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ABSTRACT. There are three kinds of results. First we extend and sharpen

a convexity inequality of Agmon and Nirenberg for certain differential

inequalities in Hilbert space. Next we characterize the bounded solutions

of a differential equation in Hilbert space involving and arbitrary unbounded

normal operator. Finally, we give a general sufficient condition for a

bounded solution of a differential equation in Hilbert space to be almost

periodic.
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i. INTRODUCTION. Let S
1

S
2

be two commuting self-adjoint operators on

a complex Hilbert space H. Let u [a,b] / H satisfy the inequality

//du(t)/dt (S
1

+ iS 2) u(t)]/ _< ,(t)]]u(t)]l a -< t < b {i .I)

where (t)dt < c < 1/2. We shall show that this implies the convexity

inequality

b-t t-a

lluCt)ll -< K lluca)ll b-a lluCb)ll b-a
c

which holds for some constant K and all t [a,b]. S. Agmon and L.c

Nirenberg [I] first proved this assuming c 2-3/2 recently S. Zaidman [7]

extended it to weak solutions of (1.1). Our results apply to weak solutions

and to the range of values 0 < c < 1/2 moreover, we obtain a smaller

constant K than did these previous authors. This result is presented in

Section 2.

Section 3 is devoted to obtaining the structure of the set of all

bounded solutions of

du(t)/dt (S
1

+ iS2)u(t (_oo < t < ).

The results generalize and improve a recent result of Zaidman [83.

In Section 4 we study almost periodic solutions of the inhomogeneous

equation

du(t)/dt Au(t) + f(t) (- < t < )

here A is a closed linear operator on H and f is an H-valued function.

Under a finite dimensionality assumption we show that bounded solutions are

almost periodic. This generalizes the results obtained by Zaidman in [6].
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2. A CONVEXITY THEOREM. Let u map the real interval [a,b3 into a complex

Hilbert space H with inner product <-,.>. Let B D(B) c H H be a

closed, densely defined linear operator, u is a strong solution of

Ildu(t)/dt- Bu(t)ll -< (t)[lu(t)ll (2.1)

if u is continuously differentiable on [a,b], takes values in D(B) and

f(t) -= du/dt Bu satisfies Ilf(t)ll _< (t) Iluft)ll a <- t -< b. u is a

weak solution of (2.1) if u is continuous and for continuously differen-

tiable functions @ with compact support in 3a,b[ and with values in

D(B*) we have

Ib Ib<u(t),’(t)> dt {<u(t),B*(t)> + <f(t),(t)>}dt
a a

IIf(t)ii -< ,(t)Ilu(t)[I a _< t -< b.

That a strong solution of (2.1) is a weak solution follows from an

integration by parts.

THEOREM 2.1. Let u [a,b] H be a weak solution of (2.1) where B

is synetric. If

b
(t)dt -< c < 1/2

a
(2.2)

then the convexity inequality

Iluct)ll -< K Ilu(a)ll Ilu(b)]]
C

(2.3)

holds, where

a b---- Kc
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In particular, when c 1/2 we get K (4 + 2-) 1/2
c

Agmon and

Nirenberg [I] proved this result for strong solutions, taking c 1/2 /

and obtaining the constant K 2 (> (4 + 2)i/2). This result alsoc

appears in Friedman’s book [3, p.219]. Zaidman [7] extended the Agmon-

Nirenberg result to weak solutions The new features of Theorem 2.1 are (i)

1 1the result is extended to cover the case 2- < c < (ii) the constant

K is sharpened for each value of c (including c < 1/2 ).c

By enlarging the Hilbert space H we can extend B to be a self-

&djoint operator (cf. Sz.-Nagy [5]). Also, for S
1

and S
2

commuting self-
itS

1
isS

2adjoint operators (i.e., e and e commute for all real t and s),

we may extend the theorem to the case where B is replaced by the (unbounded)

normal operator S
1

+ iS
2

according to the observation made in [I, p.138].

PROOF OF THEOREM 2.1. The proof follows Zaidman [7, pp. 236-244] with

the following changes on pp. 242-244. We use Zaidman’s notation. From

lluCt)ll 2 _< llul Cb)ll 2
+ flu2 C)[I 2

+ 2. II fC)ll ds

(cf. [7, p.242, line 33)we get

liuCt)ll2
_

lluCb)ll2 / ilUlC)I12 / 2+ - C llfC)ll ds)
a

for each e > 0 here M sup (ll=()ll <- -< b}. This implies

M
2 < 8 + eM

2
+ e

-I N
2

where 8 lluc)ll2 + llucb)ll 2
b

N= llc)ll ds. Consequently
a

1 -1M2-< (8 + e- N2)(I e)
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for 0 < e < 1. (This becomes [7, p.242, eqn. (*)] when e 1/2.) Since

u is a weak solution of u’ Bu f [where IIft)l[ -< (t) llu(t)l[) it

follows that (t) e
t ot

u(t) is a weak solution of ’ B e f(t)

where B B- oI (cf. [7, Lena , p.242]). Letting

M sup {liet u(t)li 2 a<t<b},

B liea 2 eOb 2
o u(a)l[ + I1 u(b)ll

No liet f(t)ll dt,

we have that (2.4) (applied to rather than u) yields
o

-1 2)M
2 < (8 + e N (1 e)

-1

for all real and all e 0 < < 1. But by (2.1) and (2.2),

b
N -< e

t (t)Ilu(t)ll dt
o a

_< sup {ll es u<s)ll a _< s _< b} O(t) dt

-< M C.

Squaring this gives

2 2 2
N <M c

Plugging into (2.5) yields

-1 2 2)2
< (Bo. + c M (i E:)Mo o

-1

or

2
M -< 2

E(1-) C

(2.6)
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2
provided 0 < e < 1 and e(1 ) > c i.e., 0 < c < 1/2 and

2)1/2]2- 1[ < {1-4c As in [7, pp. 243, 244], u(a) 0 or u{b} 0

implies u 0 so to prove the theorem we may suppose u(a) # 0 u(b) # 0.

Choosing o (b- a) -I log(llu(a)ll/lluCb)ll) makes

t (llu()ll/llu(b)ll)
t

and II= uCa)ll II u(b)ll. Thus 2.6)becomes,

for all t E [a,b]

2t

/llu()ll) b-a

\llu(b)ll

2a

llu(b)ll /
+ llu(b)ll lluCb)ll

1
b-a

2L llu<a)ll
Ilu(b)ll 2

2b

where L e((1-e) c2)-1. Consequently

b-t t-a

llu(t)ll -< (2L) I/2 llu(a)llb-a Ilufb)l[ b-a

) 1/2
holds for a < t < b. Regard g() (2L)

1/2 2e
’2

e(1-e) C

function of e. It is minimized when c in which case

as a

1"-2 This is a legitimate choice of since

12e I < (1 4c2) 1/2 holds in this case. The proof of the theorem is

now complete.

3. BOUNDED SOLUTIONS. Let S1 $2 be commuting self-adjoint operators

on H. We study functions u E CI(]I, H) (If ]-,[) which are bounded

(strong) solutions of
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du(t)/dt (S1
+ iS 2) u(t) t lR.

itS
2LENNA S.l. Let u be a bounded solution oJ’ (3.1). Then u(t) e

for all t e and some h e Ker(S1) {f e H Slf 0}.

PROOF. Let h u(0). Then

tS
1

itS itS
2

tS
1u(t) e (e

2
h) e (e h).

tS
1

itS
2(Recall that e e are defined by the operational calculus associated

itS tS
with the spectral theorem.) Since e 2

is unitary, Ilu(t)ll lie 1 hll
tS

1follows. But lie hil is bounded for t e if and only if h e Ker(S)
tS itS

1 2in which case e h h and so u(t) e h as advertised.

A special case occurs when

Ker(Sl M
1
@ 0 M

n

where S
2

restricted to M. is a real constant X. times the identity on

M. for 1 < j < n. Then any bounded solution of (S.l) is of the form

n itX.
u(t) [ e h. (3.2)

j=l

where h. is the orthogonal projection of u(O) onto M. 1 -< j -< n. This
J J

covers the result obtained by Zaidman in [8]. More precisely, let

{E(O) 0 It} be a resolution of the identity and let

S
1

x(O) dE(O) S
2

y(O) dE(O)

be associated commuting self-adjoint operators, where x and y are continuous
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real functions on JR. If the zero set of x is the finite set {O
1

O
n

then S
2

is kj y(Oj) times the identity on Mj (E(Oj +) E(Oj-)) (H)

1 -< j < n and so any bounded solution of (3.1) is of the form (3.2) with

h. E Mj 1 _< j _< n. This is Za:xdman’s result [8].

4. ALMOST PERIODIC SOLUTIONS.

THEOREM 4.1. Let A H / H be a bounded linear operator and let

f ]R -+ H be almost periodic. Let u ]R -+ H be a bounded (i.e.

du(t)/dt Au(t) + f(t) (t E ). (4.1)

Suppose there is a finite dimensional subspace H
1 of

such that H
1 {Af(s) s } u {Au(0)} and

tA
e (H1) c H

1 for all t I.

Then u is almost periodic.

(4.2)

When H is" finite dimensional, this is the classical Bohr-Neugebauer-

Bochner theorem (cf. Amerio-Prouse [2, p.SS]). When A is a finite rank

operator we can take H
1

to be the range of A and Theorem 4.1 becomes

the theorem of Zaidman [63 in this case.

PROOF OF THEOREM 4.1. Let H2 H O H1
be the orthogonal complement

of HI
and let P. be the orthogonal projection onto H. j 1,2. Let

uj(t) Pju(t) j 1,2. Note that if L is as upper bound for Ilu(s)ll

(s e I), then for all real t

L
2 > flu(t)]] 2 []ul(t)l] 2

+ ]]u2(t)]] 2

whence u
I and u

2
are bounded. Also,



DIFFERENTIAL EQUATIONS IN HILBERT SPACE 9

du/dt dUl/dt + du2/dt Au
1

+ Au
2

+ P1 f + P2f

Applying P1 to both sides gives

dUl/dt PIAUl + PIAU2 + P1 f

The function u admits the variation of parameters representation

(4.3)

u(t) etAu(0) + e {t-s)A f(s) ds

e u(0) + f(s) ds + [ (t-s) Anf(s) ds
n:l

n’.

The last (summation) term belongs to H
1

by (4.2). Applying P2 to this

expression gives

u2(t) P2 etAu.{0) + P2 f(s) ds

differentiating yields

du2(t)/dt P2 etAAu(0) + P2 f(t) P2 f(t)

by (4.2). Since f is almost periodic and P2 is bounded it follows that

du2/dt is almost periodic. Since u
2

is bounded, u
2

itself is almost

periodic (see [2, p.553).

Next, by (4.3),

dul(t)/dt PlAUl(t) + g(t) (4.4)

where g(t) P1Au2(t) + Plf(t) is almost periodic. Since u
1

is bounded

and P1A /’/1 / /’/1 is linear, (4.4) is a linear system in the finite
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dimensional Hilbert space H
1

(see [4.2)). It follows from the classical

Bohr-Neugebauer-Bochner theorem [ 2] that uI is almost periodic. Consequently

u uI
+ u

2
is almost periodic, and the proof is complete.

Theorem 4.1 can be easily extended to the case when A is unbounded,

as fo i lows.

THEOREM 4.2. Let A (A) c H + H generate a [Co) group of bounded

linear operators {T[t) t e ]} on H [cf. [4]). Let u be a

bounded solution of [4.1) where f is almost periodic. Suppose there is a

finite dimensional subspace H
1 of H such that

/41 m {(T(t) I) f(s) s e JR, t e } u {Au(0)}

and T[t) (HI) c H
1 for all t . Then u is almost periodic.

The proof, which differs from the proof of Theorem 4.1 only in

inessential ways, is omitted.

COROLLARY 4.3. Let i Xn be eigenvalues of the linear operator

A I)(A) c / H and let l ’n be corresponding eigenvectors. Let

be the span of i’ n" Then any bounded solution of 4.1) is almost

periodic, provided f / HI is almost periodic and u{0) e HI"
This follows immediately from Theorem 4.2.

COROLLARY 4.4. In Corollary 4.3 one can omit the hypothesis that

u(0) e H
1 provided that one assumes that A is a compact normal operator.

PROOF. Let P1 P2 Ul u2 be as in the proof of Theorem 4.1.

Applying P. to (4.1) and noting that A commutes with P. in this case

gives
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dul(t)/dt Aul(t) + f(t)

du2(t)/dt Au2(t) (t l) (4.5)

u
1

is almost periodic by the Bohr-Neugebauer-Bochner theorem. Thus it only

remains to show that u
2

is almost periodic. Let B be the restriction of A

to H2. B is a compact normal operator, hence by the spectral theorem there

is an orthonormal basis {m for H
2

and complex numbers m 0 such that

<’ maqb m m>

m=l

for all H2" Let Qm be the orthogonal projection (in H2 onto the span

of 1’ m" Let Vm 0nu2. Then

dv /dt Qm du2/dt Qm Au2 Bv
m m

by (4.5). Also, Vm is bounded (since u
2 is) and takes values in a finite

dimensional space whence v is almost periodic. We claim thatm

u2(t lim Vm(t) uniformly for t It then follows that u
2

is almost
m-+o

periodic [23 and the proof is done. So it only remains to prove the elaim.

We have

d
d- (u2(t) Vm(t)) B(u2(t) v (t)) (B QmB)(u2(t Vm(t))m

therefore

u
2
(t) v

m
(t) . etvk <(u2 Vm)(0), k> Ck

k=m+l

Consequently

Ilu2(t) Vm(t)ll 2
t Re k. e < (u2 Vm) (0), Ck> 12

k=m+l
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Since llu2(t) Vm(t)ll -< llu2(t)ll -< L < for some L and all t m, it

follows that for every k for which <(u2 Vm)(0), k> # 0 for some m

Pk must be purely imaginary Therefore

Ilu2(t) vm(t)ll 2 [<{u
2 Vm)(03, k>l 2

k=m+l

I1(  )u2(0)ll 2 o

as n + uniformly for t Q E D
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