditions analogous to those
given in €5.5). So on the simalar lines as in (5.5), every h-neat submodule of K is h-pure. Consider any
upiformye M. Nowy=y,+y,. y1 € K, y2€ N. Ify; =0, y € N ard by (5.11), yR has unique h-neat
hull in M ; obviously then h(y) = h’(y). Let y; # 0. Suppose y, # 0. then by using (4.3) h’(y) = h(y).
Suppose y, =0 and h’(y) < h(y). We get an h-neat hull zR of yR with [y, z] = h'(y). Letz=2z,+ 23, z1 €
K, z2 € N. As h} (y) = h(y), z2# 0. One of z;R and 2R is h-neat. As-yR < ziR and [y, z1] < h(y) = hx(y),
z;R is not h-neat in K and so in M. Consequently z;R is h-neat in N, and by (5.10) it is h-pure. For some
v, soc(ziR) is a v-th predecessor of soc(z;R). So that d(z;R) = d(z;R) + v. Write soc(z;R) = gR. Then by
using condition (iii), we get [g, z;] < h(g) < d(z;R) +v -1 = [g, z1]. Conseuently d(z;R) - 1 = h(g). So z;R
is h-pure. This is a contradiction. This completes the proof.

We now discuss the case of M being not necessarily h-reduced. Write M= M, @ D, where D is
the largest h-divisible submodule of M.

Lemma(5.13). If every h-neat submodule of M is h-pure and D # 0, then Ter(M) < D ; further
Ter(M) is h-divisible.
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Proof. Suppose N = Ter(M) @ D. We get a uniform x € soc(i{), such that h(x) <= . Thenx =y
+z NowO=#ye M;,ze D.By(5.11) y € N. Consider any simple submodule S of D. By the definition
of S, it is not a predecessor of soc(yR). So that soc(yR) is a predecessor of S. As D is h-divisible, there
exists a uniserial submodule A of D and a homomorphism f: A — M, with range(f) = yR and S g ker f.
This contradicts (4.8). Hence N ¢ D. As N is h-pure, it must be h-divisible.

Theorem(5.14) Let Mg be a primary TAG-module of infinite periodicity such that M is not h-

divisible and let N = Ter(M) . Then every h-neat submodule of M is h-pure if and only if the following
hold:

(a) Nis h-divisible ,and
(b) M=N@& SK ,» Where K; satisfy the following conditions:
—

(i) if some K; # 0, then soc(K;) is a homogeneous component of soc(M),
(ii) each K; is a direct sum of serial modules,
, (iii) if for some i < j, K; #0 # K; and K; is not h-divisible , then the siniple submodule S; determining
soc(K;) is a v-th predecessor of the simple submodule determining soc(K,) for some positive integer
v depending on i and j, and for any uniserial submodule A of K, d(A) <t + v, where t is the length
of the smallest length uniserial summand of K; , and
(iv) if for some j, K; # 0 and is not h-reduced, then for any i <, K; is h-divisible.
Proof. Let D be the largest h-divisible submodule of M. Thenl D # 0. Let every h-neat submodule
of M be h-pure. By (5.13) N is h-divisible. Thus M = N @& M; & M, such that D =N @ M, and M, is h-
reduced. By applying (5.12) to M; and using the fact that M, is a direct sum of serial modules, we get M,

OM, =& EK , satisfying (i), (ii), and (iii). Finally (iv) is an immediate consequence of (ii).

’C-Z-c:nversely let the given conditions be satisfied. By comparing these conditions with those in
(5.12), we get M = D @ L such that N ¢ D. Then SH(N, L)=o0. Conside’r a uniserial submodule W of D
and let f : W — L be a non-zero homomorphism. Then W & N. For some j, W is isomorphic to a
submodule of K;. This K; is not h-reduced, {iW) < L, and for some i, f{W) is isomorphic to a submodule
of K, . If j = t, obviously f is a monomorphism. Suppose t <j Then K, is h-divisible. Let xR = soc(f{W)).
As xR c L, h(x) < <. On the other hand x € soc(K, ) yields h(x) = . This is a contradiction. Hence j <t.
So SH(K,, K,) = 0. This once again contradicts the fact that f# 0. Thus j = t. Hence f is a monomorphism.
So by (4.8) the result follows.

We end this paper by giving an example of an h-reduced primary TAG-module M of which every
h-neat submodule is h-pure, but it is not decomposable. Such a module has to be of infinite periodicity.

Example. Let F be a Galois field and R be the ring of infinite lower triangular matrices [a;] over F,
where i, j are indexed over the set P of all positive integers. Let {e; : i,j € P} be the usual set of matrix
units in R. Then M = exR is a uniserial R-module with d(My) = k; it is annihilated by the ideal Ay of R
consisting of those [a;] € R, such that a; = 0 for i < k. Observe that each R/A, is isomorphic to the ring

of kxk lower triangular matrices over F. So that any R/As-module is a TAG-module. Each My embeds in
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M. under the mapping ewr — ex.14f, r € R. Let T =TTy My . Then Mg = {x € T : xA, = 0 for some k}
is a primary TAG-module of infinite periodicity. Its socle is homogeneous. By (5 8) every h-neat
submodule of M is h-pure. M is h-reduced. Consider a uniform x € soc(M). then x = (x,), xx € My. Letu
be the smallest integer such that x, # 0. Then xR = x,R. As d(M,) =y, by using (2.3) it can be easily seen
that h(x) = u-1. So that for any i > 1, soc(H;.;(M))/soc(H;) = soc(M;). Suppose that M is decomposable,

ThenM =& ZN ,» where N; is a direct sum of uniserial modules of length j. Then
= -

soc((H,.1(M))/soc(Hi(M)) = soc(N;). Thus soc(N;) = soc(M;), a simpiz module. Consequently each N, is a
uniserial module. As F is finite, N; is a finite set. Consequently M is countable. But by construction M is

uncountable This is a contradiction. Hence M is not decomposable.
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