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Abstract. We investigate the ergodicity of 2D large scale quasigeostrophic flows under
random wind forcing. We show that the quasigeostrophic flows are ergodic under suitable
conditions on the random forcing and on the fluid domain, and under no restrictions
on viscosity, Ekman constant or Coriolis parameter. When these conditions are satisfied,
then for any observable of the quasigeostrophic flows, its time average approximates the
statistical ensemble average, as long as the time interval is sufficiently long.

2000 Mathematics Subject Classification. 37A25, 60H15, 76D05, 86A05.

1. Introduction. The models for geophysical flows are usually very complicated.

Simplified models have been developed to investigate the basic key features of large

scale phenomena. These models filter out undesired high frequency oscillations in

geophysical flows and are derived at asymptotically high rotation rate or small Rossby

number.

An important example of such a geophysical flow model is the quasigeostrophic

flow model [14]

∆ψt+J(ψ,∆ψ)+βψx = ν∆2ψ−r∆ψ+wind forcing, (1.1)

whereψ(x,y,t) is the stream function, β≥ 0 is the meridional gradient of the Coriolis

parameter, ν > 0 is the viscous dissipation constant, and r > 0 is the Ekman dissipa-

tion constant. Moreover, J(f ,g)= fxgy−fygx denotes the Jacobian operator.

The quasigeostrophic equation has been derived as an approximation of the rotating

shallow water equations by the conventional asymptotic expansion in small Rossby

number [14]. Recently, the randomly forced quasigeostrophic flow model has been

used to study various phenomena in geophysical flows under uncertain wind forcing

[5, 10, 11, 12, 16].

Introducing (relative) vorticity ω(x,y,t)=∆ψ(x,y,t), the quasigeostrophic equa-

tion can be written as

ωt+J(ψ,ω)+βψx = ν∆ω−rω+wind forcing, (1.2)

where (x,y) ∈ D and D ⊂ R2 denotes a bounded domain with sufficiently regular

boundary. Potential vorticity is defined as ω+βy . The boundary conditions are no

normal flow (ψ = 0) and free-slip (ω = 0) on ∂D as in Pedlosky (see [15, page 34]) or
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in Dymnikov and Kazantsev [7]:

ψ=ω= 0 on ∂D. (1.3)

An appropriate initial condition ω(0) is also imposed. We note that the Poincaré

inequality holds with these boundary conditions.

An invariant measure for stochastic systems is like a “statistical steady state” and

is a part of the asymptotic permanent regime of the system [1]. When there is only

one invariant measure for the quasigeostrophic flows modeled by (2.3), we have the

so-called ergodic principle, that is, for any observable of the quasigeostrophic flows,

its time average on [0,T ] approaches the statistical ensemble average, as T goes to

infinity.

We will investigate the existence and uniqueness of invariant measures for quasi-

geostrophic flows. After reviewing the mathematical setup in Section 2, we study exis-

tence and uniqueness of invariant measures in Sections 3 and 4, respectively. Finally,

we summarize our results in Section 5.

2. Mathematical setup. In the following we use the abbreviations H = L2(D), Hk
0 =

Hk
0 (D), Hk = Hk(D), 0 < k < ∞, for the standard Sobolev spaces. Let 〈·,·〉 and ‖ ·‖

denote the standard scalar product and norm in L2, respectively. Moreover, the norms

forHk
0 are denoted by ‖·‖Hk . Due to the Poincaré inequality [8], ‖∆ϕ‖ is an equivalent

norm for H2
0 . It is well known that the linear operator

A= ν∆ :H �→H (2.1)

with domain D(A) = H2 ∩H1
0 is selfadjoint. Note that A generates a strongly con-

tinuous, and in fact, an analytic semigroup S(t) on L2 (see [13]). The spectrum of A
consists of eigenvalues 0> λ1 > λ2 ≥ λ3 ≥ ··· with corresponding normalized eigen-

functions e1,e2, . . . . The set of these eigenfunctions is complete in L2. For example,

for the square domain D = (0,1)×(0,1) the eigenvalues are given by −ν(m2+n2)π2

for positive integers m, n, and the associated eigenfunctions are suitable multiples

of sin(mπx)sin(nπy).
We define the nonlinear operator F by

F(ω)=−rω−βψx−J(ψ,ω), (2.2)

then (1.2) can be rewritten as the abstract evolution equation together with the initial

condition

dω= (Aω+F(ω))dt+
√
QdW, (2.3)

ω(0) is given, (2.4)

where W(x,y,t) is a Wiener process defined on a probability space (Ω,�,P). The

covariance operatorQ :H →H for this Wiener process is a nonnegative and symmetric

linear continuous operator to be specified below. The term with Ito derivative,
√
QdW ,

is a model for the white-in-time noise representing the random wind forcing. This
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equation can be rewritten in the mild (integral) form

ω(t)= S(t)ω(0)+
∫ t

0
S(t−s)F(ω(s))ds+Z(t), (2.5)

where Z(t) is the stochastic convolution

Z(t)=
∫ t

0
S(t−s)

√
QdW(s), t > 0. (2.6)

In fact, Z(t) is an Ornstein-Uhlenbeck process and it is the solution of the linearized

version of (2.3):

dZ =AZdt+
√
QdW. (2.7)

In this paper, we always assume that the covariance operator Q for the Wiener

process W(t) is of trace class, that is, Trace Q<+∞. Thus we only consider the noise

that is white in time but colored in space. Then the stochastic convolution Z(t) has a

continuous version with values in H = L2(D) (see [3, Theorem 5.14]).

We can specifically define an appropriate class of Wiener processesW(t) satisfying

the above condition. Let βk(t), for positive integer k, denote a family of independent

real-valued Brownian motions. Furthermore, choose positive constant αk such that

∞∑
k=1

α2
k∣∣λk∣∣1−γ <∞, (2.8)

for some 0< γ < 1. Then we define the white noise by

√
QẆ(t) :=

∞∑
k=1

αkβ̇k(t)ek, t ≥ 0. (2.9)

Note that the eigenvalues λk for the operator A behave like k in two dimensions and

also note that the Riemann zeta function ζ(s) =∑∞
k=1 1/ks is well defined for s > 1.

We see that condition (2.8) is satisfied when k−1/2 ≤αk ≤ k−3/8.

We further assume that

κ(D)= inf
0<ρ<diam(D)

inf
(x,y)∈D

meas
(
D∩B(x,y ;ρ)

)
ρ2

> 0, (2.10)

where diam(D) is the diameter of D (the least upper bound of two-point distances in

D), meas(·) denotes the Lebesgue measure, and B(x,y ;ρ) is the open disk centered

at (x,y) and with radius ρ. We also assume that the eigenfunctions ek satisfy

ek ∈ C0(D̄),
∣∣ek(x,y)∣∣≤ C, ∣∣∂xek(x,y)∣∣, ∣∣∂yek(x,y)∣∣≤ C

√∣∣λk∣∣, (2.11)

for (x,y) ∈ D, positive integer k, and some constant C > 0. For the square domain

D = (0,1)× (0,1), these conditions are all satisfied. Then, according to [4, Theorem

5.2.9], the stochastic convolution Z(t) has a continuous version with values in L2(D).
(Actually, in this case, Z(t) is in C0(D), the Banach space of continuous functions

satisfying the zero Dirichlet boundary condition on D.) For this Wiener process W(t)
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in (2.9), the stochastic convolution Z(t) is

Z(t)=
∞∑
k=1

αkek
∫ t

0
e−λk(t−s) dβk(s), t ≥ 0. (2.12)

As shown in [2], for every initial condition ω(0) ∈ L2(D), there exists a unique

global mild solutionω(x,y,t) of the quasigeostrophic flow model (2.3). This solution

is in C([0,T ];L2(D)) for every T > 0.

3. Existence of an invariant measure. Now we consider invariant measure for the

quasigeostrophic flow model (2.3). For the rest of the paper, we denote ω(t;x) as

the solution of the quasigeostrophic flow model with initial condition (not the spatial

point) x ∈H.

We introduce the usual notations. The Markovian transition semigroup is

(
Ptg

)
(x)= E[g(ω(t;x))], (3.1)

for g ∈ Bb(H), the space of bounded Borel measurable functions. Hereafter E is the

expectation. The transition probability is

Pt(x,Γ)= P
(
ω(t;x)∈ Γ), (3.2)

for x ∈H and Γ ∈�(H), the σ -algebra of Borel sets in H.

A probability measure µ on (H,�(H)) is called invariant if

∫
gdµ =

∫
Ptgdµ (3.3)

for any t > 0 and g ∈ Bb(H), or, equivalently,

∫
H
Pt(x,Γ)dµ = µ(Γ), (3.4)

for any t > 0, x ∈H and Γ ∈�(H).
The existence of an invariant measure for the quasigeostrophic flow model (2.3)

follows from a tightness or, equivalently, a compactness argument [17]. If the mean-

square norm of the solution is bounded for all time t > 0 and for all initial data, then

by the Chebyshev inequality, the solution is bounded in probability, which further

implies that the family of measures on (H,�(H))

1
T

∫ T
0
Pt(x,·)dt, T ≥ 1, (3.5)

is tight for some x ∈H (see [4, pages 89–90]). Thus by [4, Corollary 3.1.2], there exists

an invariant measure for the quasigeostrophic flow model (2.3). So in the rest of this

section, we estimate the mean-square norm E‖ω(t)‖2.
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We assume that ∫∞
0

∥∥∥S(r)
√
Q
∥∥∥2

HS
dr <+∞, (3.6)

where ‖·‖HS is the Hilbert-Schmidt norm. We rewrite (2.5) as

ω(t)= Y(t)+Z(t), (3.7)

where

Y(t)= S(t)x+
∫ t

0
S(t−s)F(ω(s))ds, (3.8)

with initial data ω(0)= x, and Z(t) is the Ornstein-Uhlenbeck process in (2.6).

By [3, Corollary 4.14], for any x ∈H,

sup
t≥0

E
∥∥Z(t)∥∥2 = sup

t≥0
E
∫ t

0

∥∥∥S(r)
√
Q
∥∥∥2

HS
dr <+∞. (3.9)

By [2] or follow a Yosida approximation combined with L2-norm estimate as in [4,

Proposition 6.1.6], we have, for any x ∈H,

sup
t≥0

E
∥∥Y(t)∥∥2 <+∞. (3.10)

Note that

∥∥ω(t)∥∥2 = 〈Y +Z,Y +Z〉 = ‖Y‖2+2〈Y ,Z〉+‖Z‖2

≤ ‖Y‖2+2‖Y‖‖Z‖+‖Z‖2

≤ 2
(‖Y‖2+‖Z‖2).

(3.11)

Thus, by (3.9) and (3.10),

sup
t≥0

E
∥∥ω(t)∥∥2 <+∞. (3.12)

By the argument in the beginning of this section, there exists at least one invariant

measure for the quasigeostrophic flow model (2.3). We have the main result in this

section.

Theorem 3.1. Assume that
∫+∞
0 ‖S(r)√Q‖2

HSdr <+∞. Then there exists at least one

invariant probability measure for the quasigeostrophic flow model (2.3) in the space

L2(D) of square-integrable vorticities.

4. Uniqueness of an invariant measure. Now we consider the uniqueness of in-

variant measure for the quasigeostrophic flow model (2.3). As we know in [4, Chapter

4], the uniqueness of invariant measure is a consequence of regularity of the tran-

sition semigroup Pt , by the Doob’s theorem. Due to Khasminskii’s theorem, strong

Feller and irreducibility properties imply the regularity. So we now try to prove the

strong Feller and irreducibility properties for the transition semigroup Pt .
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Strong Feller property means that for every g(x) in Bb(H), the space of bounded

Borel measurable functions onH, Ptg(x) is in Cb(H), the space of bounded continuous

functions on H.

Irreducibility property means that for every Borel set in H, that is, for every Γ in

�(H), Pt(x,Γ) is positive for any x ∈H and t > 0.

Strong Feller property. We first consider strong Feller property. Note that (see

[3, page 119])

Trace
∫ t

0
S(r)QS∗(r)dr =

∫ t
0

∥∥∥S(r)
√
Q
∥∥∥2

HS
dr . (4.1)

So the condition for the existence of invariant measures in Theorem 3.1, that is,∫+∞
0 ‖S(r)√Q‖2

HSdr <+∞, implies that the linear integral operator Qt :H →H,

Qtx :=
∫ t

0
S(r)QS∗(r)xdr , x ∈H, (4.2)

is of trace class for any t > 0.

We further assume that

ImageS(t)⊂ ImageQ1/2
t . (4.3)

Then follow a similar argument as in the proofs of Theorem 7.2.4 in [4] and of Theo-

rem 3.1 in [9], we conclude that Pt , t > 0, is a strong Feller semigroup.

Irreducibility property. Now we consider irreducibility property. We further

assume that the covariance operator Q is one-to-one (or injective), that is, the kernel

kerQ = {0}. Then, as in the proof of Theorem 7.4.2 in [4] and of Theorem 3.1 in [9],

Pt , t > 0, is irreducible.

Thus, with the strong Feller and irreducibility properties proved above, using Doob’s

theorem [4, Theorem 4.2.1], there exists a unique invariant measure µ on (H,�(H)),
and all other transition probability measures Pt(x,·), x ∈ H, approach this unique

invariant measure µ as time goes to infinity.

Therefore, we have the following main theorem in this section.

Theorem 4.1. Assume that

(i)
∫+∞
0 ‖S(r)√Q‖2

HSdr <+∞,

(ii) ImageS(t)⊂ ImageQ1/2
t , where Qt is defined in (4.2), and

(iii) the covariance operator Q : L2(D)→ L2(D) is one-to-one.

Then

(A) there exists a unique invariant probability measure µ for the quasigeostrophic

flow system (2.3) in the space L2(D) of square-integrable vorticities;

(B) moreover, for any ω ∈ L2(D), the transition probability measures Pt(ω,·) ap-

proach the unique invariant probability measure µ. Namely, for any Γ ∈�(H),

lim
t→+∞

Pt(ω,Γ)= µ(Γ); (4.4)
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(C) quasigeostrophic flow system (2.3) is ergodic, namely,

lim
T→+∞

∫ T
0
g
(
ω(t)

)
dt =

∫
L2
gdµ, P−a.s. (4.5)

for all solutionω(t) with initial date in L2(D) and all Borel measurable function

g : L2(D)→R such that
∫
L2(D)‖g‖dµ <∞.

The ergodicity in part (C) above is a consequence of the uniqueness of the invariant

measure µ (see [4, Theorem 3.2.6]).

5. Summary. In this paper, we have studied ergodicity of large scale quasigeostro-

phic flows under random wind forcing. We have shown that the quasigeostrophic flows

are ergodic under suitable conditions on the random forcing and on the fluid domain,

and under no restrictions on viscosity, Ekman constant or Coriolis parameter. When

these conditions are satisfied, then for any observable of the quasigeostrophic flows,

its time average approximates the statistical ensemble average, as long as the time

interval is sufficiently long.

There is recent work on random dynamical attractors for the quasigeostrophic flow

model by Duan et al. [6]. A consequence of that work implies that, when viscosity is

sufficiently large and when the trace of the covariance operator for the Wiener process

is sufficiently small, then all quasigeostrophic motions approach a point random at-

tractor exponentially fast as time goes to infinity. This is a very rare case. This point

random attractor corresponds to a unique invariant Dirac measure, that is, the sup-

porting point of the Dirac measure is a global (point) attractor, and thus under these

conditions, quasigeostrophic flows are also ergodic. These conditions are different

from the ergodic conditions in the current paper. For example, in the current paper,

we do not impose any condition on viscosity, or on the size of the trace of the covari-

ance operator for the Wiener process.
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