Internat. J. Math. & Math. Sci. Vol. 2 (1979) 1-13

CONVEXITY, BOUNDEDNESS, AND ALMOST PERIODICITY FOR DIFFERENTIAL EQUATIONS IN HILBERT SPACE

JEROME A. GOLDSTEIN

Department of Mathematics Tulane University New Orleans, Louisiana 70118 U.S.A.

(Received October 27, 1978)

<u>ABSTRACT</u>. There are three kinds of results. First we extend and sharpen a convexity inequality of Agmon and Nirenberg for certain differential inequalities in Hilbert space. Next we characterize the bounded solutions of a differential equation in Hilbert space involving and arbitrary unbounded normal operator. Finally, we give a general sufficient condition for a bounded solution of a differential equation in Hilbert space to be almost periodic.

<u>KEY WORDS AND PHRASES</u>. Differential equations in Hilbert space, Convexity inequality, Self-adjoint operators, Bounded solutions, Almost periodic solutions.

AMS(MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 34G05, 47A50 Secondary 34C25, 47B15. 1. <u>INTRODUCTION</u>. Let S_1 , S_2 be two commuting self-adjoint operators on a complex Hilbert space H. Let $u : [a,b] \rightarrow H$ satisfy the inequality

$$\|du(t)/dt - (S_1 + iS_2) u(t)\| \le \phi(t) \|u(t)\|$$
, $a \le t \le b$, (1.1)

where $\int_{a}^{b} \phi(t) dt \le c < 1/2$. We shall show that this implies the convexity inequality

$$||u(t)|| \le K_c ||u(a)||^{\frac{b-t}{b-a}} ||u(b)||^{\frac{t-a}{b-a}},$$

which holds for some constant K_c and all $t \in [a,b]$. S. Agmon and L. Nirenberg [1] first proved this assuming $c = 2^{-3/2}$; recently S. Zaidman [7] extended it to weak solutions of (1.1). Our results apply to weak solutions and to the range of values 0 < c < 1/2; moreover, we obtain a smaller constant K_c than did these previous authors. This result is presented in Section 2.

Section 3 is devoted to obtaining the structure of the set of all bounded solutions of

$$du(t)/dt = (S_1 + iS_2)u(t)$$
 (-\infty < t < \infty).

The results generalize and improve a recent result of Zaidman [8].

In Section 4 we study almost periodic solutions of the inhomogeneous equation

$$du(t)/dt = Au(t) + f(t) \qquad (-\infty < t < \infty) ;$$

here A is a closed linear operator on H and f is an H-valued function. Under a finite dimensionality assumption we show that bounded solutions are almost periodic. This generalizes the results obtained by Zaidman in [6]. 2. <u>A CONVEXITY THEOREM</u>. Let u map the real interval [a,b] into a complex Hilbert space H with inner product $\langle \cdot, \cdot \rangle$. Let B : $\mathcal{D}(B) \subset H \rightarrow H$ be a closed, densely defined linear operator. u is a strong solution of

$$\|du(t)/dt - Bu(t)\| \le \phi(t) \|u(t)\|$$
 (2.1)

if u is continuously differentiable on [a,b], takes values in $\mathcal{D}(B)$, and f(t) \equiv du/dt - Bu satisfies $||f(t)|| \leq \phi(t) ||u(t)||$, $a \leq t \leq b$. u is a *weak solution* of (2.1) if u is continuous and for continuously differentiable functions ψ with compact support in]a,b[and with values in $\mathcal{D}(B^*)$, we have

$$-\int_{a}^{b} \langle u(t), \psi'(t) \rangle dt = \int_{a}^{b} \{\langle u(t), B^{*}\psi(t) \rangle + \langle f(t), \psi(t) \rangle \} dt,$$
$$\||f(t)\| \leq \phi(t) \||u(t)\|, \quad a \leq t \leq b.$$

That a strong solution of (2.1) is a weak solution follows from an integration by parts.

THEOREM 2.1. Let $u : [a,b] \rightarrow H$ be a weak solution of (2.1) where B is symmetric. If

$$\int_{a}^{b} \phi(t) dt \le c < 1/2 , \qquad (2.2)$$

then the convexity inequality

$$\|u(t)\| \leq K_{c} \|u(a)\|^{\alpha} \|u(b)\|^{1-\alpha}$$
, (2.3)

holds, where

$$\alpha = \frac{b-t}{b-a}$$
, $K_c = \left(\frac{2}{1-2c}\right)^{1/2}$.

In particular, when $c = 1/2 \sqrt{2}$, we get $K_c = (4 + 2\sqrt{2})^{1/2}$. Agmon and Nirenberg [1] proved this result for strong solutions, taking $c = 1/2 \sqrt{2}$ and obtaining the constant $K_c = 2\sqrt{2}$ (> $(4 + 2\sqrt{2})^{1/2}$). This result also appears in Friedman's book [3, p.219]. Zaidman [7] extended the Agmon-Nirenberg result to weak solutions. The new features of Theorem 2.1 are (i) the result is extended to cover the case $\frac{1}{2\sqrt{2}} < c < \frac{1}{2}$, (ii) the constant K_c is sharpened for each value of c (including $c \le 1/2 \sqrt{2}$).

By enlarging the Hilbert space H, we can extend B to be a selfadjoint operator (cf. Sz.-Nagy [5]). Also, for S_1 and S_2 commuting selfitS₁ and e commute for all real t and s), we may extend the theorem to the case where B is replaced by the (unbounded) normal operator $S_1 + iS_2$ according to the observation made in [1, p.138].

PROOF OF THEOREM 2.1. The proof follows Zaidman [7, pp. 236-244] with the following changes on pp. 242-244. We use Zaidman's notation. From

$$\|\mathbf{u}(t)\|^{2} \leq \|\mathbf{u}_{1}(b)\|^{2} + \|\mathbf{u}_{2}(a)\|^{2} + 2M \int_{a}^{b} \|\mathbf{f}(s)\| ds$$

(cf. [7, p.242, line 3]) we get

$$||u(t)||^{2} \le ||u_{1}(b)||^{2} + ||u_{1}(a)||^{2} + \varepsilon M^{2} + \varepsilon^{-1} (\int_{a}^{b} ||f(s)|| ds)^{2}$$

for each $\varepsilon > 0$; here $M = \sup \{ ||u(s)|| : a \le s \le b \}$. This implies

$$M^2 \leq \beta + \varepsilon M^2 + \varepsilon^{-1} N^2$$

where $\beta = ||u(a)||^2 + ||u(b)||^2$, $N = \int_a^b ||f(s)|| ds$. Consequently

$$M^{2} \leq (\beta + \varepsilon^{-1} N^{2}) (1 - \varepsilon)^{-1}$$
(2.4)

for $0 < \varepsilon < 1$. (This becomes [7, p.242, eqn. (*)] when $\varepsilon = 1/2$.) Since u is a weak solution of u' - Bu = f (where $||f(t)|| \le \phi(t) ||u(t)||$), it follows that $\omega_{\sigma}(t) \equiv e^{\sigma t} u(t)$ is a weak solution of $\omega' - B_{\sigma}\omega_{\sigma} = e^{\sigma t} f(t)$ where $B_{\sigma} = B - \sigma I$ (cf. [7, Lemma 4, p.242]). Letting

$$M_{\sigma} = \sup \{ \|e^{\sigma t} u(t)\|^{2} : a \le t \le b \},$$

$$B_{\sigma} = \|e^{\sigma a} u(a)\|^{2} + \|e^{\sigma b} u(b)\|^{2},$$

$$N_{\sigma} = \int_{a}^{b} \|e^{\sigma t} f(t)\| dt,$$

we have that (2.4) (applied to ω_{σ} rather than u) yields

$$M_{\sigma}^{2} \leq (\beta_{\sigma} + \varepsilon^{-1} N_{\sigma}^{2}) (1 - \varepsilon)^{-1}$$
(2.5)

for all real σ and all ϵ , $0<\epsilon<1.$ But by (2.1) and (2.2),

$$N_{\sigma} \leq \int_{a}^{b} e^{\sigma t} \phi(t) ||u(t)|| dt$$

$$\leq \sup \{ ||e^{\sigma s} u(s)|| : a \leq s \leq b \} \int_{a}^{b} \phi(t) dt$$

$$\leq M_{\sigma} c.$$

Squaring this gives

$$N_{\sigma}^2 \leq M_{\sigma}^2 c^2$$
.

Plugging into (2.5) yields

$$M_{\sigma}^{2} \leq (\beta_{\sigma} + \varepsilon^{-1} c^{2} M_{\sigma}^{2}) (1 - \varepsilon)^{-1}$$

or

$$M_{\sigma}^{2} \leq \frac{\varepsilon \beta_{\sigma}}{\varepsilon(1-\varepsilon) - c^{2}}$$
(2.6)

provided $0 < \varepsilon < 1$ and $\varepsilon(1 - \varepsilon) > c^2$, i.e., 0 < c < 1/2 and $|2\varepsilon - 1| < (1 - 4c^2)^{1/2}$. As in [7, pp. 243, 244], u(a) = 0 or u(b) = 0implies $u \equiv 0$, so to prove the theorem we may suppose $u(a) \neq 0$, $u(b) \neq 0$. Choosing $\sigma = (b - a)^{-1} \log(||u(a)|| / ||u(b)||)$ makes

 $e^{\sigma t} = (||u(a)|| / ||u(b)||)^{\overline{b-a}}$ and $||e^{\sigma a} u(a)|| = ||e^{\sigma b} u(b)||$. Thus (2.6) becomes, for all $t \in [a,b]$,

$$\begin{pmatrix} \left\| \underline{u}(\underline{a}) \right\| \\ \left\| u(\underline{b}) \right\| \end{pmatrix}^{\frac{2t}{b-a}} \left\| u(t) \right\|^{2} \leq L \left\{ \left\| u(\underline{a}) \right\|^{2} \left(\frac{\left\| \underline{u}(\underline{a}) \right\|}{\left\| u(b) \right\|} \right)^{\frac{2a}{b-a}} + \left\| u(\underline{b}) \right\|^{2} \left(\frac{\left\| \underline{u}(\underline{a}) \right\|}{\left\| u(b) \right\|} \right)^{\frac{2b}{b-a}} \right\}$$

$$= 2L \left(\frac{\left\| \underline{u}(\underline{a}) \right\|^{2b}}{\left\| u(b) \right\|^{2a}} \right)^{\frac{1}{b-a}}$$

where $L = \varepsilon (\varepsilon (1-\varepsilon) - c^2)^{-1}$. Consequently

$$\|u(t)\| \leq (2L)^{1/2} \|u(a)\|^{\frac{b-t}{b-a}} \|u(b)\|^{\frac{t-a}{b-a}}$$

holds for $a \le t \le b$. Regard $g(\varepsilon) = (2L)^{1/2} = \left(\frac{2\varepsilon}{\varepsilon(1-\varepsilon) - c^2}\right)^{1/2}$ as a function of ε . It is minimized when $\varepsilon = c$, in which case $(2L)^{1/2} = \left(\frac{2}{1-2c}\right)^{1/2}$. This is a legitimate choice of ε since $|2\varepsilon - 1| < (1 - 4c^2)^{1/2}$ holds in this case. The proof of the theorem is now complete.

3. <u>BOUNDED SOLUTIONS</u>. Let S_1 , S_2 be commuting self-adjoint operators on \mathcal{H} . We study functions $u \in C^1(\mathbb{R}, \mathcal{H})$ ($\mathbb{R} =]-\infty,\infty[$) which are bounded (strong) solutions of

$$du(t)/dt = (S_1 + iS_2) u(t)$$
, $t \in \mathbb{R}$. (3.1)

LEMMA 3.1. Let u be a bounded solution of (3.1). Then $u(t) = e^{itS_2}h$ for all $t \in \mathbb{R}$ and some $h \in Ker(S_1) = \{f \in H : S_1f = 0\}$.

PROOF. Let h = u(0). Then

$$u(t) = e^{tS_1 itS_2} (e^{tS_1} h) = e^{itS_2 (e^{tS_1} h)}.$$

(Recall that e^{tS_1} , e^{itS_2} are defined by the operational calculus associated with the spectral theorem.) Since e^{itS_2} is unitary, $||u(t)|| = ||e^{tS_1}h||$ follows. But $||e^{tS_1}h||$ is bounded for $t \in \mathbb{R}$ if and only if $h \in Ker(S_1)$, in which case $e^{itS_1}h = h$, and so $u(t) = e^{itS_2}h$, as advertised.

A special case occurs when

$$\operatorname{Ker}(S_1) = M_1 \oplus \ldots \oplus M_n$$
,

where S_2 restricted to M_j is a real constant λ_j times the identity on M_j for $1 \le j \le n$. Then any bounded solution of (3.1) is of the form

$$u(t) = \sum_{j=1}^{n} e^{it\lambda_j} h_j$$
(3.2)

where h_j is the orthogonal projection of u(0) onto M_j , $1 \le j \le n$. This covers the result obtained by Zaidman in [8]. More precisely, let $\{E(\theta) : \theta \in \mathbb{R}\}$ be a resolution of the identity and let

$$S_1 = \int_{-\infty}^{\infty} x(\theta) dE(\theta)$$
, $S_2 = \int_{-\infty}^{\infty} y(\theta) dE(\theta)$

be associated commuting self-adjoint operators, where x and y are continuous

real functions on **R**. If the zero set of x is the finite set $\{\theta_1, \ldots, \theta_n\}$ then S_2 is $\lambda_j = y(\theta_j)$ times the identity on $M_j = (E(\theta_j^+) - E(\theta_j^-))(H)$, $1 \le j \le n$, and so any bounded solution of (3.1) is of the form (3.2) with $h_i \in M_j$, $1 \le j \le n$. This is Zaidman's result [8].

4. ALMOST PERIODIC SOLUTIONS.

THEOREM 4.1. Let $A : H \rightarrow H$ be a bounded linear operator and let $f : \mathbb{R} \rightarrow H$ be almost periodic. Let $u : \mathbb{R} \rightarrow H$ be a bounded (i.e. $\sup \{ ||u(t)|| : t \in \mathbb{R} \} < \infty$) strong solution of

$$du(t)/dt = Au(t) + f(t) \qquad (t \in \mathbb{R}). \qquad (4.1)$$

Suppose there is a finite dimensional subspace
$$H_1$$
 of H_1
such that $H_1 \supset \{Af(s) : s \in \mathbb{R}\} \cup \{Au(0)\}$ and
 $e^{tA}(H_1) \subset H_1$ for all $t \in \mathbb{R}$. (4.2)

Then u is almost periodic.

When H is finite dimensional, this is the classical Bohr-Neugebauer-Bochner theorem (cf. Amerio-Prouse [2, p.85]). When A is a finite rank operator we can take H_1 to be the range of A, and Theorem 4.1 becomes the theorem of Zaidman [6] in this case.

PROOF OF THEOREM 4.1. Let $H_2 = H \Theta H_1$ be the orthogonal complement of H_1 , and let P_j be the orthogonal projection onto H_j , j = 1, 2. Let $u_j(t) = P_ju(t)$, j = 1, 2. Note that if L is as upper bound for ||u(s)||($s \in \mathbb{R}$), then for all real t,

$$L^{2} \ge ||u(t)||^{2} = ||u_{1}(t)||^{2} + ||u_{2}(t)||^{2}$$
,

whence u₁ and u₂ are bounded. Also,

$$du/dt = du_1/dt + du_2/dt = Au_1 + Au_2 + P_1f + P_2f$$
.

Applying P_1 to both sides gives

$$du_1/dt = P_1Au_1 + P_1Au_2 + P_1f . (4.3)$$

The function u admits the variation of parameters representation

$$u(t) = e^{tA}u(0) + \int_0^t e^{(t-s)A} f(s) ds$$

= $e^{tA}u(0) + \int_0^t f(s) ds + \sum_{n=1}^{\infty} \int_0^t \frac{(t-s)^n}{n!} A^n f(s) ds$.

The last (summation) term belongs to H_1 by (4.2). Applying P_2 to this expression gives

$$u_2(t) = P_2 e^{tA} u(0) + \int_0^t P_2 f(s) ds$$

differentiating yields

$$du_2(t)/dt = P_2 e^{tA}Au(0) + P_2 f(t) = P_2 f(t)$$

by (4.2). Since f is almost periodic and P_2 is bounded it follows that du_2/dt is almost periodic. Since u_2 is bounded, u_2 itself is almost periodic (see [2, p.55]).

Next, by (4.3),

$$du_1(t)/dt = P_1Au_1(t) + g(t)$$
, (4.4)

where $g(t) \equiv P_1 Au_2(t) + P_1 f(t)$ is almost periodic. Since u_1 is bounded and $P_1 A : H_1 \to H_1$ is linear, (4.4) is a linear system in the finite dimensional Hilbert space H_1 (see (4.2)). It follows from the classical Bohr-Neugebauer-Bochner theorem [2] that u_1 is almost periodic. Consequently $u = u_1 + u_2$ is almost periodic, and the proof is complete.

Theorem 4.1 can be easily extended to the case when A is unbounded, as follows.

THEOREM 4.2. Let $A : D(A) \subset H \to H$ generate a (C_0) group of bounded linear operators $\{T(t) : t \in \mathbb{R}\}$ on H(cf. [4]). Let $u : \mathbb{R} \to H$ be a bounded solution of (4.1) where f is almost periodic. Suppose there is a finite dimensional subspace H_1 of H such that

$$H_1 \supset \{ (T(t) - I) f(s) : s \in \mathbb{R}, t \in \mathbb{R} \} \cup \{ Au(0) \}$$

and $T(t)(H_1) \subset H_1$ for all $t \in \mathbb{R}$. Then u is almost periodic.

The proof, which differs from the proof of Theorem 4.1 only in inessential ways, is omitted.

COROLLARY 4.3. Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of the linear operator $A : \mathcal{D}(A) \subset H \to H$ and let ϕ_1, \ldots, ϕ_n be corresponding eigenvectors. Let H_1 be the span of ϕ_1, \ldots, ϕ_n . Then any bounded solution of (4.1) is almost periodic, provided $f : \mathbb{R} \to H_1$ is almost periodic and $u(0) \in H_1$.

This follows immediately from Theorem 4.2.

COROLLARY 4.4. In Corollary 4.3 one can omit the hypothesis that $u(0) \in H_1$ provided that one assumes that A is a compact normal operator.

PROOF. Let P_1 , P_2 , u_1 , u_2 be as in the proof of Theorem 4.1. Applying P_j to (4.1) and noting that A commutes with P_j in this case gives

$$du_{1}(t)/dt = Au_{1}(t) + f(t) ,$$

$$du_{2}(t)/dt = Au_{2}(t) \quad (t \in \mathbb{R}) .$$
(4.5)

 u_1 is almost periodic by the Bohr-Neugebauer-Bochner theorem. Thus it only remains to show that u_2 is almost periodic. Let B be the restriction of A to H_2 . B is a compact normal operator, hence by the spectral theorem there is an orthonormal basis $\{\psi_m\}$ for H_2 and complex numbers $\mu_m \neq 0$ such that

$$B\phi = \sum_{m=1}^{\infty} \mu_m <\phi, \psi_m > \psi_m$$

for all $\phi \in H_2$. Let Q_m be the orthogonal projection (in H_2) onto the span of ψ_1, \ldots, ψ_m . Let $v_m = Q_m u_2$. Then

$$dv_m/dt = Q_m du_2/dt = Q_m Au_2 = Bv_m$$

by (4.5). Also, v_m is bounded (since u_2 is) and takes values in a finite dimensional space, whence v_m is almost periodic. We *claim* that $u_2(t) = \lim_{m \to \infty} v_m(t)$, uniformly for $t \in \mathbb{R}$. It then follows that u_2 is almost periodic [2] and the proof is done. So it only remains to prove the *claim*. We have

$$\frac{d}{dt} (u_2(t) - v_m(t)) = B(u_2(t) - v_m(t)) = (B - Q_m B)(u_2(t) - v_m(t)) ,$$

therefore

$$u_{2}(t) - v_{m}(t) = \sum_{k=m+1}^{\infty} e^{t\mu_{k}} \langle (u_{2} - v_{m})(0), \psi_{k} \rangle \psi_{k}$$

Consequently

$$||u_2(t) - v_m(t)||^2 = \sum_{k=m+1}^{\infty} e^{t \operatorname{Re} \mu_k} |\langle (u_2 - v_m)(0), \psi_k \rangle|^2.$$

Since $\|u_2(t) - v_m(t)\| \le \|u_2(t)\| \le L < \infty$ for some L and all $t \in \mathbb{R}$, it follows that for every k for which $<(u_2 - v_m)(0), \psi_k > \neq 0$ for some m, μ_k must be purely imaginary. Therefore

$$\|u_{2}(t) - v_{m}(t)\|^{2} = \sum_{k=m+1}^{\infty} |\langle (u_{2} - v_{m})(0), \psi_{k} \rangle|^{2}$$
$$= \|(I - Q_{m})u_{2}(0)\|^{2} \neq 0$$

as $n \rightarrow \infty$, uniformly for $t \in \mathbb{R}$. Q.E.D.

<u>ACKNOWLEDGEMENT</u>: This research is an outgrowth of discussions I had with Samuel Zaidman in April, 1978 when I had the pleasure to visit the Université de Montréal. I thank Professor Zaidman for some stimulating dicussions, and I gratefully acknowledge that my trip to Montréal was supported by his NRC grant. Finally, I gratefully acknowledge the support of an NSF grant.

REFERENCES

- [1] Agmon, S. and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach spaces, <u>Comm. Pure Appl. Math.</u> 16 (1963), 121-239.
- [2] Amerio, L. and G. Prouse, <u>Almost-Periodic Functions and Functional</u> Equations, Van Nostrand Rheinhold, New York, 1971.
- [3] Friedman, A., Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
- [4] Hille, E. and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, R. I., 1957.
- [5] Sz.-Nagy, B., Extensions of linear transformations in Hilbert space which extend beyond the space, appendix to F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1960.
- [6] Zaidman, S., Bohr-Neugebauer theorem for operators of finite rank in Hilbert spaces, <u>Atti Acad. Sci. Torino 109</u> (1974/1975), 183-185.
- [7] Zaidman, S., A convexity result for weak differential inequalities, Canad. Math. Bull. 19 (1976), 235-244.
- [8] Zaidman, S., Structure of bounded solutions for a class of abstract differential equations, <u>Ann. Univ. Ferrara</u> <u>22</u> (1976), 43-47.