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ON THE NUMBER OF ZEROS OF ITERATED OPERATORS
ON ANALYTIC LEGENDRE EXPANSIONS
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Abstract. Let L = (1−z2)D2−2zD, D = d/dz and f(z) =∑∞n=0 cnPn(z), with Pn being
the nth Legendre polynomial and f analytic in an ellipse with foci ±1. Set Lk = L(Lk−1),
k≥ 2. Then the number of zeros of Lkf(z) in this ellipse is O(k lnk).
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1. Introduction. In [3], Erdös and Rényi showed that for a function analytic in |z| ≤
R, the number of zeros of the kth derivative f (k)(z) in |z| ≤ r < R is O(k). This result

includes an earlier result of Pólya [8] that for a function that is real on the real axis

and is the restriction to a closed interval I of an analytic function, the number of zeros

of f (k) in I is O(k).
Let

L= (1−z2)D2−2zD, (1.1)

with D = d/dz. Let f(z) be analytic in an ellipse ER with foci at ±1, where the sum of

the semiaxes is R > 1. Now, f(z) can be represented as

f(z)=
∞∑
n=0

cnPn(z), (1.2)

where Pn is the nth Legendre polynomial [17, Theorem 9.1.1]. Moreover, by [17, for-

mula (9.1.4)]

liminf
n→∞

(∣∣cn∣∣−1/n)= R. (1.3)

Calculation shows that

(
Lkf

)
(z)=

∞∑
n=0

(−λn)kcnPn(z), (1.4)

where λn = n(n+1). Formula (1.4) holds for x ∈ (−1,1) and hence in ER by analytic

continuation. Moreover,

liminf
n→∞

(∣∣λkncn∣∣−1/n)= R (1.5)

for every positive integer k so that (Lkf)(z) is also analytic in ER .
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2. The main theorem and lemmas

Theorem 2.1. Let f be analytic in ER of the form (1.2). Let 1 < T < R. Then the

number of zeros of (Lkf)(z) in ET is O(k lnk).

The above theorem implies our next result. For the next corollary we consider the

operator L to be restricted to the real axis. That is,

L= (1−x2)D2−2xD (2.1)

with

D = d
dx

. (2.2)

Corollary 2.2. Let L be given by (2.1) and (2.2), and let f be analytic in ER of the

form (1.2), with real cn. Then the number of sign changes of (Lkf)(x) in (−1,1) is

O(k lnk).

We next give the lemmas needed. The first is a version of Jensen’s formula for

functions analytic in an ellipse [7, page 58].

Lemma 2.3. Let f(z) be analytic inside the ellipse z = (Seiθ+ (Seiθ)−1)/2, for R >
S > 1. For 1< r ≤ S, denote by N(r) the number of zeros of f (counting multiplicities)

inside and on the ellipse

z = 1
2

(
reiθ+(reiθ)−1

)
. (2.3)

Then

∫ S
1

1
r
N(r)dr = 1

2π

∫ 2π

0
ln
∣∣∣∣f
(

1
2

(
Seiθ+(Seiθ)−1

))∣∣∣∣dθ
− 1

2π

∫ 2π

0
ln
∣∣f(cosθ)

∣∣dθ.
(2.4)

We also need Laplace’s method [9, Part 2, Chapter 5, no. 201] and [1, Section 5.1].

Lemma 2.4. Suppose that the functions φ(x) and exp(h(x)) are defined and satisfy

the following conditions on (0,∞):
(1) φ(x)exp(kh(x)) is absolutely integrable over (0,∞) for every k= 0,1,2, . . . .
(2) The function h(x) attains its maximum only at the point x0 ∈ (0,∞). Moreover,

h(x) < h(x0) on any closed integral that does not contain the point x0. Furthermore,

there is a neighborhood of x0 where h′′(x) exists and is continuous with h′′(x0) < 0.

(3) φ(x) is continuous at x0, φ(x0) �= 0.

Then

∫∞
0
φ(x)exp

(
kh(x)

)
dx ∼

√
2πφ

(
x0
)
exp

(
kh
(
x0
))(−kh′′(x0

))−1/2
(2.5)

as k→∞.
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We also need an expansion for Legendre polynomials [2, Lemma 12.4.1].

Lemma 2.5. Given Pn,

Pn
((
Reiθ+(Reiθ)−1)

2

)
=

n∑
j=0

ajan−j
(
Reiθ

)n−2j , (2.6)

where

aj = 2−2j

(
2j
j

)
. (2.7)

3. Proof of the main theorem

Proof. We will use Jensen’s formula in the form (3.15). Let 1 < S < R and z =
(Seiθ + (Seiθ)−1)/2. By (1.3), for a fixed ε, 0 < ε < R−S, there exists N = N(ε) such

that n≥N implies that ∣∣cn∣∣≤ (R−ε)−n. (3.1)

Now,

(
Lkf

)
(z)=

∞∑
n=0

λkncnPn(z) (3.2)

which, by Lemma 2.5, equals

∞∑
n=0

λkncn
4n

n∑
j=0

(
2j
j

)(
2n−2j
n−j

)(
Seiθ

)n−2j . (3.3)

Taking the modulus,

∣∣(Lkf )(z)∣∣≤ ∞∑
n=0

λkn
∣∣cn∣∣

(
S
4

)n n∑
j=0

(
2j
j

)(
2n−2j
n−j

)
S−2j . (3.4)

We now employ an identity that is a special case of the Chu-Vandermonde sum,

which is
n∑
j=0

(
2j
j

)(
2n−2j
n−j

)
= 4n. (3.5)

Since S > 1,

∣∣(Lkf )(z)∣∣≤ ∞∑
n=0

λkn
∣∣cn∣∣Sn, (3.6)

which, by (3.1) and R > S, is less than or equal to

N−1∑
n=0

λkn
∣∣cn∣∣Sn+

∞∑
n=N

λkn
(

S
R−ε

)n
. (3.7)
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The second term in (3.7) is less than

∫∞
0

(
n(n+1)

)k
exp

(
−n ln

R−ε
S

)
dn

=
∫∞

0
exp

(
k
(

ln
(
n(n+1)

)− n
k

ln
R−ε
S

))
dn.

(3.8)

In (3.8), n is considered a continuous variable.

Next we employ Laplace’s method as in Lemma 2.4. We set

h(n)= ln
(
n(n+1)− n

k
ln
R−ε
S

)
, (3.9)

with n∈ (0,∞).
Calculation shows that h′(n0)= 0 where

n0 =
(

2k
ln
(
(R−ε)/S)

)
−1+

( (
1+4k2

)
ln
(
(R−ε)/S)

)1/2
. (3.10)

Now, for all sufficiently large k, the term n0 is positive. Note also that

n0 ∼αk as k �→∞, (3.11)

where the constant α is independent of k.

Further calculation shows that

h′′
(
n0
)=−2

λn0+1

λ2
n0

< 0, (3.12)

with λn given by h(n+1).
By Lemma 2.4, the integral in (3.8) is asymptotic to

(
λn0

)k( S
R−ε

)n0
( π

(
λn0

)2

k
(
λn0+1

))1/2
as k �→∞. (3.13)

The first term in (3.7) is

N−1∑
n=0

λkn
∣∣cn∣∣Sn ≤ c(N−1)

(
λN−1

)k(N−1∑
n=0

Sn
)
= c(N−1)

(
λN−1

)k SN−1
S−1

, (3.14)

where c =max{|cj|}, for j = 0, . . . ,N−1.

We next take 1 < T < S. We use Jensen’s formula in (2.4) with f replaced by Lkf .

This yields

N(T) ln
S
T
≤
∫ S
T

1
r
N(r)dr

≤ 1
2π

∫ 2π

0
ln
∣∣∣∣(Lkf )

(
1
2

(
Seiθ+(Seiθ)−1))∣∣∣∣dθ

− 1
2π

∫ 2π

0
ln
∣∣(Lkf )(cosθ)

∣∣dθ.

(3.15)
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We first use the estimates in (3.6), (3.7), (3.13), and (3.14) to estimate the first integral

on the right-hand side of inequality (3.15). In light of these estimates, we choose a

constant M > 1 independent of k such that for all sufficiently large k,

1
2π

∫ 2π

0
ln
∣∣∣∣(Lkf )

(
1
2

(
Seiθ+(Seiθ)−1))∣∣∣∣dθ

≤ ln
{
Mc(N−1)

(
λN−1

)k SN−1
S−1

+M(λn0

)k( S
R−ε

)n0
( π

(
λn0

)2

k
(
λn0+1

))1/2}
.

(3.16)

By (3.11), for all sufficiently large k,

n0 >N−1. (3.17)

Accordingly, rewrite the term on the right-hand side of (3.16) as

ln
{
k1/2(λn0

)k[M( S
R−ε

)n0
( π

(
λn0

)2

k2
(
λn0+1

))1/2
+k−1/2Mc(N−1)

(
λN−1

λn0

)k SN−1
S−1

]}
. (3.18)

Now, for the first term inside the bracket in (3.18), by (3.11) this term is O(1) as

k→∞. Next, by (3.17), (
λN−1

λn0

)k
=O(1) as k �→∞. (3.19)

In summary, by (1.4), (3.11), (3.16), (3.18), and (3.19), the integral in (3.16) that appears

in (3.15) as well is O(k lnk).
Finally, we estimate the second integral on the right-hand side of (3.15). This is, of

course, the case S = 1 in the integral just estimated. So, we fix ε, with

0< ε < R−1 (3.20)

which is possible as R > 1. Inequality (3.20) is equivalent to 1/(R−ε) < 1. First, we

replace the estimate in (3.14) by

N−1∑
n=0

(
λn
)k∣∣cn∣∣≤ c(N−1)

(
λN−1

)k, (3.21)

where, again, c =max{|cj|} for j = 0, . . . ,N−1.

We first note that Jensen’s formula as used in (3.15) is independent of the estimates

done in (3.6), (3.7), (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.16), (3.17), and

(3.18). Next, set z = x = cosθ = (eiθ+e−iθ)/2. The estimates in (3.6), (3.7), (3.8), (3.9),

(3.10), (3.11), (3.12), (3.13), (3.14), (3.16), (3.17), and (3.18) are replaced by

1
2π

∫ 2π

0
ln
∣∣(Lkf )(cosθ)

∣∣dθ
≤ ln

[
k1/2(λn0

)k[M( 1
R−ε

)n0
( πλ2

n0

k2
(
λn0+1

))1/2
+k−1/2Mc(N−1)

(
λN−1

λn0

)k]]
,

(3.22)
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this inequality holds for all sufficiently large k. Again, by (3.11), the first term inside

the bracket in (3.22) is O(1) as k→∞. Then, because of (3.11) and (3.19), the integral

in (3.22) is O(k lnk).
In summary, by Jensen’s formula as in (3.15), N(T), which equals the number of

zeros of (Lkf)(z) in ET , satisfies

N(T)=O(k lnk). (3.23)

4. Commentary. The order of growth O(k lnk) that appears in the conclusions of

Theorem 2.1 and Corollary 2.2 is due to the method of the proof used. The inspiration

for this method was corresponding methods used by Erdös and Rényi [3]. The correct

order of growth, namely O(k), should be possible to obtain in the conclusion of this

theorem and corollary.

In this paper, we have assumed a function to be analytic in an ellipse with foci at

±1 and obtained asymptotic bounds on the number of zeros of Lkf(z) in this ellipse,

which in particular bounds the number of sign changes of (Lkf)(x) in (−1,1). The

definition of L appears in the introduction.

Much work has been done in various contexts addressing the converse of the prob-

lem posed here. That is, one assumes for a real function that is C∞ on a real interval I
an asymptotic bound on the number of sign changes of (Lkf)(x) in I, where L is the

appropriate differential operator. One then deduces extendability by analytic contin-

uation of the function to be analytic, or even to be an entire function, or even entire of

a certain growth, depending on the frequency of sign changes of (Lkf)(x) in I. Work

on problems of this type can be found in [4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16].
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